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Abstract—To extend the singular value decomposition (SVD)
to matrices of polynomials, an existing algorithm — a polynomial
version of the Kogbetliantz SVD — iteratively targets the
largest off-diagonal elements, and eliminates these through delay
and Givens operations. In this paper, we perform a complete
diagonalisation of the matrix component that contains this max-
imum element, thereby transfering more off-diagonal energy per
iteration step. This approach is motivated by — and represents a
generalisation of — the sequential matrix diagonalisation method
for parahermitian matrices. In simulations, we demonstrate the
benefit of this generalised SMD over the Kogbetliantz approach,
both in terms of diagonalisation and the order of the extracted
factors.

I. INTRODUCTION

The singular value decomposition (SVD) is a standard

linear algebraic tool for the diagonalisation of a rectangular

matrix [1]. It has proven central in signal processing to provide

solutions to many different challenges [2]. Often solutions

can be optimal in various respects; for example for such

as for precoding and equalisation for the diagonalisation of

multiple-input multiple-output (MIMO) channels [3], where

the SVD leads to optimality in least squares and channel

capactiy senses. Such matrices typically describe narrowband

systems.

In the broadband case, where impulse responses rather

than complex-valued gain factors between sources and sensors

have to be considered, a multiple-input multiple-output system

created by N transmitters and M receivers becomes a matrix

of transfer functions. For example, the system A(z) : C →
C

M×N ,

A(z) =







a1,1(z) . . . a1,N (z)
...

. . .
...

aM,1(z) . . . aM,N (z)






, (1)

contains in its mth row and nth column the z-

transform am,n(z) =
∑

τ am,n[τ ]z
−τ , or for short

am,n(z) • ◦ am,n[τ ], where am,n[τ ] is the impulse response

between the nth transmitter and the mth receiver. If these

impulse responses are finite and causal, then A(z) in (1) is

a polynomial matrix. For such matrices, the standard SVD

can diagonalise (1) for only one specific value of z, or

equivalently A[τ ] for one one value of τ .
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Therefore a different SVD factorisation is required for

(1), that can simulaneously diagonalise A(z) for all z, or

equivalently A[τ ] for all τ , such that

A(z) ≈ U(z)Σ(z)V P(z) . (2)

The approximation sign is due to the potential truncation of

infinite series and other effects that we will briefly review

in Sec. II. Decompositions such as (2) have in the past

been realised via two polynomial eigenvalue decompositions

(PEVDs) applied to two parahermitian matrices A(z)AP(z)
and A

P(z)A(z) [6]. The parahermitian transposition A
P(z) =

{A(1/z∗)}H involves a Hermitian transposition and time

reversal; if a matrix R(z) satisfies R
P(z) = R(z), it is

also termed a parahermitian matrix, for which a number of

eigenvalue factorisations have been reported [4], [5], [6], [7],

[8], [9], [10], [11]. To avoid the route via two PEVDs, a

polynomial QR decomposition has been exploited in [12].

Further, a direct polynomial SVD has been created by a

Kogbetliantz-type approach to the SVD [13]. Such algorithms

can enable a number of applications ranging from e.g. MIMO

communications [14], [15], beamforming [16], to filter bank

design and paraunitary matrix completion [17].

The Kogbetliantz method in [13] is a powerful approach

that generally yields better diagonalisation and lower order

factors than those achieved via two PEVDs. The approach is

a generalisation of the second order sequential best rotation

(SBR2) algorithm, which calculates the PEVD of paraher-

mitian matrices [6], [8]. It is an iterative algorithm, that

in every step eliminates the largest off-diagonal element by

transfering its energy onto the diagonal. For the EVD of

parahermitian matrices, SBR2 performs a similarity transform,

where an elementary paraunitary matrix and its parahermitian

transpose are left- and right-multiplied against the result from

the previous iteration. In the Kogbetliantz approach in [13],

this approach is modified to permit different paraunitary

matrices for the left- and right-multiplications. In this paper,

we want to explore whether performance improvements can

be attained by borrowing ideas from a sequential matrix

diagonalisation (SMD) algorithm for parahermitian matrices.

In SMD, more energy is transfered per iteration, whereby for

the PEVD of parahermitian matrix significant advantages have

been reported [18], [19].

Therefore, below we review some aspects of a polynomial

SVD in Sec. II before introducting the proposed generalised
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SMD algorithm for a direct polynomial SVD in Sec. III. Its

performance is explored in Sec. IV.

II. POLYNOMIAL SVD

In this section, we highlight the properties of a polynomial

SVD as in (2), followed by a brief review of the Kogbetliantz

approach in [13].

A. Analytic SVD

For an analytic A(z) : C → C
M×N that is not tied to

a multiplexing operation, there exists an analytic, diagonal

Σ(z) that is real-valued on the unit circle, as well as analytic

left- and right-singular vectors as in the columns of U(z) and

V (z) that are unique up to common allpass filters [20], [21].

However, the singular values in Σ(z), when evaluated on the

unit circle, must be permitted to intersect and even take on

negative values — an observation previously made also for the

case of matrices in a continuous time parameter [22], [23]. In

this case, (2) holds with equality.

Time domain polynomial matrix factorisation methods such

as [6], [12], [13], [8], [19], [24] typically encourage spectrally

majorised eigen- or singular values, such that for Σ(z) =
diag{σ1(z), . . . , σK(z)} with K = minM,N ,

σk(e
jΩ) ≥ σk+1(e

jΩ) ∀Ω, k = 1, . . . , (K − 1) (3)

is satisfied, i.e. they must not intersect. In case of the polyno-

mial EVD, the SBR2 algorithm in [6], [8] has been explicitly

proven to yield a spectrally majorised result [25]. Thus,

algorithmic solutions may deviate from the analytic solution,

such that, either due to falsely assumed spectral majorisation

or due to the approximation of infinite order factors by Laurent

polynomials, (2) does not hold with equality. In practice

however, due to estimation errors, singular values will be

spectrally majorised with probability one [26], such that only

approximation errors impact on the precision of (2).

B. Polynomial Kogbetliantz Algorithm

The polynomial Kogletliantz approach in [13] is a general-

isation of the SBR2 algorithm, that extends the application

of the latter from parahermitian to general matrices. The

algorithm starts with the initialisation S
(0)(z) = A(z). This

initialisation may involve a unitary phase correction to the

entire matrix, such that for S(0)[τ ] ◦ • S
(0)(z), the coefficient

matrix of order zero, S(0)[0], is real valued. We will refer to

this coefficient matrix for τ = 0 of a polynomial matrix as the

‘zero plane’ below.

At the ith iteration, the Kogbetliantz approach generates

an enhanced diagonalised S
(i)(z) in two steps. Firstly, the

maximum off-diagonal component is brought to the zero-plane

by delay operations. Secondly, a Givens rotation transfers the

energy of this component onto the diagonal. For the first step,

{mi, ni, τi} = arg max
m,n,τ

j 6=k

|s(i−1)
m,n [τ ]| (4)

determines the location of the maximum off-diagonal element,

where s
(i−1)
m,n [τ ] is the element in the mth row and nth

column of S(i−1)[τ ]. With the identified parameters, two delay

matrices

B
(i)
r (z) = blockdiag

{

Ini
, z−τi , IM−ni

}

(5)

B
(i)
l (z) = blockdiag{Ini

, zτi , IN−ni
} (6)

are formed. Thus,

S
(i− 1

2
)(z) = B

(i)
l (z)S(i−1)(z)B(i)

r (z) (7)

contains in its zero plane the same diagonal elements as

S
(i−1)(z), but the maximum off-diagonal component and

also some other elements in the nith row and nith column

have been transfered such that s
(i− 1

2
)

mi,ni [0] = s
(i−1)
mi,ni [τi]. This

is accomplished by B
(i)
r (z) delaying the nith column by τi

samples, while B
(i)
r (z) advances the nith row.

For the second step, a Givens rotation via matrices G
(i)
r and

G
(i)
l transfers the the energy of s

(i− 1

2
)

mi,ni [0] onto the diagonal,

such that

S
(i)(z) = G

(i)
l S

(i− 1

2
)(z)G(i)

r . (8)

Since this operation is applied across the entire matrix and

not just to the zero plane, it may undo some of the efforts in

previous iterations. Overall, since the energy in the diagonal

monotonuously increases while the overall energy in S
(i)(z)

remains unaltered from S
(i−1)(z), the algorithm can be proven

to converge [13]. The iterative process is terminated when

either the maximum off-diagonal element falls below a given

threshold or a specified maximum number of iterations has

been reached. Then after K iterations, for the singular values,

Σ(z) is extracted as the diagonal of S(K)(z), and

U(z) =

K
∏

i=1

{

B
(i)
l (z)

}P{

G
(i)
l

}H

(9)

V (z) =

K−1
∏

k=0

B
(K−k)
r (z)G(K−k)

r (10)

will provide the left- and right-singular vectors. In order to

limit the polynomial order of the extracted factors, it may be

advantageous to apply trimming during the iterative process,

or after the algorithm has terminated [27], [6], [28], [24], [29].

III. GENERALIZED SEQUENTIAL MATRIX

DIAGONALIZATION

The Kogbetliantz approach in Sec. II-B represents a general-

isation of SBR2; it eliminates one largest off-diagonal element

per iteration. The cost is moderate, but the polynomial order

of the result grows with every iteration. Therefore, in this

section, we generalise the SMD algorithm, which in general

is capable of transfering more energy per iteration than SBR2.

This generalised SMD algorithm is outlined in this section.

A. Initialisation

The proposed algorithm starts with A(z) : C → C
M×N .

Without loss of generality, we assume M ≥ N , as otherwise
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we can operate with A
P(z) instead. We first perform a

diagonalisation of its zero plane matrix A[0] via an SVD,

A[0] = U
(0)

S
(0)[0]V(0),H . (11)

Based on this factorisation, the initial step for the algorithm

is

S
(0)(z) = U

(0),H
A(z)V(0) . (12)

Note that U(0) and V
(0) are applied to the entirely of A(z),

but will ensure that the zero plane matrix S
(0)[0] is indeed

diagonal and real-valued. We also record initial estimates for

the left- and right-singular vectors as U
(0)(z) = U

(0) and

V
(0)(z) = V

(0).

B. Iterative Procedure

Following the initialisation in (12), any subsequent iterations

i = 1, 2, . . . repeat the three steps below. Firstly, in the ith
iteration, we transfer the nith column and the nith row of

A
(i−1)(z) to the zero plane. This step exploits the matrices

B
(i)
r (z) and B

(i)
l (z) defined in (5) and (6), and generates

a shifted version S
(i− 1

2
)(z) according to (7). The particular

row and delay selection for this step can differ from (4), and

we define a general column norm that excludes any diagonal

elements, such that

‖ŝ(i−1)
n [τ ]‖p =







M
∑

m=1,m 6=n

|s(i−1)
m,n [τ ]|p







1

p

. (13)

For p → ∞, the norm picks the maximum element, and the

selection is identical to (4). The resulting algorithm version

is termed the maximum element generalised SMD (ME-

GSMD). Since we ultimately want to perform a complete

diagonalisation of the zero plane matrix, it appears promising

to shift more energy to the zero plane than with ME-GSMD.

This can be accomplished for p = 2, and we term the resulting

precedure the GSMD algorithm.

Secondly, we now diagonalise the zero plane of the shifted

matrix S
(i− 1

2
)(z) = B

(i)
l (z)S(i−1)(z)B(i)

r (z). By computing

an SVD of its zero plane matrix S
(i− 1

2
)[0] = U

(i)
D

(i)
V

(i),H,

we determine

S
(i)(z) = U

(i),H
S
(i− 1

2
)(z)V(i) . (14)

This operation diagonalises the zero plane matrix, but also

modifies all other entries in S
(i− 1

2
)(z).

Thirdly, we update the left- and right-singular values as

U
(i)(z) = U

(i−1)(z)B
(i),P
l (z)U(i) (15)

V
(i)(z) = V

(i−1)(z)B(i)
r (z)V(i) , (16)

based on the previous estimates, the delay matrices, and the

unitary matrices obtained from the application of an SVD in

(14).

At each iteration, S
(i)(z) grows in order by 2|τi|, and

U
(i)(z), and V

(i)(z) each grow in order by |τi|. It may

therefore be opportune to apply trimming [27], [6], [28], [24],

[29] at each iteration step, thus stemming the order growth

and somewhat arresting the computational complexity of the

algorithm.

C. Convergence and Termination

It can be shown that with each iteration step, the overall

energy within A(z) remains unaltered while the energy on

the diagonal monotonously increases. However, such a proof

is beyond the scope of this paper; for the special case of A(z)
being a parahermitian matrix, the GSMD algorithm reduces to

the SMD algorithm, for which an explicit convergence proof

is reported in [19].

The iterations continue until either a sufficiently low thresh-

old for the off-diagonal elements defined via (13) is attained,

or until a predefined maximum number of iterations is reached.

Thus, after L iterations, we can extract the approximate

polynomial SVD factors of (2) as

Û(z) = U
(L)(z) , V̂ (z) = V

(L)(z) , (17)

while

Σ̂(z) = S
(L)(z) . (18)

Note that Σ̂(z) may still contain some non-zero off-diagonal

components albeit of small magnitude.

IV. SIMULATIONS AND RESULTS

To compare the two proposed approaches, ME-GSMD and

GSMD, against the polynomial Kogbetliantz approach in [13]

— a generalisation of the SBR2 algorithm [6], [8] — this

section presents some simulation results.

A. Performance Metrics

In order to assess the performance of the various polynomial

SVD algorithms, we utilise the diagonalisation η,

η =

∑

τ ‖Σ[τ ]‖2F
∑

τ ‖Σ̂[τ ]‖2F
, (19)

where Σ[τ ] is same as Σ̂[τ ] but with its off-diagonal elements

set to zero. For a completely diagonalised Σ̂[τ ], this metric η
would be unity. To assess the algorithmic performance, we

also measure the execution time of the algorithms.

For gauging the computational complexity of a practical im-

plementation in general communications or signal processing

application, the order of the achieved polynomial SVD factors

is important. Therefore we assess the orders of both right

and left singular vectors, denoted by O{Û(z)} and O{Û(z)}
respectively.

B. Numerical Example

Before conducting extensive simulations, we demonstrate

the performance of the proposed method using a numerical

example. We create a 4× 3 polynomial matrix A(z) of order

2, with coefficients drawn from a normal distribution with zero

mean and unit variance. The generated matrix is characterised

in Fig. 1.

Prior to executing the algorithm, the diagonalisation ratio η
is 0.2452. Running GSMD, we achieve a diagonalisation ratio
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Fig. 1. Matrix A[τ ] ◦ • A(z) for numerical example, showing the moduli
of its elements, |am,n[τ ]|, m = 1, . . . , 4 and n = 1, 2, 3.
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Fig. 2. Approximately diagonalised matrix Σ̂[τ ] derived from A[τ ] in Fig. 1
using the GSMD algorithm with L = 100 iterations.

of η = 0.9998 after 100 iterations. The resulting diagonalised

matrix is shown in Fig. 2 where only 10 central lags are

displayed, and trailing values close to zero are suppressed. As

a comparison, the generalised SBR2 approach that forms the

polynomial Kogbetliantz method in [13] requires 205 iterations

to reach a similar diagonalisation ratio as GSMD.

C. Ensemble Results

We construct an ensemble of 500 random instantiations of

A(z) : C → C
5×3 of order O{A(z)} = 2, whose coefficients

are drawn from a normal distribution with zero mean and unit

variance. We compare the proposed two algorithms — GSMD

and ME-GSMD — against the polynomial Kogbetliantz ap-

proach, which implements a generalised SBR2 (GSBR2) al-

gorithm. The various results below represent averages across

the ensemble.

0 5 10 15 20 25 30 35 40 45 50

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Ensemble average of η versus iteration number.

First, we compare the diagonalisation performance η of

the algorithms over a run of L = 50 iteration. For this

test, the order of the polynomial SVD factors are of a lesser

importance, and in order to ensure that algorithms perform

the desired number of iterations, the trimming threshold is set

to zero. The average diagonalisation is shown in Fig. 3. All

algorithms converge towards η = 1 as the number of iterations

L increases. The GSMD algorithm, utilising the L2 norm in

(13) and hence transfering the column with maximum power

in each iteration, provides a slightly faster convergence than

the ME-GSMD, which looks for the maximum off-diagonal

element via the L∞ norm in (13). Both of these proposed

method converge significantly faster than the benchmark,

polynomial Kogbetliantz approach in [13], here refered to as

GSBR2.

The execution times over 50 iterations are 0.042 ± 0.08s

for GSMD, 0.044 ± 0.009 for ME-GSMD, and 0.04 ± 0.01
for GSBR2. Hence, the algorithms exhibit very similar overall

complexities, and Fig. 3 can also be taken as a rough indication

of what a comparison of diagonalisation versus execution time

would provide.

The order growth of the paraunitary matrices Û(z) and

V̂ (z) is illustrated in Figs. 4 and 5, displaying the achievable

diagonalisation η versus the orders of the left-singular vectors,

O{Û(z)}, in Fig. 4 and the orders of the right-singular vec-

tors, O{V̂ (z)}, in Fig. 5. The results demonstrate that GSMD

and ME-GSMD yield paraunitary matrices that can be more

economically applied in order to achieve good diagonalisation,

with an advantage for GSMD over ME-GSMD. The former

tends to transfer more energy per iteration, and since the order

of the polynomial SVD factors are likely to grow with each

iteration, the smaller number of iterations indicated in Fig. 3

also translate into lower orders in Figs. 4 and 5. Both methods

yield significantly lower order paraunitary matrices compared

to the benchmark, GSBR2. Note that this difference in per-

formance is more pronounced for the left-singular vectors in

Fig. 4 with Û(z) : C → C
5×5 compared to the shorter right-

singular vectors in the smaller V̂ (z) : C → C
3×3 in Fig. 5.
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Fig. 4. Ensemble average of η versus ensemble median of order of Û(z).
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Fig. 5. Ensemble average of η versus ensemble median of order of V̂ (z).

V. CONCLUSION

In this paper, we have proposed a generalised sequential

matrix diagonalization algorithm for the SVD of polynomial

matrices. This is an extension of the SMD algorithm [18], [19],

which is applicable to parahermitian matrices, to the more

general case of rectangular matrices of transfer functions. This

generalisation is akin to the way a benchmark algorithm, the

polynomial Kogbetliantz approach in [13] extends the SRB2

algorithm [6], [8]. Ensemble simulations show that GSMD

can achieve better diagonalisation with lower order polynomial

matrices compared to this benchmark.
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