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Abstract 

The primary objective of resilience engineering is to analyse and mitigate the risk of a system once 
a vulnerability has been triggered by an attack. Resilience is a multidimensional concept in the 
field of engineering and incorporates restoration in the form of a performance and time. Nodal 
restoration is a key factor in the analysis of resilience in systems, and the properties of the nodes 
can be analysed to assess the states on the system. The model proposed for the power grid to 
demonstrate the failure of the network has been used to simulate probability of contingencies on 
the system and applies a Sequential Monte Carlo simulation to simulate the energy supplied. Ad-
ditionally, a weather model incorporating the effects of both severe winds and lightning storms has 
been applied to act as a trigger to the contingency. Once failure of one component has occurred, 
it cannot be repaired until the network’s performance reaches zero. Given failure of all components, 
the network will immediately start its restoration phase, and using the same algorithm for optimal 
power flow calculations, a DC power flow approach is implemented to assess the energy supplied 
to the whole network in a transient model until the network’s loads meet the demand criteria com-
pletely.
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1 INTRODUCTION 

The power grid is an essential tool for modern society and its function is crucial for the wellbe-
ing of people. A failure of the system can lead to major consequences, in a socio-economic 
scale. The assessment of reliability in power grid systems and the parameters incorporating 
reliability in the power grid such as availability, consequence modelling and energy not sup-
plied has been an important field of research for the IEEE community. Past events such as the 
2003 British National Power Grid Corporation outage which was responsible for the load loss 
of 724MW, or approximately 20 percent of London’s power load have costed the UK a signif-
icant economic burden[1]. 

The reliability of any system can be defined as the probability of success of the system at a 
given period of time, and the knowledge of reliability plays a role for system engineering to 
enable system maintenance planning to optimize risk mitigation[2]. System reliability can be 
thought of as a multidimensional analysis and incorporates many parameters. The user can an-
alyse a single metric or multiple metrics simultaneously. The constraint with complex systems 
is developing the most computationally inexpensive technique and producing the most accurate 
results, with the aim to maximise the efficiency of the simulation. 

Rochetta, Zio and Patelli developed a load flow approach to calculate failure probabilities from 
contingencies incorporating a wind model[3]. This was further developed with an artificial neu-
ral network surrogate model to act as a metamodel for the analysis in order to minimise com-
putational time when applied to AC optimal power flow calculations[4]. This model was 
developed on the basis of a severe weather model which was developed by Cadrini, Zio and 
Agliardi[5] which combines stochastic extreme weather model and realistic power grid fault 
dynamics in order to model a restoration model quantified by sequential Monte Carlo. The 
constraint placed when applying this model is the high computational cost for the resilience 
function, especially when assessing networks with large scales of nodes. 

There are various definitions of resilience available, both in a scientific context and a general 
context. The  United  Nations  International  Strategy  for Disaster Reduction defines resilience 
as “The capacity of a system, community or society potentially exposed to hazards to adapt, by 
resisting or changing to reach and maintain an acceptable level of functioning and structure.”[6] 
However in a more specific context from that of extreme weather events, the definition of re-
silience can be thought of as “the network ability to withstand high impact low probability 
events, rapidly recovering and improving operations and structures to mitigate the impact of 
similar events in the future”[7]. Efforts placed on quantification of resilience analysis have been 
limited and have only been tested in the last 20 years. Additionally, such efforts placed into 
resilience analysis applied to the power grid have been performed, which includes various tech-
niques such as transient performance modelling for the case study of typhoon Bolaven in South 
Korea[8]. However the authors mentioned that the limitations in their study included only com-
puting resilience in the form of restorative and absorptive capacity without considering antici-
pated and adaptive capacities and also did not include a cost benefit analysis for the 
quantification of resilience in an economic sense. Panteli et al. developed a method to quantify 
resilience in the power function n with extreme weather events by developing the three phase 
resilience trapezoid[9]. This is an extension to the traditional resilience triangle developed in 
prior literature[10] which  involves  three  stages to the disintegration, stagnation and recovery 
of the structure. The author divides resilience into two types, infrastructural and operational, 



A DC Optimal Power Flow Approach to Quantify Operational Resilience in Power Grids 

IPW2020 –18th International Probabilistic Workshop 3 

stating that infrastructural resilience is in a more vulnerable condition given its recovery times 
and damage done to the system. Kim et. al developed a novel function to analyse the South 
Korean power grid network using cascading failure analysis using three different node central-
ity metrics; degree, clustering coefficient and betweenness[11]. A high clustering coefficient of 
a network indicates a more resilient network as it contains a higher redundancy potential as 
alternative paths in the network’s nodes are present. Resilience has also been portrayed in the 
field of structural engineering[12] by associating a structural resilience index to for both a pre-
event and post-event state. The arbitrary structural resilience index is conformed from certain 
parameters deduced by the nature of the structure as stated in the article. 

1.1  Proposed approach 

This paper aims to apply a DC optimal power flow approach to quantify resilience in a simple 
power grid system after a network failure has occurred. The novel theme of this paper is the 
application of resilience as an extension to the weather induced model introduced in [3]. The 
chosen application for modelling will be MATLAB 2020b and the application will be case 9 as 
obtained from MATPower. 

2 RESILIENCE MODEL 
The index of resilience chosen for the power grid system is the Expectation of Energy Not 
Supplied which is deemed to be the most appropriate performance and has historically been 
used as an indicator of reliability performance and can further be extended for resilience anal-
ysis.  The equation listed below states the resilience index as a dividend of the load received 
and the expected load: 

𝐸𝑁𝑆 = ∑∑𝐿𝑐𝑢𝑡,𝑖,𝑡 ∙ 𝑡

𝑖∈𝑁

𝑇𝑠𝑖𝑚

𝑡=1

 (1) 

Where Tsim is the simulation time and Lcut,I,t is the load curtailed at each individual node during 
time t. 
 

2.1 Optimization 
In the case of optimization, the two models are the DC Optimal Power Flow approach and the 
AC Optimal Power Flow approach.  In the real life power grid system, the electricity is gener-
ated in power plants using methods such as fossil fuels, converted fuels or geothermal steam 
and transfer this energy through the transmission network at high voltage using either DC or 
AC flow[13].  This high voltage steps down into a medium voltage range. The primary differ-
ence between the DC and AC optimal power flow models is the convexity.  DC power is con-
stantly in a steady state, and therefore is both a linear and convex optimization problem.  
However, AC optimal power flow calculations are non-linear and non-convex leading to much 
higher computational expense.  It should also be noted that in high-fidelity models, DC optimal 
power flow are limited in terms of details for these grids as noted by [14]. This is due to DC 
optimal power flow models being an estimation of AC optimal power flow models and only 
accounts for active power, without reactive power in the model[15].The  equations  for  optimal  
power  flow  approach  can  be  denoted  below  as obtained from [16]. The standard optimiza-
tion vector is defined as: 
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min
𝑥
𝑓(𝑥) (2) 

Subject to 

𝑔(𝑥) = 0 (3) 

 
ℎ(𝑥) ≤ 0 (4) 

  

𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥 (5) 

 
The optimization vector for DC optimal power flow neglects reactive power and voltage 
magnitude and is defined as; 

 

 

𝑥 = [
𝜃

𝑃𝑔
] (6) 

Equation 2 is reduced to; 

min
𝜃,𝑃𝑔

∑𝑓𝑝
𝑖(𝑝𝑔

𝑖 )

𝑛𝑔

𝑖=1

 (7) 

 

2.2 Load contingencies 

The representation of failure for this model will be in the form of contingencies. In this context, 
a contingency is defined as an event occurring that is not considered predictable at a given time. 
Contingencies when applied to the power grid network imply the network’s architecture is the 
disruption of the load transfer from one bus to the next. This is commonly caused by a failure 
by extremely hot weather, system failure such as outages in loads and human errors[17]. 

2.3 Severe weather model 

In extension to the contingencies faced in the model, a weather model has been proposed in the 
simulation algorithm to mimic the real-life application of an event. These events include light-
ning strikes, extremely high winds and natural disasters. The occurrence of normal weather 
conditions can be modelled as a homogeneous Poisson process. All equations for this weather 
model have been taken from [18]. 

𝑃(𝑁𝑓(𝑡) = 𝑘) =
[𝜆𝑛 ∙ 𝑡]

𝑘

𝑘!
𝑒−𝜆𝑛∙𝑡     𝑘 = 0,1, . . . , 𝑁 

(8
) 

Where P(Nf(t) = k) represents the probability that k failures happen within the network given 
the time (0, t) and Nf(t) is the number of failures per kilometre of grid line. However, in a 
more realistic perspective, the weather model is more likely to affected by uncertainty.  This 
is why the occurrence of severe weather events is more suited to be modelled by a Non-
homogeneous Poisson process: 
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𝑃(𝑁𝑓(𝑡) = 𝑘) =
[𝜆𝑛 ∙ 𝑡]

𝑘

𝑘!
𝑒−𝜆𝑛∙𝑡     𝑘 = 0,1, . . . , 𝑁 (9) 

In this case, Ve(t) represents the time dependent probability of the event occurring and can 
be obtained applying the following equation: 

𝑉𝑒(𝑡) = ∫ 𝑣𝑒(𝑡
′)𝑑𝑡′

0

𝑡

 (10) 

ve(t′) is the rate at which the disturbance occurs. Given a severe weather occurrence, the time 
of the event is obtained from data from previous events and will be carried out using proba-
bility distribution functions. In the case of high winds, the windstorm intensity is obtained 
via the following equations:  

𝑊𝜔(𝑡) = 𝑊𝑐𝑟𝑡 + 𝛥𝜔(𝑡) (11) 

where Ww(t) is the wind speed intensity at time t for the and Wcrt is a datum wind speed 
known as the critical wind speed set at 10 m/s. ∆w(t) is the difference between the critical 
wind speed and the actual wind speed during the event. In terms of the lightning severe 
weather model, the intensity of a the weather event is set at the lightning strike ground den-
sity Ng(t)which takes the units of ground flashes per unit time and area[occh·km2] modelled 
with log-normal variability.  
The table below shows the shape and scale factors for the respective variables: 

Table 1: Variable attributes 

 Distribution Scale (a) Shape (b) 

Dω Weibull 9.86 1.17 

Dlg Weibull 0.96 0.85 

Δω(t) Weibull 1.23 1.05 

  Mean (µNg) SD (σNg) 

Ng(t) Log-normal -5.34 1.07 

 
Both high winds and lightning strikes are a cause of contingency and therefore it is crucial 
to define an equation which considers both contingencies to calculate the total failure rate:  

𝜆(𝑡) = 𝜆𝑛 + 𝜆𝜔(𝑊𝜔(𝑡)) + 𝜆𝑙𝑔(𝑁𝑔(𝑡)) (12) 

λw is the total line failure contribution due to high wind measured per km and λ(lg)is the 
lightning storms contribution. When considering individual lines, the contribution to line 
failure due to high winds can be denoted in the equation;  

𝜆𝜔(𝑊𝜔(𝑡)) = 𝜆𝑛 (
𝑊𝜔(𝑡)

2

𝑊𝑐𝑟𝑡
2 − 1)𝛼𝜔 (13) 

αw is the regression parameter for failure data obtained from the literature. The line failure 
rate as a result of lightning can be denoted as:  

𝜆𝑙𝑔(𝑁𝑔(𝑡)) = 𝜆𝑛𝛽𝑙𝑔𝑁𝑔(𝑡) (14) 

βlg is the regression coefficient obtained from prior data[18]. 
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2.4 Repair speed 
The model for recovery has been obtained from [5] and takes into consideration the efficiency 
of the repair crew as they are also affected by the adverse weather conditions. The assumptions 
in this model are: 

i. Repair is initiated instantly after failure 
ii. After a line is repaired, it is considered fully functional 

iii. The transitional time between failure and repair is negligible 

𝑣𝑟𝑒𝑝𝑎𝑖𝑟 =

{
  
 

  
 

𝑣𝑛𝑜𝑟𝑚
1 + 𝜂 ∙ (𝑊𝜔(𝑡) −𝑊𝑐𝑟𝑡)

, 𝑖𝑓 𝑊𝜔(𝑡) ≥ 𝑊𝑐𝑟𝑡 , 𝑁𝑔 = 0

𝑣𝑛𝑜𝑟𝑚
1 + 𝛹 ∙ 𝑁𝑔

, 𝑖𝑓 𝑊𝜔(𝑡) < 𝑊𝑐𝑟𝑡 , 𝑁𝑔 > 0

𝑣𝑛𝑜𝑟𝑚

[1 + 𝜂 ∙ (𝑊𝜔(𝑡) −𝑊𝑐𝑟𝑡)] + [1 + 𝛹 ∙ 𝑁𝑔]
, 𝑖𝑓 𝑊𝜔(𝑡) ≥ 𝑊𝑐𝑟𝑡 , 𝑁𝑔 > 0

  

 
In this model and η are positive parameters and vnorm is set at 20[%/h]. The values for ψ and η 
are set to 40 and 0.4, respectively. 

2.5 Probabilistic load uncertainty 
It is important to quantify uncertainty in the model used which uses data for variability in aver-
age daily load demand.  The aleatory uncertainty of the model can be considered by implement-
ing a gaussian with parameters fitted on historical data; 

𝑓(𝐿𝑖(𝑡)) =
1

√2𝜋𝜎𝐿𝑖(𝑡)
𝑒
−
𝐿𝑖(𝑡)−𝜇𝐿𝑖(𝑡)
2𝜎𝐿𝑖(𝑡)

2  (15) 

 

3 METHODOLOGY 
The proposed approach is to apply a DC optimal power flow approach to quantify the energy 
not supplied during the severe weather contingency, which will then be used to quantify the 
resilience function of energy supplied after disaster through the same algorithm. The pseudo-
code below displays the steps of the proposed approach below; 
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4 CASE STUDY 
This paper implements case 9 as an example from MATPower’s default folders [19]. It is com-
posed of a 9 node, 9 branch network which is assumed to be equidistant in all branches. 
 
 

 
Figure 1: Topology 

Table 2: Branch failure rates 

Branch Failure rate 

1-4 0.1455 

4-5 0.8693 

5-6 0.5797 

3-6 0.5499 

6-7 0.1450 

7-8 0.8530 

8-2 0.6221 

8-9 0.3510 

9-4 0.5132 
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4.1   Results 

Figure 2: Results for DC-OPF simulation 

The recovery time initiates after 1x10-4 dimensionless unit and continues to restore the energy 
supplied to the nodes are fully recovered after 4x10-4, in which the system has fully recovered 
and therefore all the energy required for the nodes in the whole network is being supplied. The 
uncertainty applied from eq. 16 shows the possible ranges of the energy supplied to the recovery 
function which also converges in the latter stages of the simulation. 

CONCLUSION 
This paper demonstrates the application of a restoration function applied to a simple power 
network when DC optimal power flow is applied to the 9-node example provided in MATPower. 
The work presented has innovated the weather model applied to contingencies in the general 
power grid to the application of resilience for the energy supplied after disaster. Further work 
that could be done on this topic includes developing a cost model for resilience quantification 
for the respective nodes in the network, and further expanding this application into three phase 
resilience models for realistic and complex networks. 
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