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A B S T R A C T

Traditional funding mechanisms for healthcare projects involve ranking the projects and awarding funds based
on their cost to benefit ratio. An alternative funding mechanism based on Bi-level programming was proposed
in the literature. We refer to this as Donor-Recipient Bi-level Knapsack Problem (DR-BKP), which we explore
further in this work. There are two participants, a leader (a donor agency) and a follower (recipient country)
in this problem. Both the participants have their individual budgets. There is a set of projects, each having
a certain cost and profit associated. The cost of projects are common to both the participants however the
profits can be different for them. There is an external project that is of exclusive interest to the follower. The
leader decides on cost subsidies to provide for the projects that is within her budget, while the follower solves
a knapsack problem with the cost subsidised projects and the external project. Two enumerative algorithms
were proposed in the literature for Bi-level problems with discrete upper level variables. We adapt them for
DR-BKP that has continuous upper level variables having non-linear interaction with lower level variables.
We first show the existence of a solution for DR-BKP and show the convergence of these algorithms. We
provide evidence for 𝛴𝑃

2 -hardness by showing that the problem is both NP-hard and Co-NP hard. Finally, we
have implemented these two enumerative algorithms and shared the results and analyses of the computational
experiments. A set of fifteen differing data sets each having randomly generated 10 instances have been solved
to evaluate the performance of the proposed algorithms.
1. Introduction

A Bi-level Programming Problem (BLPP) can be formally stated as

maximize
𝐲∈𝑌 , 𝐱∈𝑋

𝑓 (𝐲, 𝐱) (1a)

subject to 𝐹 (𝐲, 𝐱) ≤ 0 (1b)

𝐱 ∈ arg max
𝐱′∈𝑋

{𝑔(𝑦, 𝑥′) ∶ 𝐺(𝐲, 𝐱′) ≤ 0} (1c)

We have two decision makers. A leader at the upper level with a set
of decision variables, 𝐲 ∈ 𝑌 ⊆ R𝑚, and a follower at the lower level
with a set of decision variables, 𝐱 ∈ 𝑋 ⊆ R𝑛. The leader and the
follower have their own objective functions, 𝑓, 𝑔 ∶ R𝑚 × R𝑛 → R, and
constraint functions, 𝐹 ∶ R𝑚 × R𝑛 → R𝑝 and 𝐺 ∶ R𝑚 × R𝑛 → R𝑞 .
Decision making is sequentially done, first by the leader and then
by the follower. Once the leader takes a decision on 𝐲, the follower
solves an optimisation problem parameterised by the leader’s decision.
Bracken and McGill (1973) introduced this class of optimization mod-
els, wherein the feasible region of leader’s optimization problem is the
optimal solution set of follower’s optimization problem. Typically, a
central planner (or leader), with collective utility as objective, makes an
investment decision based on which one or more agents (or followers)
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make decisions that maximises their individual utility. This models the
hierarchical relation between two classes of decision makers. Many bi-
level optimization problems were originally proposed and studied as
Stackelberg games in the field of game theory (Kleinert et al., 2021),
when there is a hierarchy in decision making among players.

The BLPPs have two different solution approaches depending on the
problem, namely, (1) optimistic approach and (2) pessimistic approach.
Assuming a follower’s optimal solution is not unique, the leader and
follower can cooperate in an optimistic approach permitting the leader
to pick the best solution among the follower’s optimal set of solutions.
However, when there is no possibility of cooperation, it is typically
assumed that the follower will choose the least favourite solution of
the leader from the follower’s optimal set and a pessimistic approach
is taken. In this work, due to the nature of the application, cooperation
is assumed and we discuss optimistic strategies. We will not discuss
pessimistic approaches. We are dealing with a specific type of mixed
integer BLPPs, where the leader and the follower have a single knap-
sack constraint each. The follower solves a knapsack problem that is
influenced by decisions made by the leader’s knapsack problem. We
will formalise this in the sequel.

Motivation: Significant advancements have been made towards pre-
vention and treatment of human race against diseases world-wide in the
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Fig. 1. Project selection by recipient country and donor subsidies.
last two decades (United Nations, 2015). This achievement is attributed
not only to the technological progress in medical science but also to
the aid money allocated for healthcare projects (henceforth, referred to
as ‘‘project’’) conducted all over the world. The projects are primarily
funded by the recipient country, where they are implemented, in
partnership with financing organisations like the Global Fund. These
organisations raise funds from public sector contributions of nations
with large gross national income and philanthropic organizations.

The recipient is often a developing country that manages her budget
for healthcare projects alongside numerous other projects such as ed-
ucation, welfare, infrastructure, defense, etc. The aid money available
through the donors is limited as well. Hence, it is important to identify
an efficient and fair mechanism to allocate the funds available between
the donor and the recipient to these projects.

The most followed approach for allocating the healthcare funds is of
cost-effective analysis. The projects with higher benefits and lower costs
are funded first. However, Morton et al. (2018) claim that this approach
results in crowding out of indigenous financing of interventions, and
thus results in under-allocation of resources to healthcare. They instead
have proposed a novel approach for the donor to allocate subsidies
to projects that are just cost-ineffective to a country i.e. the projects
that have just missed a chance to be funded by the country herself
will be subsidised by the donor agency and pulled to the level of
marginal projects. Marginal projects are the projects that are eligible
to be funded by the country herself. Fig. 1 shows the line of marginal
cost-effectiveness, projects funded by the country herself and projects
that can be subsidised and brought to the marginal line. The given
approach assures not only efficient allocation of the available funds but
it is also inline with the idea of ‘‘sustainable’’ aid. The authors referred
to this as Bi-level Knapsack Problem (BKP). In this work, we refer
to this approach as Donor-Recipient Bi-level Knapsack problem (DR-
BKP) to distinguish it from other bi-level knapsack problems that are
available in the literature (see Caprara et al., 2014). This model was
first reformulated into a single level mixed integer program under the
assumption that the recipient is a middle income country capable of
funding all the health-care projects from her own budget and then it
was solved using a standard optimization solver in Morton et al. (2018).
The assumption made in Morton et al. (2018) is relaxed in this paper
in order to generalise the model for wider use.

1.1. Contribution

The main contributions of this work are extending and adapting the
ideas of two finitely converging exact algorithms, (a) an enumeration
algorithm by Lozano and Smith (2017) and (b) a branching technique
by Xu and Wang (2014) to solve the DR-BKP model. We differ from
2

both these models in a number of ways. Firstly, our problem has
continuous variables in its upper level and both continuous and discrete
variables at the lower level. Most mixed integer bi-level problems
assume that the lower level problem is parameterised exclusively by
the upper level integer variables. Continuous upper level variables in
the lower level problem impose two difficulties. The first one being ill-
posedness of the problem due to non-compact feasible region i.e. an
optimal solution may not exist in such cases as shown by Vicente et al.
(1996). An example is given by Köppe et al. (2010) to illustrate this
case. Our upper level objective is a discrete function, which circum-
vents this issue. The second difficulty lies in the design of the algorithm.
The constraints added in both (Lozano and Smith, 2017; Xu and Wang,
2014) require that the lower level problem is parameterised by inte-
ger upper level variables to avoid open feasible sets. We show that
convergence is guaranteed even without this assumption. In addition,
the upper and lower level variables interact non-linearly at the lower
level constraints but the parameterised lower level problem is a mixed
integer linear program. This requires us to modify both the constraint
and branching rules of Lozano and Smith (2017) and Xu and Wang
(2014).

We make an assumption on the cost of projects that we will discuss
later in the sequel. With this assumption, we show convergence and
the computational experiments were performed and presented. We also
provide evidence for 𝛴𝑃

2 -complexity in Section 3.1, by showing the
decision version of the problem is both NP-hard and Co-NP hard.

The problem is formally defined in Section 2 followed by complexity
of the DR-BKP. The enumeration algorithm and the branching tech-
nique are given in Sections 4 and 5 respectively, to solve the DR-BKP.
A set of 150 instances (10 in each of the 15 different data sets) have
been solved, compared and presented in Section 6. These data sets
have been generated to mimic the different scenarios arising in real-
life healthcare problems. Finally, the last section concludes this paper
along with findings and suggestions for future research.

1.2. Previous work

There are several real-life problems modelled as BLPPs, such as
transportation network design by Constantin and Florian (1995), na-
tional agricultural planning by Fortuny-Amat and McCarl (1981) and
revenue management by Morton et al. (2018), and Côté et al. (2003).
Although the application areas are wide, there are not many imple-
mentations seen due to the lack of efficient algorithms to deal with
actual problem sizes in real-life. Hence a lot of attention has been
shifted recently to solve these extremely challenging set of problems.
The difficulty of these problems can be realised from the fact that
even in the simplest case of linear BLPPs, wherein the objective
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functions and the constraints at both levels are linear, the problem is
NP-hard (see Jeroslow, 1985). There are different structures of BLPPs
een in the literature based on (a) the linearity or convexity of the
bjective functions and/or constraints in both levels, (b) variables being
ontinuous and/or discrete in both levels and (c) occurrence of upper
evel variables in the lower level problem (see Colson et al., 2005
nd Mersha and Dempe, 2006). These developed models have different
olution techniques depending on the individual problem’s structures.
he latest and by far the largest annotated list of references can be
ound in the book by Dempe and Zemkoho (2020).

Vicente et al. (1996), Dempe (2001), and Fanghänel and Dempe
2009) discussed properties and optimality conditions of BLPPs with
ifferent structures related to the integer and continuous variables
ppearing in both levels of the models. A Branch-and-Bound algorithm
as given by Moore and Bard (1990) for general mixed integer BLPPs,
long with some heuristics to trade-off accuracy for speed and ob-
ain good solutions for larger instances. Another Branch-and-Bound
lgorithm was given by Edmunds and Bard (1992) for mixed integer
LPPs where discrete variables appear only in the upper level. Later,
Branch-and-Cut approach for integer BLPPs was given by DeNegre

nd Ralphs (2009) by introducing cutting planes derived in a similar
ay for standard Integer Linear Programs (ILPs). This work was

mproved and a generalised Branch-and-Cut Algorithm was proposed
nd implemented in an open source solver by Tahernejad et al. (2017).

Xu and Wang (2014) proposed an improved Branch-and-Bound
lgorithm for BLPPs with only discrete variables in the upper level,
herein they propose new pruning rules to eliminate large regions that
re not bi-level feasible. They have proposed another exact solution
echnique, called ‘‘watermelon algorithm’’ (See Wang and Xu, 2017),
or solving BLPPs with discrete variables in both the levels where they
ave used multi-way branching to remove bi-level infeasible points
rom the search space. For BLPPs with only discrete variables in the
pper level, Lozano and Smith (2017) give an exact finite algorithm
sing optimal-value-function reformulation. They iteratively generate
rimal bounds using relaxed BLPP and dual bounds using bi-level
easible solutions obtained until the bounds are within desired solution
aps.

A finitely-convergent solver was then given by Fischetti et al. (2018)
or general mixed integer BLPPs, assuming that the upper level vari-
bles that appear in the lower level must be discrete and bounded.
long with a modified Branch-and-Bound algorithm for the solver,

hey have proposed new classes of linear inequalities that include
ntersection cuts based on convex feasible-free sets. This work was
mproved upon in their proceeding article (Fischetti et al., 2017) in
hich they have proposed new families of intersection cuts and sep-
ration algorithms. An extensive computational study was done by
hem on a set of varying classes of problems from the literature and
hese results have been reported in their article. Liu et al. (2021)
ave recently proposed an enhanced Branch-and-Bound algorithm for
LPPs with discrete variables that are bounded in both the levels.
heir algorithm has improved branching rule over that given in Xu and
ang (2014) and hence can disregard larger bi-level infeasible spaces

n each iteration during the search. The following section gives the
iterature that we studied related to bi-level knapsack problems.

i-level Knapsack Problems:
In general, there are three variants of bi-level knapsack problems

BKPs) as discussed by Caprara et al. (2014) and Carvalho (2016).
e discuss these along with some of their extensions recently seen

n the literature. First is the Dempe–Ritcher variant by Dempe and
ichter (2000) where the knapsack budget is decided by the leader
nd items in this knapsack are selected by the follower. This model
as continuous variables in the upper level and binary variables in the
ower level. The objective of both the leader and the follower is to
aximize their respective profits. A pseudo-polynomial exact algorithm
3

nd polynomial time approximate algorithm were given by the authors.
Dynamic Programming (DP) algorithm was given by Brotcorne et al.
2009) for BKPs with upper level controlling the continuous capacity
f the lower level knapsack and the follower solves a binary knapsack
roblem with the chosen capacity.

Second variant is called the Mansi–Alves–de-Carvalho–Hanafi vari-
nt given by Mansi et al. (2012) in which the knapsack is shared by
oth the leader and the follower with a pre-decided budget. A reformu-
ation approach was given by Brotcorne et al. (2013) for integer BKPs,
hich was then solved using a two-step algorithm. A DP approach was
sed to find all possible reactions of the follower in the first step and all
he obtained reactions were used to reformulate the BKPs as a single
evel MILP in the second step. This reformulation was then solved using
n MILP solver.

DeNegre (2011) has given the third variant of the BKPs. In this
variant, both the leader and the follower have their independent knap-
sacks and they select items from a common set of items. The objective
of follower is to maximize her profit whereas that of the leader is to
minimize profit of the follower. This variant is a type of Interdiction
models. DeNegre (2011) has developed a Branch-and-Cut framework
to solve pure integer framework and a reformulation approach to
solve this variant. Another solver has been given by Caprara et al.
(2016), where the authors use continuous relaxation of the follower’s
problem to get a single-level reformulation and then compute the upper
bounds iteratively till a stopping condition is satisfied. Della Croce and
Scatamacchia (2020) first compute effective bounds for this variant
of the BKPs. These bounds are then used to explore promising sub-
problems through constraint generation and pruning. The authors have
extended this solution approach to the Min–max Regret Knapsack
Problem (MRKP), which shows an improved performance for over a
Lagrangian based Branch-and-Cut approach proposed by Furini et al.
(2015). An exact Branch-and-Cut algorithm has been recently given by
Fischetti et al. (2019) for Interdiction games that have follower problem
satisfying certain monotonicity property. One of the examples of the
problems that have this property are DeNegre’s variant and the authors
have conducted computational study on the benchmark instances of the
variant.

In the literature, we can find approximation-guaranteed algorithms
for some variants of the BKPs. In the problem setup by Briest et al.
(2012), the follower has to select a set of items within a given weight
and in minimum cost. Since the follower is computationally bounded,
she uses a greedy 2-approximation algorithm. The authors give a (2 +
𝜖)-approximation algorithm to maximize the leader’s revenue in this
setup. Other pseudo-polynomial algorithms are given by Chen and
Zhang (2013) and then improved upon by Qiu and Kern (2015) for
different versions of a BKP variant in which both the leader and the
follower pack their items simultaneously in their own knapsacks. The
follower maximizes her own profit however leader is concerned to
maximize both the profits.

Two variants of BKPs with continuous variables in upper level and
binary variables in lower level are given by Pferschy et al. (2019,
2021). Greedy heuristics and pseudo-polynomial time exact algorithms
were provided for these problems. In these variants, the items of the
knapsack are partitioned as leader and follower’s items. The follower
decides which of these items get picked in the knapsack that are within
some budget. There is a maximum profit level that can be attained
for a leader’s item. The leader decides on the profit levels that she
will receive while awarding the remaining profits to the follower and
thereby incentivising the follower to pick the leaders’ items in the knap-
sack. Incentives can also be offered as weight offsets in the knapsack
and these are deducted from the leader’s profit (Pferschy et al., 2019).
For instance, in the application provided in Pferschy et al. (2019), we
have a trader that provides cost offsets to the products offered to his
customers. This is modelled as the trader having a reduced return due
to the cost offset she provides. Typically traders can borrow and invest
the loan for the offset. One would typically then maximise the return

on the profits provided by the products after the interest from the loan
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has been deducted. In addition, our methodology could possibly be
applied to other BKPs, whenever the upper level decisions are present
xclusively in the knapsack constraint. For instance, follower’s problem
ith knapsack precedence constraints (see Johnson and Niemi, 1983)
ill not be affected by our methodology.

One can perceive the BKP that we have proposed in this paper
as an extension or variation of the Dempe–Ritcher variant. In this
variant (Dempe and Richter, 2000), a subsidy is directly provided to
expand the budget of the recipient. In our model, the leader has a
greater control over how the subsidy is allocated by providing offsets
to the costs of the individual projects that are of interest to the leader.
The leader makes a single decision on the continuous budget of the
follower.

2. Notation and definitions

An instance of a knapsack problem comprises of a budget and a set
of items, each with a profit and cost. The objective is to pick a subset
of items (either fractionally or wholly) such that their costs are within
the budget and the profit is maximised. An instance of Donor-Recipient
Bi-level Knapsack problem (DR-BKP) comprises of two players, a donor
and a recipient. We have a set, 𝐼 , of 𝑛 projects (𝐼 = {1… 𝑛}) that are
common to both players. Each project 𝑖 ∈ 𝐼 , has a profit of 𝑤𝑖 ∈ N
(corr. 𝑣𝑖 ∈ N) for the donor (corr. recipient), and a cost 𝑐𝑖 ∈ N. Let

and 𝐯 denote the vectors of profits of the donor and the recipient
espectively and 𝐜 be the vector of costs of these projects. We have
wo integer budgets, 𝐵𝑑 and 𝐵𝑟, corresponding to the donor and the
ecipient. Besides the projects in 𝐼 , the recipient has to allocate her
udget to an outside option of projects. This represents a portfolio
f projects that is of no interest to the leader. We will refer to this
ption as an ‘‘external project’’. We will consider the model introduced
n Morton et al. (2018), where the external project has a linear profit
nd linear cost of 𝑣0 and 𝑐0 respectively. So an instance of DR-BKP
s specified by the input (𝐰, 𝐯, 𝐜, 𝑣0, 𝑐0, 𝐵𝑑 , 𝐵𝑟). The recipient solves a
napsack problem, where each item of the knapsack corresponds to a
roject 𝑖 ∈ 𝐼 with a profit 𝑣𝑖 and cost 𝑐𝑖−𝑐𝑖𝑦𝑖, where 𝑦𝑖 is the proportion

of cost of project 𝑖 that is subsidised by the donor. These projects are
binary and cannot be fractionally picked. Along with the healthcare
projects, the recipient has to fund external project which can be done
fractionally or wholly i.e. only a proportion or entire of cost of the
external project can be funded by the recipient.

A solution to an instance of DR-BKP is to decide on the proportion
of cost to be subsidised, 𝑦𝑖, for each project 𝑖 ∈ 𝐼 with ∑

𝑖∈𝐼 𝑐𝑖𝑦𝑖 ≤ 𝐵𝑑
such that profit of the donor is maximised given the projects are in the
optimal solution set of the recipient’s cost subsidised knapsack problem.
We use the notation 𝐲 to denote a vector of subsidy. The leader cannot
subsidise a project more than her cost and the total subsidy cannot
exceed the leader’s budget. The set of all valid subsidies is denoted by
𝑌 ∶=

{

𝐲 ∶
∑

𝑖∈𝐼 𝑐𝑖𝑦𝑖 ≤ 𝐵𝑑 , 𝐲 ∈ [0, 1]𝑛
}

.
We let 𝐱 to denote a 0–1 vector representing the set of projects that

are picked (𝑖th component of the vector, 𝑥𝑖, is 1 if project 𝑖 is picked and
0 otherwise) and 𝑥0 to denote proportion of cost of external project that
is being funded by the recipient. We define the set 𝑋 ∶=

{

(𝐱, 𝑥0) ∶ 𝐱 ∈

{0, 1}𝑛, 𝑥0 ∈ [0, 1]
}

. Let  ∶= {𝐱1, 𝐱2,… , 𝐱𝐾} be the set of all possible
subsets of projects. We define the set of all valid projects corresponding
to a subsidy 𝐲 ∈ 𝑌 as

(𝐲) ∶= {𝐱 ∈  ∶
∑

𝑖∈𝐼
(𝑐𝑖 − 𝑐𝑖𝑦𝑖)𝑥𝑖 ≤ 𝐵𝑟} (2)

The DR-BKP proposed by Morton et al. (2018) has been given in (3)
and (4) where the upper level is the donor problem (DONOR) and the
lower level is the recipient problem (RECIPIENT(y)) parameterised
4

on the upper level decision 𝐲.
Problem DONOR:

maximize 𝐰𝑇 𝐱 (3a)

subject to 𝐲 ∈ 𝑌 (3b)

𝐱 ∈ argmax(RECIPIENT(𝐲)) (3c)

Problem RECIPIENT(y):

maximize 𝐯𝑇 𝐱 + 𝑣0𝑥0 (4a)

subject to
∑

𝑖∈𝐼
(𝑐𝑖 − 𝑐𝑖𝑦𝑖)𝑥𝑖 + 𝑐0𝑥0 ≤ 𝐵𝑟 (4b)

(𝐱, 𝑥0) ∈ 𝑋 (4c)

We will now introduce few more notations.
Relaxed feasible set:

𝑆 =
{

(𝐲, (𝐱, 𝑥0)) ∶
∑

𝑖∈𝐼
(𝑐𝑖 − 𝑐𝑖𝑦𝑖)𝑥𝑖 + 𝑐0𝑥0≤ 𝐵𝑟, 𝐲 ∈ 𝑌 , (𝐱, 𝑥0) ∈ 𝑋

}

(5)

Follower’s rational reaction set for a fixed �̂� ∈ 𝑌 :

𝑃 (�̂�) =
{

(𝐱, 𝑥0) ∶ (𝐱, 𝑥0) ∈ argmax
{

𝐯𝑇 𝐱 + 𝑣0𝑥0 ∶
∑

𝑖∈𝐼
𝑐𝑖𝑥𝑖 + 𝑐0𝑥0

≤ 𝐵𝑟 +
∑

𝑖∈𝐼
𝑐𝑖�̂�𝑖𝑥𝑖, (𝐱, 𝑥0) ∈ 𝑋

}} (6)

Inducible Region:

𝐼𝑅 = {(𝐲, (𝐱, 𝑥0)) ∈ 𝑆 ∶ (𝐱, 𝑥0) ∈ 𝑃 (𝐲)} (7)

With these notations, DR-BKP can also be defined as:

maximize 𝐰𝑇 𝐱 (8a)

subject to (𝐲, (𝐱, 𝑥0)) ∈ 𝐼𝑅 (8b)

3. Properties and assumptions

Let R-DR-BKP, given as (9), denote the Relaxed DR-BKP i.e. the
R-BKP after ignoring the objective function of the RECIPIENT prob-

em. This relaxation of a bi-level optimization problem is generally
alled as High Point Relaxation (HPR) in the literature.

aximize 𝐰𝑇 𝐱 (9a)

ubject to (𝐲, (𝐱, 𝑥0)) ∈ 𝑆 (9b)

The integer constraints in MILPs are relaxed and standard rules
re applied for pruning off low quality solutions in branch and bound
olution techniques. However, this methodology cannot be adopted for
ixed integer BLPPs. Let us call the MILP HPR as 𝙷𝙿𝚁 after relaxing

its integer constraints. The inducible region of 𝙷𝙿𝚁 may not contain
the inducible region of original problem (Moore and Bard, 1990).
Also unlike in the case of standard MILPs, unboundedness of 𝙷𝙿𝚁

relaxation cannot be used to derive the optimal solution of original bi-
level problem. An unbounded 𝙷𝙿𝚁 region can imply either infeasible,
unbounded or occurrence of an optimal solution (Xu and Wang, 2014).
This situation however is not an issue in our problem (R-DR-BKP)
since the integer variables have finite bounds. The finite bounds on
integer variables also assure that there would never be a situation
when RECIPIENT problem is infeasible or unbounded for any DONOR
decision 𝐲.

In general, mixed-integer BLPPs with continuous upper level vari-
ables that appear in the constraints at the lower level problem may have
a non-compact feasible region resulting in no optimal solution even if
the feasible region is non-empty (Vicente et al., 1996; Köppe et al.,
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2010). An example in these works convey the idea that an optimal
solution may never be attained. However in our problem (DR-BKP),
the upper level objective is a discrete function taking discrete variables
with finite bounds as input and hence a maximum always exists. It is
not difficult to see this. For a fixed set of projects, 𝐱𝑘 ∈  , let

𝑅(𝐱𝑘) ∶=
{

𝐲 ∈ 𝑌 ∶ max
(𝐱,𝑥0)∈𝑋

{

𝐯𝑡𝐱 + 𝑣0𝑥0 ∶
∑

𝑖∈𝐼
(𝑐𝑖 − 𝑐𝑖𝑦𝑖)𝑥𝑖 ≤ 𝐵𝑟

}

≤ 𝐯𝑡𝐱𝑘 + 𝑣0𝑥0(𝐱𝑘, 𝐲),
∑

𝑖∈𝐼
(𝑐𝑖 − 𝑐𝑖𝑦𝑖)𝑥𝑘𝑖 ≤ 𝐵𝑟

}

(10)

where

𝑥0(𝐱𝑘, 𝐲) = min
{

1,
𝐵𝑟 −

∑

𝑖∈𝐼 𝑐𝑖𝑥
𝑘
𝑖 +

∑

𝑖∈𝐼 𝑐𝑖𝑦𝑖𝑥
𝑘
𝑖

𝑐0

}

or each such solution 𝐱𝑘 ∈  , 𝑘 = 1,… , 𝐾, with the corresponding
pper objective 𝐰𝑇 𝐱𝑘, we are interested in knowing whether 𝑅(𝐱𝑘) =
or not and the non-compactness of 𝑅(𝐱𝑘) is not relevant. Due to

the finiteness of  , we could simply order the solutions in  in the
decreasing order of their corresponding upper level objective values.
More formally, let 𝜋 be the ordering, such that 𝐰𝑇 𝐱𝜋1 ≥ ⋯ ≥ 𝐰𝑇 𝐱𝜋𝐾 .
Pick the first solution in this order for which 𝑅(𝐱𝜋𝑘 ) ≠ ∅. So ∃�̂� ∈ 𝑌
such that 𝐱𝜋𝑘 ∈ 𝑃 (�̂�) and for all 𝓁, such that 𝐰𝑇 𝐱𝜋𝓁 ≥ 𝐰𝑇 𝐱𝜋𝑘 we have
𝐱𝜋𝓁 ∉ 𝑃 (𝐲) for all 𝐲 ∈ 𝑌 . So we have the following result.

Proposition 1. DR-BKP has a maximum.

We now make the following assumption. The cost of the external
project in RECIPIENT problem is at least equal to the budget of the
RECIPIENT, i.e.,

𝑐0 ≥ 𝐵𝑟 (11)

The reason for this assumption is given in Section 4. Under this
assumption we have

𝑥0(𝐱𝑘, 𝐲) =
𝐵𝑟 −

∑

𝑖∈𝐼 𝑐𝑖𝑥
𝑘
𝑖 +

∑

𝑖∈𝐼 𝑐𝑖𝑦𝑖𝑥
𝑘
𝑖

𝑐0
From an application perspective, this assumption is not restrictive

s the external option summarises the cost of all other projects that
recipient country incurs and this typically exceeds the recipient’s

udget.

.1. Complexity of the BKP

Regardless of the cost assumption (11), the results of this section
old. We now provide evidence for BKP to be 𝛴𝑝

2 -hard. We do this by
howing that it is both NP-hard and Co-NP hard. However, there are no
mmediate certificates to show that they are in either NP or Co-NP. So,
nless NP = Co-NP, it is likely to be complete in a higher complexity
lass in the polynomial hierarchy. We now define the decision version
f the DR-BKP to show our hardness results.

efinition 1. The input to the decision problem D-DR-BKP is an in-
tance of DR-BKP (𝐰, 𝐯, 𝐜, 𝑣0, 𝑐0, 𝐵𝑑 , 𝐵𝑟) and a number 𝑘 and it answers

• YES if there is a subsidy �̂� ∈ 𝑌 and a project set, �̂� ∈ (𝐲), such
that for all (𝐱, 𝑥0) ∈ 𝑃 (�̂�), we have 𝐯𝑇 �̂� + 𝑣0𝑥0(�̂�, �̂�) ≥ 𝐯𝑇 𝐱 + 𝑣0𝑥0
and 𝐰𝑇 �̂� ≥ 𝑘

• NO otherwise

heorem 1. D-DR-BKP is NP-hard.

roof. We show this by reducing an instance of KNAPSACK problem
o D-DR-BKP. In a KNAPSACK instance, we are given a set of 𝑛
tems with profits {𝑝1,… , 𝑝𝑛}, weights {𝑤1,… , 𝑤𝑛} and a budget 𝐵.
he decision version of the problem asks whether there exists a set of

∑ ∑
5

tems 𝑆 ⊂ {1,… , 𝑛} with 𝑖∈𝑆 𝑝𝑖 ≥ 𝑘 and 𝑖∈𝑆 𝑤𝑖 ≤ 𝐵. We create
n instance of D-DR-BKP by creating one project for each knapsack
tem and there is no external project, i.e., we have 𝑐0 = 𝑣0 = 0. The

cost of a project is the corresponding knapsack item’s weight. Both the
donor and recipient’s profit will be the corresponding knapsack item’s
profit. The recipient’s budget 𝐵𝑟 is 0 and donor’s budget 𝐵𝑑 is the
knapsack budget 𝐵. The D-DR-BKP instance has an optimal value of
𝑘 if and only if the KNAPSACK instance has a solution value of at least
𝑘. We observe that an item can never be picked unless it is completely
subsidised by the leader. Otherwise it is infeasible to the follower. If
KNAPSACK instance is yes, then the leader could simply subsidise the
items in this set fully. Otherwise, no subset of items that can fully be
subsidised (within the budge 𝐵) will have a profit of at least 𝑘. □

heorem 2. D-DR-BKP is Co-NP-hard.

roof. We show this by reducing the inverse subset sum problem
ISSP). An instance of this problem comprises of a set, 𝐴, of 𝑛 integers
𝑎1,… , 𝑎𝑛 and a target integer 𝐵. We answer NO to this instance if there
exists a subset, 𝑆 ⊂ 𝐴, of integers that add up to exactly 𝐵 and YES
otherwise. For the reduction, we take projects in 𝐼 corresponding to
the 𝑛 integers in 𝐴. We will refer to these projects as integer projects.
We also take one extra project in 𝐼 . There are no external projects,
i.e., we have 𝑐0 = 𝑣0 = 0. The costs and the recipient profits of the
integer projects are the same as the corresponding integers. The donor’s
profits for integer projects are all 0. The extra project has a cost of
1 with a donor profit of 1 and recipient profit of 1/2. The recipient’s
budget is 𝐵 and the donor’s budget is 0. Now the ISSP has a solution
if and only if the constructed D-DR-BKP has a solution value of at
least 1. To see this, first note that donor does not have any budget and
cannot subsidise any project and it is entirely up to the recipient to
pick projects. If there exists a set of integers for ISSP that adds up to 𝐵,
then the recipient will pick the corresponding integer projects and get
a profit of 𝐵 and the extra project will not be picked. If there are no
subset of items that add up to 𝐵, then recipient will definitely pick the
extra project to maximise her profits which results in a donor profit of
1. □

Unfortunately, we do not have a direct reduction from a 𝛴𝑝
2 -

complete problem and we leave this as a conjecture.

4. Enumeration algorithm

Consider the model (9) after linearising the products of donor sub-
sidies 𝑦𝑖 and project selections 𝑥𝑖 in the lower level budget constraint.

Problem R-DR-BKP:

maximize 𝐰𝑇 𝐱 (12a)

subject to 𝐜𝑇 𝐲 ≤ 𝐵𝑑 (12b)

𝐜𝑇 𝐱 + 𝑐0𝑥0 ≤ 𝐵𝑟 + 𝐜𝑇 𝐲 (12c)

𝑦𝑖 ≤ 𝑥𝑖 ∀𝑖 ∈ 𝐼 (12d)

𝐲 ∈ [0, 1]𝑛 (12e)

𝐱 ∈ {0, 1}𝑛 (12f)

𝑥0 ∈ [0, 1] (12g)

Constraint (12d) assures that there are no subsidies given in case the
project is not picked. This is not restrictive. For a fixed set of projects,
�̂�, if 𝑅(�̂�) is non-empty then there exists a subsidy �̂� ∈ 𝑅(�̂�) such that
̂𝑖 ≤ �̂�𝑖 for all 𝑖 ∈ 𝐼 . We can reduce the subsidy of a project for
an arbitrary subsidy vector, which was not picked by the recipient’s
optimal solution, to 0. This will not change the optimal solution of
the recipient’s problem. This also allows us to avoid the bi-linear terms
in (4b) and rewrite that constraint as (12c).

For an optimal solution (𝐱∗, 𝑥∗0 , 𝐲
∗) of R-DR-BKP to be bi-level

feasible to DR-BKP, we need (𝐱∗, 𝑥∗) ∈ 𝑃 (𝐲∗). Since it is a relaxation,
0
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we also achieve optimality. We will formalise this soon. We are now
interested to know how to tighten this relaxation if (𝐱∗, 𝑥∗0) ∉ 𝑃 (𝐲∗). In
ther words, we want to eliminate this point from the search space. In
his case, for any (�̄�, �̄�0) ∈ 𝑃 (𝐲∗) the inequality
𝑇 𝐱 + 𝑣0𝑥0 ≥ 𝐯𝑇 �̄� + 𝑣0�̄�0 (13)

ill eliminate (𝐱∗, 𝑥∗0 , 𝐲
∗) from the search space. Since (�̄�, �̄�0) is optimal

o RECIPIENT(y∗),

̄0 = 𝑥0(�̄�, 𝐲∗) (14)

sing this, inequality (13) can be written as
𝑇 𝐱 + 𝑣0𝑥0 ≥ 𝐯𝑇 �̄� + 𝑣0𝑥0(�̄�, 𝐲) (15)

nder assumption (11), we have

0(�̄�, 𝐲) =

(

𝐵𝑟 −
∑

𝑖∈𝐼 𝑐𝑖(�̄�𝑖 − �̄�𝑖𝑦𝑖)
)

𝑐0
his gives us linear components in the RHS of (15) and we do not have
o introduce binary variables. We define 𝑐′𝑖 ∶=

𝑣0𝑐𝑖
𝑐0

. Inequality (15) can
then be re-written as

𝐯𝑇 𝐱 + 𝑣0𝑥0 −
∑

𝑖∈𝐼
𝑐′𝑖 �̄�𝑖𝑦𝑖 ≥ 𝐯𝑇 �̄� +

𝑣0
𝑐0

(𝐵𝑟 − 𝐜𝑇 �̄�) (16)

However, inequality (16) can only be added if (𝐲, (�̄�, �̄�0)) ∈ 𝑆. Other-
wise, we will cutoff valid subsidies from our search space. This is added
as constraints (17d) and (17e) below. Big M - 𝑀1 and 𝑀2 - are used
here to handle the ‘‘if-then’’ nature of the constraint. The choice of big
M is discussed further in Section 6.

maximize 𝐰𝑇 𝐱 (EBKP)

subject to 𝐜𝑇 𝐲 ≤ 𝐵𝑑 (17a)

𝐜𝑇 𝐱 + 𝑐0𝑥0 ≤ 𝐵𝑟 + 𝐜𝑇 𝐲 (17b)

𝑦𝑖 ≤ 𝑥𝑖 ∀𝑖 ∈ 𝐼 (17c)

𝐜𝑇 𝐱𝑘 −
∑

𝑖∈𝐼
𝑐𝑖𝑥

𝑘
𝑖 𝑦𝑖 +𝑀1𝑡

𝑘 ≥ 𝐵𝑟 + 𝜖 ∀𝑘 ∈ {1,… , 𝐾} (17d)

𝐯𝑇 𝐱 + 𝑣0𝑥0 −
∑

𝑖∈𝐼
𝑐′𝑖𝑥

𝑘
𝑖 𝑦𝑖 +𝑀2(1 − 𝑡𝑘)

≥ 𝐯𝑇 𝐱𝑘 +
𝑣0
𝑐0

(𝐵𝑟 − 𝐜𝑇 𝐱𝑘) ∀𝑘 ∈ {1,… , 𝐾} (17e)

𝑡𝑘 ∈ {0, 1} ∀𝑘 ∈ {1,… , 𝐾} (17f)

𝐲 ∈ [0, 1]𝑛 (17g)

𝐱 ∈ {0, 1}𝑛 (17h)

𝑥0 ∈ [0, 1] (17i)

For any solution 𝐱𝑘 ∈  , constraint (17d) forces the binary variable
𝑡𝑘 to 1 if the cost of projects in 𝐱𝑘 that are subsidised by 𝐲 does not
strictly exceed the budget 𝐵𝑟. In other words, 𝑡𝑘 is set to 1, if 𝐱𝑘 is
a feasible solution to RECIPIENT(y). We have modelled this using
a parameter 𝜖 to avoid open feasible sets. In the case 𝑡𝑘 is set to 1,
any solution we pick must be at least as good as 𝐱𝑘 with respect to
the recipient’s objective for it to be bi-level feasible. Constraint (17e)
ensures this.  is subset of all projects in 𝐼 and can have exponentially
many of them. We solve (EBKP) iteratively. At each iteration we obtain
a solution (𝐲∗, (𝐱∗, 𝑥∗0)). We then determine if (𝐱∗, 𝑥∗0) ∈ 𝑃 (𝐲∗) by solving
RECIPIENT(y∗). If (𝐱∗, 𝑥∗0) ∈ 𝑃 (𝐲∗), then we terminate otherwise
ECIPIENT(y∗) returns an optimal solution (�̄�, �̄�0) ∈ 𝑃 (𝐲∗) that we
dd as constraints of the form (17d) and (17e). Since these constraints
re of the ‘‘If-then’’ nature, we have to introduce a binary variable for
very such constraint. This is given in Algorithm 1. This procedure is
ery similar to the one proposed in Lozano and Smith (2017). They
ggregate their constraints (17d) and add a single constraint for all
𝑘. This makes sense when the upper level decision variables are
resent in many different constraints at the lower level. We, however,
6

ave a single constraint at the lower level in which the upper level
ariable is present. We add them as dis-aggregated constraints that
rovide a tighter relaxation. This does not affect the running time as
ne new inequality of the form (17e) and one new variable have to
e added at every iteration in Lozano and Smith (2017). We instead
dd two new inequalities and one new variable at every iteration. In
ddition, in order to deal with open feasible sets and ill-posedness of
he problem, in Lozano and Smith (2017), the authors assumed integer
estrictions on upper level variables. We show that for sufficiently small
, our algorithm would terminate at optimality, which we discuss in
heorem 3.

Algorithm 1: Enumeration Scheme for DR-BKP
Solve (R-DR-BKP) and Let (𝐱∗, 𝑥∗0 , 𝐲

∗) be its optimal solution;
Solve RECIPIENT(𝐲∗) and let (�̄�, �̄�0) be the optimal solution;
Set 𝑘 = 0, (𝐱𝑘, �̄�𝑘0) = (�̄�, �̄�0), Set UB = 𝐰𝑇 𝐱∗, LB = 𝐰𝑇 𝐱𝑘;
while (𝑈𝐵−𝐿𝐵)

𝐿𝐵 ≤ gap do
if 𝐯𝑇 𝐱𝑘 + 𝑣0𝑥𝑘0 > 𝐯𝑇 𝐱∗ + 𝑣0𝑥∗0 then

if 𝐰𝑇 𝐱𝑘 = 𝐰𝑇 𝐱∗ then
Return (𝐱𝑘, 𝑥𝑘0 , 𝐲

∗)
else

Set LB = max(LB,𝐰𝑇 𝐱𝑘);
Add following constraints to (R-DR-BKP):
𝐜𝑇 𝐱𝑘 −

∑

𝑖∈𝐼 𝑐𝑖𝑥
𝑘
𝑖 𝑦𝑖 +𝑀1𝑡𝑘 ≥ 𝐵𝑟 + 𝜖;

𝐯𝑇 𝐱 + 𝑣0𝑥0 −
∑

𝑖∈𝐼 𝑐
′
𝑖𝑥

𝑘
𝑖 𝑦𝑖 +𝑀2(1 − 𝑡𝑘) ≥

𝐯𝑇 𝐱𝑘 + 𝑣0
𝑐0
(𝐵𝑟 − 𝐜𝑇 𝐱𝑘);

end
else

Return (𝐱∗, 𝑥∗0 , 𝐲
∗)

end
Set 𝑘 = 𝑘 + 1;
Solve (R-DR-BKP) and Let (𝐱∗, 𝑥∗0 , 𝐲

∗) be its optimal
solution;

Set UB = 𝐰𝑇 𝐱∗;
Solve RECIPIENT(𝐲∗) and Let (𝐱𝐤, 𝑥𝑘0) be the optimal
solution;

end

Algorithm 1 gives the Enumeration Scheme to find bi-level optimal
solution for the DR-BKP problem. The R-DR-BKP is solved first using
an MILP solver and from the solution, (𝐱∗, 𝑥∗0 , 𝐲

∗), subsidy 𝐲∗ is used to
solve RECIPIENT(y∗). If (𝐱∗, 𝑥∗0) ∈ 𝑃 (𝐲∗), then (𝐱∗, 𝑥∗0 , 𝐲

∗) is returned as
a solution, else the constraints of type (17d) and (17e) corresponding
to some optimal solution (𝐱𝑘, 𝑥𝑘0) ∈ 𝑃 (𝐲∗) are added to R-DR-BKP and
solved again. Note that if 𝐰𝑇 𝐱𝑘 = 𝐰𝑇 𝐱∗ then (𝐱𝑘, ⌊𝐲∗⌋) is an alternative
optimal to the current iteration of R-DR-BKP, where ⌊𝐲∗⌋ is obtained
by setting 𝑦∗𝑖 to 0 if 𝑥𝑘𝑖 = 0 and to 𝑦∗𝑖 otherwise. Feasibility is easy
to see because (𝐱𝑘, 𝑥𝑘0) ∈ 𝑃 (⌊𝐲∗⌋) and we check for optimality in the
condition 𝐰𝑇 𝐱𝑘 = 𝐰𝑇 𝐱∗. Whether we use ⌊𝐲∗⌋ or 𝐲∗ as subsidy to obtain
𝐱𝑘 does not matter to our original bilevel DR-BKP problem. Every time
R-DR-BKP is solved, upper bound of the problem is updated to the
obtained DONOR profit. The lower bound of the problem is the DONOR
profit obtained with the projects selected by RECIPIENT(𝐲∗) and it
gets updated every time the inner problem is solved. The algorithm
runs till bounds are within some predefined gap.

Theorem 3. Algorithm 1 terminates at an optimal solution.

Proof. We enumerate the set of integer solutions in  , i.e, a subset of
projects in every iteration. And at every iteration, we enumerate a new
subset of projects and there are finitely many of them so the algorithm
terminates in finite time. We say a subsidy �̃� is feasible for a subset
of projects �̃� if ∑

(𝑐 − 𝑐 �̃� )�̃� ≤ 𝐵 and infeasible otherwise. The
𝑖∈𝐼 𝑖 𝑖 𝑖 𝑖 𝑟
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formulation looks for a set of projects 𝐱∗ and corresponding subsidy
𝐲∗ that is better than any subset of projects �̃� (with regards to the
inner objective) if the subsidy 𝐲∗ is feasible for �̃�. The solution is then
obviously bi-level feasible. In order to see that it is also optimal to the
DR-BKP, first observe that we used the parameter 𝜖 in (17d) to avoid
strict inequalities. Let us refer to the theoretical model obtained from
(EBKP) with (17d) replaced by the strict inequality

𝐜𝑇 𝐱𝑘 −
∑

𝑖∈𝐼
𝑐𝑖𝑥

𝑘
𝑖 𝑦𝑖 +𝑀1𝑡

𝑘 > 𝐵𝑟 ∀𝑘 ∈ {1,… , 𝐾} (18)

as (OBKP). The strict inequalities require us to search for a solution in
an open feasible set. So, we instead use (EBKP). This, however is not
an issue if 𝜖 is sufficiently small. Let 𝜖1 be numerical tolerance used
to solve (EBKP). Clearly, we need 𝜖 > 𝜖1, otherwise we can set the
𝑡𝑘 to 0 instead of the actual value of 1 in (17d). The possible issue
arises when we do not consider a subsidy �̃� that is feasible for (OBKP)
but infeasible for (EBKP). This happens when �̃� is infeasible for some
subsets of projects {�̄�1,… , �̄�𝜅} ⊆  but not by 𝜖 − 𝜖1 amount, i.e., for
each 𝑘 = 1,… , 𝜅

𝐵𝑟 < 𝐜𝑇 �̄�𝑘 −
∑

𝑖∈𝐼
𝑐𝑖�̄�

𝑘
𝑖 �̃�𝑖 < 𝐵𝑟 + 𝜖 − 𝜖1 (19)

∑

𝑐𝑖�̄�𝑖�̃�𝑖 + (𝐵𝑟 − 𝐜𝑇 �̄�𝑘) < 0 <
∑

𝑐𝑖�̄�𝑖�̃�𝑖 + (𝐵𝑟 − 𝐜𝑇 �̄�𝑘) + 𝜖 − 𝜖1 (20)

We first assume 𝜖 = 𝑛+1
𝑛 𝜖1 and we will soon make the reasoning

for this assumption clear. Since this ensures 𝜖 > 𝜖1, this is a valid
assumption. In addition, with a sufficiently small tolerance, we can
assume 𝜖 < 1. We can now take a component of �̃� that is non-zero,
say 𝑖 for which �̄�𝑘𝑖 = 1 and decrease this value by 𝜖−𝜖1

𝑐𝑖
. The idea behind

his is that by doing this reduction, we can make the infeasibility of the
educed �̃� for �̄�𝑘 by at least 𝜖 − 𝜖1. Note that not all �̃�𝑖 with �̄�𝑘𝑖 = 1 can
e strictly less than 𝜖−𝜖1

𝑐𝑖
. If this is true, then

0 ≤
∑

𝑖∈𝐼
𝑐𝑖�̄�

𝑘
𝑖 �̃�𝑖 <

∑

𝑖∈𝐼
𝑐𝑖
𝜖 − 𝜖1
𝑐𝑖

�̄�𝑘𝑖 ≤
∑

𝑖∈𝐼

𝜖1
𝑛
�̄�𝑘𝑖 ≤ 𝜖1

ince 𝐵𝑟 and 𝐜𝑇 �̄�𝑘 are both integers, one cannot satisfy (20) unless
𝜖 > 1. Now we need to do reduction of components of �̃� for every subset
in {�̄�1,… , �̄�𝜅} and in the worst case, we could reduce every component
of �̃�. Let us call this reduced subsidy vector �̂�. For some (�̃�, �̃�0, �̃�) feasible
for (OBKP), we want to show that (�̃�, �̃�0, �̂�) is feasible for (EBKP). Now
by construction �̂� will be feasible for constraint (17d). Since we are only
reducing the value of �̃� to get �̂�, (17a), (17c) and (17e) are also feasible.
In order to show feasibility of (17b), we first observe our assumption
of 𝜖 = 𝑛+1

𝑛 𝜖1. From feasibility of (�̃�, �̃�0, �̃�) to (OBKP), we have

𝐜𝑇 �̃� + 𝑐0�̃�0 ≤ 𝐵𝑟 + 𝐜𝑇 �̃� (21)

𝐜𝑇 �̃� + 𝑐0�̃�0 ≤ 𝐵𝑟 + 𝐜𝑇 �̂� + 𝑛(𝜖 − 𝜖1) (22)

𝐜𝑇 �̃� + 𝑐0�̃�0 ≤ 𝐵𝑟 + 𝐜𝑇 �̂� + 𝜖1 □ (23)

5. Branching algorithm

In Section 4, we have seen Enumeration Algorithm where two cuts
are added to the R-DR-BKP every time there is an optimal solution
(𝐲∗, (𝐱∗, 𝑥0)) to R-DR-BKP but (𝐱∗, 𝑥0) ∉ 𝑃 (𝐲∗). After the cuts are
added, R-DR-BKP is resolved again until the bi-level optimal solution
is achieved. A mixed integer program is solved iteratively and in
addition we introduce two new constraints and a binary variable at
every iteration. An alternative approach was proposed by Xu and Wang
(2014), where (𝐲∗, (𝐱∗, 𝑥0)) is eliminated from search using a branching
rule. The branching rule proposed in Xu and Wang (2014) cannot be
directly used for our problem for two reasons. First they require that
upper level variables that are involved in the lower level are discrete.
In addition they require that the upper level variables do not have non-
linear interaction with lower level variable. Neither of these are true in
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our model. We provide a modified branching rule that addresses these
Fig. 2. Branching from an incumbent solution.

issues and handles the elimination of (𝐱∗, 𝑥0) ∉ 𝑃 (𝐲∗) from search space
but none of the bi-level feasible solutions.

The pseudo-code of Branching Algorithm is given in Algorithm
2. The branching rule is created only when an incumbent solution
(𝐲∗, (𝐱∗, 𝑥∗0)) is found. The usual rules based on bounds cannot be
applied anymore. First RECIPIENT(y∗) is solved which returns an
optimal solution (�̄�, �̄�∗0). If 𝐯𝑇 �̄� + 𝑣0�̄�0 = 𝐯𝑇 𝐱∗ + 𝑣0𝑥∗0, then we can
rune the node as (𝐲∗, (𝐱∗, 𝑥∗0)) is a bi-level feasible solution. Else the

solution (𝐲∗, (�̄�, �̄�0)) is appended in a queue generated to store potential
solutions that need to be branched (called BrQueue) and then the
solution (𝐲∗, (𝐱∗, 𝑥∗0)) is rejected. Every time the branching callback is
activated and there is at least one solution in the BrQueue, the solution
with maximum DONOR profit is used to branch upon. As shown in
Fig. 2, there are two branches generated. Node 1 is explored where a
valid subsidy 𝐲 is such that �̄� is infeasible for RECIPIENT(y). Node 2
is explored where a valid solution (𝐲, 𝐱, 𝑥0) is such that �̄� is feasible for
RECIPIENT(y) and 𝐯𝑇 𝐱 + 𝑣0𝑥0 ≥ 𝐯𝑇 �̄� + 𝑣0𝑥0(�̄�, 𝐲). This idea is similar
to constraints (17d) and (17e) in MILP-DR-BKP.

Algorithm 2: Branching approach for DR-BKP
Define a queue, BrQueue = [];
Solve (R-DR-BKP) and Let (𝐱∗, 𝑥∗0 , 𝐲

∗) be its optimal solution;
Solve RECIPIENT(𝐲∗) and let (�̄�, �̄�0) be its optimal solution;
Set 𝑘 = 0, (𝐱𝑘, �̄�𝑘0) = (�̄�, �̄�0), UB = 𝐰𝑇 𝐱∗, LB = 𝐰𝑇 𝐱𝑘;
while (𝑈𝐵−𝐿𝐵)

𝐿𝐵 ≤ gap do
if 𝐯𝑇 𝐱𝑘 + 𝑣0𝑥𝑘0 > 𝐯𝑇 𝐱∗ + 𝑣0𝑥∗0 then

if 𝐰𝑇 𝐱𝑘 = 𝐰𝑇 𝐱∗ then
Return (𝐱𝑘, 𝑥𝑘0 , 𝐲

∗)
else

Set LB = max(LB,𝐰𝑇 𝐱𝑘);
Append (�̄�, �̄�0) in BrQueue ;
Reject solution (𝐱∗, 𝑥∗0 , 𝐲

∗);
end

else
Return (𝐱∗, 𝑥∗0 , 𝐲

∗)
end
if BrQueue has at least one solution set then

Select solution from BrQueue that yields maximum
profit, say (�̄�, �̄�0) ;

Make branches as per Fig. 2
end
Solve (R-DR-BKP) and Let (𝐱∗, 𝑥∗0 , 𝐲

∗) be its optimal
solution;

Set UB = 𝐰𝑇 𝐱∗;
Solve RECIPIENT(𝐲∗) and Let (𝐱𝐤, 𝑥𝑘0) be the optimal
solution;

end
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Table 1
Input parameters for data generation.

DataSet Class1 Class2 Class3 𝛾 DBudget CBudget

N1 P/C1 𝛼1 N2 P/C2 𝛼2 N3 P/C3 𝛼3 (% of TotalHCProjectsCost)

1 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 20 30
2 20 1 [1,1] 20 0.7 [1,1] 20 0.5 [1,1] [1,1] 20 30
3 40 1 [1,1] 40 0.7 [1,1] 40 0.5 [1,1] [1,1] 20 30
4 100 1 [1,1] 40 0.7 [1,1] 40 0.5 [1,1] [1,1] 20 30
5 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 10 15
6 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 5 7
7 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [0.5,1] 20 30
8 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1.5] 20 30
9 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1.5,2] 20 30
10 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [2,2.5] 20 30
11 10 1 [1,1] 10 0.7 [1,1] 10 0.5 [1,1] [2.5,3] 20 30
12 3 1 [0.01,0.5] 24 1 [0.5,1.5] 3 1 [1.5,5] [1,1] 20 30
13 10 1 [1,10] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 20 30
14 10 1 [0.1,1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 20 30
15 10 1 [0.01,0.1] 10 0.7 [1,1] 10 0.5 [1,1] [1,1] 20 30
o
—

6. Computational experiments

To understand, analyse and compare the performance of both the
proposed algorithms, the computational study was performed on an
HP computer (Windows 10 Enterprise with 64-bit operating system,
3.19 GHz processor and 8 GB RAM). The algorithms were coded and
solved in Python 3.8 using CPLEX 20.1.0.

6.1. Data generation

Instance generation was guided by the real-world instance presented
in Morton et al. (2018). There are 15 data sets generated1 as shown in
Table 1 and 10 instances are generated and solved in every data set.
The first data set has total 30 projects (10 in each of the three classes,
as given in columns N1, N2 and N3). Classes of the projects are made
based on their profit to cost ratios of RECIPIENT, as given in columns
P/C1, P/C2 and P/C3. These division of projects in classes were made
to understand the allocations preferred by DONOR and RECIPIENT. A
parameter called 𝛼 is used in each class here to influence the leader
or follower’s decisions. Profit of a project for the DONOR is the profit
of RECIPIENT for that project scaled by the parameter 𝛼1 in Class
1, 𝛼2 in Class 2 and 𝛼3 in Class 3. Both the DONOR and RECIPIENT
budgets are generated as percentage of total cost of healthcare projects
(columns DBudget and CBudget) to be considered for funds allocation.
For the profit values of the external project, a parameter called 𝛾 was
used. Profit to cost ratio of external project in each instance is the
average of profit to cost ratios of all healthcare projects in the instance
scaled by an input parameter called 𝛾. The cost values of healthcare and
external projects are random integers in [5000, 10 000] and [1 000 000,
2 000 000] respectively. In every instance, there are (2𝑛 + 1) variables
and (𝑛 + 2) constraints where 𝑛 is the total number of projects.

Each data set has perturbation in one of the parameters with respect
to the first data set. These step-by-step changes on the data sets were
made to understand the performance of the developed algorithms on
every parameter in the instances generated. For second, third and
fourth data sets, the number of projects have been increased to 20
projects, 40 projects and 100 projects in each class respectively. The
donor and recipient budgets have been decreased in data set 5 from
20% and 30% to 10% and 15% of total cost of healthcare projects
respectively, and further more for data set 6. The 𝛾 value has been
maintained to 1 for all other data sets except for data sets 7 to 11.
The range of 𝛾 values has been increased gradually in these data sets.
In case of data set 12, a combination of changes in the parameters
‘number of projects in each class’ and ‘range of 𝛼 values’ have been

1 All data used in this work is available at https://github.com/ashwin-
983/DR-BKP/.
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made. In further data sets, only the ranges of 𝛼 values have been
changed for Class 1 projects. It will be useful to understand how the
project allocations and/or time to solve these instances are affected by
divergence in priorities of DONOR and RECIPIENT.

6.2. Results

We have conducted the computational experiments to compare per-
formance of both the algorithms at two different tolerance parameters
(at 𝜖 = 1𝑒−2 and 𝜖 = 1𝑒−4) for set time limit of 3600 s. The value
f big M, 𝑀1, in constraint (17c) is set to the tightest possible value

the right hand side of the constraint i.e. 𝐵𝑟 + 1 (𝐵𝑟 is budget of the
recipient). The value of big M, 𝑀2, in constraint (17d) can be either
set to right hand side of the constraint as it changes in every iteration
or set to a constant value of ∑

𝑣𝑖 + 𝑣0 which is not as tight as the
former. To see the impact of the differing values on the performance
of the algorithm, we solve all the instances using both of these: (1)
𝑀2 = 𝑀𝑘

2 = 𝐯𝑇 𝐱𝑘 + 𝑣0
𝑐0
(𝐵𝑟 − 𝐜𝑇 𝐱𝑘) ∀𝑘 ∈ 1,…𝐾 and (2) 𝑀2 =

∑

𝑣𝑖 + 𝑣0.
The minimum, average and maximum solution times of both the

algorithms for solving the 10 instances in each of the data sets are given
in Table 2 when 𝜖 = 1𝑒−2 and Table 3 when 𝜖 = 1𝑒−4. These are the
data sets that were solved within the set time limit. In cases of data sets
14 and 15, none of the instances were solved to optimality within the
set time limit. Their minimum, average and maximum solution gaps at
termination of the algorithms are given in Table 4 when 𝜖 = 1𝑒−2 and
Table 5 when 𝜖 = 1𝑒−4.

It can be observed from the result tables that as the number of
projects increases and hence the number of variables in data sets 2,
3 and 4 compared to data set 1, the average solution time increases
for both the algorithms in case of lower tolerance parameter. However
in case of higher tolerance parameter, both the algorithms take lesser
time to solve. From Data Set 1, 5 and 6, we can observe that the
algorithms take lesser time to solve if the budgets are lower for similar
sized instances. When parameter 𝛾 is increased (data sets 8 to 11 as
compared to data sets 1 and 7), i.e. external project has higher profit
and start competing with the healthcare projects for the RECIPIENT
budget, Branching Algorithm performs significantly better than the
Enumeration Algorithm for both tolerance limits.

Another complexity of healthcare funds allocation problem is the
divergence between valuations of projects by DONOR and RECIPIENT.
If the 𝛼 value increases above 1 in either of the three classes of projects,
the DONOR values her projects more than the RECIPIENT does in that
particular class. Else if the 𝛼 value is below 1, the DONOR values her
projects lesser than the RECIPIENT. As seen in data sets 13 to 15, the
range of 𝛼 values for class 1 are decreased gradually. In data set 13
where the DONOR values her projects more than the RECIPIENT, all
instances are solved using both the algorithms very fast. However, none
of the instances from data sets 14 and 15 are solved where the DONOR

https://github.com/ashwin-1983/DR-BKP/
https://github.com/ashwin-1983/DR-BKP/
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Table 2
Average solution time (in seconds) for data sets that are solved within time limit (Epsilon = 1e−2).
DataSet BranchingAlgo EnumerationAlgo

Min Avg Max 𝑏𝑖𝑔𝑀2 = 𝑀𝑘
2 𝑏𝑖𝑔𝑀2 = 𝑀2

Min Avg Max Min Avg Max

1 0.238 0.348 0.434 0.101 0.157 0.348 0.088 0.171 0.251
2 0.047 0.325 0.916 0.062 0.108 0.341 0.047 0.081 0.203
3 0.049 0.309 0.454 0.062 0.142 0.214 0.080 0.183 0.430
4 0.066 0.458 1.036 0.078 0.166 0.325 0.078 0.168 0.258
5 0.062 0.096 0.133 0.056 0.069 0.094 0.062 0.074 0.093
6 0.078 0.138 0.250 0.061 0.086 0.181 0.061 0.122 0.291
7 0.045 0.085 0.166 0.042 0.084 0.184 0.048 0.118 0.241
8 0.167 2.416 18.089 0.096 14.540 102.491 0.131 12.712 95.759
9 2.116 17.089 43.792 4.100 21.041 59.338 4.918 19.015 56.586
10 1.247 28.504 74.147 6.780 165.973 250.540 6.654 167.280 277.944
11 8.369 62.662 149.575 44.327 114.624 200.056 31.662 131.119 246.953
12 0.057 0.074 0.125 0.047 0.069 0.094 0.047 0.072 0.094
13 0.047 0.192 0.345 0.055 0.103 0.212 0.062 0.110 0.175
Table 3
Average solution time (in seconds) for data sets that are solved within time limit (Epsilon = 1e−4).
DataSet BranchingAlgo EnumerationAlgo

Min Avg Max 𝑏𝑖𝑔𝑀2 = 𝑀𝑘
2 𝑏𝑖𝑔𝑀2 = 𝑀2

Min Avg Max Min Avg Max

1 0.273 0.599 1.665 0.109 0.448 1.493 0.109 0.445 1.666
2 0.266 0.639 0.994 0.156 0.351 1.366 0.173 0.329 0.830
3 0.328 2.203 5.471 0.270 2.540 10.742 0.283 2.390 11.762
4 5.625 13.370 37.202 0.368 65.958 187.436 0.480 67.152 185.231
5 0.067 0.128 0.165 0.060 0.091 0.199 0.058 0.088 0.217
6 0.095 0.158 0.266 0.057 0.079 0.099 0.063 0.088 0.187
7 0.104 0.289 0.875 0.052 0.222 1.251 0.047 0.353 2.404
8 0.453 10.961 47.005 0.105 35.436 145.728 0.109 26.219 103.939
9 4.601 22.661 49.743 5.316 32.232 111.013 5.408 28.578 92.281
10 2.009 36.293 90.415 8.335 200.500 301.985 12.251 205.050 302.571
11 10.963 72.226 156.519 50.653 128.790 283.821 43.976 147.279 295.884
12 0.053 0.085 0.141 0.040 0.076 0.142 0.047 0.065 0.078
13 0.329 0.574 1.050 0.101 0.250 0.640 0.099 0.238 0.610
Table 4
Average solution gaps for data sets that are not solved within time limit (Epsilon = 1e−2).
DataSet BranchingAlgo EnumerationAlgo

Min Avg Max 𝑏𝑖𝑔𝑀2 = 𝑀𝑘
2 𝑏𝑖𝑔𝑀2 = 𝑀2

Min Avg Max Min Avg Max

14 6.7% 15.4% 31.2% 5.4% 19.5% 33.5% 7.0% 19.5% 34.8%
15 49.4% 65.6% 81.4% 50.3% 87.3% 109.2% 50.3% 87.3% 109.2%
Table 5
Average solution gaps for data sets that are not solved within time limit (Epsilon = 1e−4).
DataSet BranchingAlgo EnumerationAlgo

Min Avg Max 𝑏𝑖𝑔𝑀2 = 𝑀𝑘
2 𝑏𝑖𝑔𝑀2 = 𝑀2

Min Avg Max Min Avg Max

14 8.8% 18.4% 31.2% 3.4% 19.5% 34.8% 5.0% 19.7% 34.8%
15 74.7% 87.7% 101.5% 76.8% 92.8% 109.2% 76.8% 92.8% 109.2%
values her projects lesser than the RECIPIENT (refer to Tables 4 and
5).

While comparing the performance of enumeration algorithm for
both the mentioned big M values, there is hardly any difference ob-
served in the solution times of all the data sets except for data sets 7
to 11. For these particular data sets, the 𝛾 value is increased gradually.
However, since the solution times are not consistently lower in either
for either of the big M values, we can keep this open for further
research.

It can be observed from these results that there is evidence to believe
that the Branching Algorithm performs better when the instances are
generated with more complexity where there is a greater discrepancy
in the valuation of the projects by the two players.
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7. Conclusion

We carried out a complexity study and computational experiments
on DR-BKP that was introduced in Morton et al. (2018). We first
showed that the problem is well-posed. We then extended and adapted
the algorithms proposed for discrete bi-level problems to DR-BKP
and proved its convergence. We provided some complexity results
for the problem. A predominant issue of having continuous upper
level decision variables in lower level constraints is the non-compact
feasible set. This complicates both proving existence of a solution and
convergence of algorithms. We have made a simple observation that
existence of a solution can be guaranteed if the upper level objective
function is discrete, involving only the lower level variables, and if the
solution set is finite. This is generalisable and goes beyond DR-BKP.
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The convergence of the known enumeration schemes tend to work for
our problem despite the continuous upper level variables. The idea
behind these enumeration schemes is to cutoff the open feasible set
at some threshold and restrict the search space to a closed set. This is
easier to do when we have integer upper level variables. Despite having
continuous upper level variables, we showed that these enumeration
schemes work for our problem for sufficiently small thresholds. We
showed this by constructing an equivalent solution in the closed set for
any valid solution cut off. This is dependent on the problem structure
and the generalisability of this procedure is not clear.

A number of questions remain open. We explained the similarity
between our model and the one presented by Dempe in Dempe (2001).
The authors have shown that problem has a solution with the inclusion
of continuous variable in the upper level objective. A similar extension
to our problem is open. Our current complexity proof does not rule
out a polynomial solution for unary encoding. A pseudo-polynomial
algorithm for this problem (if one exists) would be a valuable prac-
tical tool. We have only provided evidence for 𝛴2

𝑝 -hardness. A direct
reduction from a 𝛴2

𝑝 -complete problem to DR-BKP is open. We will
look into extending our ideas to design algorithms that work without
the need for assumption (11). At the moment, the external project costs
are linear. We want to look at models where the external project costs
are concave.
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