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 performance evaluation is conducted for a state-of-the-art Coupled Model 
tercomparison Project Phase 6 (CMIP6)-derived ensemble of global wave climate 
mulations. A single-model (forcing), single-scenario approach is considered to build the 
semble, where the differentiating factor between each member is the wave model or 
ysics parameterization used to simulate waves. The 7-member ensemble is evaluated 
r the 1995-2014 historical period, highlighting the impact of the multiple source terms 
 its robustness. The ensemble’s ability to accurately represent the present wave climate 

 assessed through an extensive comparison with long-term ERA5 reanalysis and in-situ 
servational data. Relevant aspects such as the depiction of extremes and natural wave 

imate variability are analyzed, and inter-member uncertainties are quantified. Overall, 
e results indicate that the ensemble is able to accurately simulate the global wave 
imate, regarding the significant wave height (𝐻𝑆), mean and peak wave periods (𝑇𝑚 and 
, respectively) and mean wave direction (𝑀𝑊𝐷). However, we show that using 
ultiple wave models and parameterizations should be cautiously considered when 
ilding ensembles, even under the same forcing conditions. Model-parameterization-
duced ensemble spreads during the historical period are found to be high, compromising 
e robustness of projected changes in wave parameters towards the end of the 21st 
ntury across several areas of the global ocean.  
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Ocean surface gravity waves (also commonly named “wind waves”) are generated 
 the action of the wind over the water (Jeffreys, 1924; 1925). These (henceforth just 
aves”) are almost always present at the sea surface, in the form of seas, swells, or a 
mbination of them, being a clear part of the climate system (Cavaleri et al., 2012; 

abanin et al., 2012) and responsible for modulating the exchange of radiation, heat, mass 
d momentum between the atmosphere and the ocean (Sullivan et al., 2008; Hogstrom 
 al., 2009, 2011; Semedo et al., 2009; Rutgersson et al., 2010). 

Waves play an important role in engineering and environmental issues, as well as in 
man activities, with direct impacts on coastal dynamics (e.g., Cazenave and Cozannet, 
14; Melet et al., 2018; Shih et al., 1995; Ruggiero et al., 2001), shoreline stability 
arley et al., 2017; Barnard et al., 2015; 2017), coastal flooding and sea level extremes 
e Leo et al., 2019; Dietrich et al., 2011; Vitousek et al., 2017; Vousdoukas et al., 2018; 

irezci et al., 2020;  Almar et al., 2021), and ship routing and design standards (Bitner-
regersen et al., 2015; Bitner-Gregersen and Gramstad, 2018). Moreover, waves 
fluence the entire climate system due to their complex feedbacks with the atmosphere, 
a ice and the underlying ocean (Cavaleri et al., 2012). For that matter, not only is the 
onitoring of the present wave climate of paramount importance (Young, 1999; Caires 
d Swail, 2004; Young et al., 2011; Semedo et al., 2008; 2011; 2014; Aarnes et al., 
12; 2015), but also the accurate projection of global future wave conditions (Morim et 
., 2019, 2023; Lobeto et al., 2021a,b). 

Sea state observations are required to accurately describe the historical wave climate, 
t long-term measurements are relatively limited. In-situ instruments, such as moored 
oys, have been used over the last five decades by many countries as part of their 
erational observing capabilities. Some of these buoys can currently provide 
proximately 45 years of (almost) continuous observations (Bidlot et al., 2002). While 
oviding some of the most comprehensive wave datasets, often assumed as “ground 
th” (e.g., Bidlot, 2020; Menendez, 2008; Semedo et al., 2014), the most significant 

sadvantage of in-situ observations is, nevertheless, their uneven global positioning, 
und disproportionately near the coasts of industrialized countries, mainly in the 
orthern Hemisphere (NH). In the absence of observations, wave modelling efforts like 
analyzes or hindcasts (e.g., ERA5; Hersbach et al., 2020; Bidlot et al., 2019) provide 
latively accurate depictions of the global and local wave climates, being currently the 
ly available time- and space-continuous sources of a full spectral description of the 
ean surface. Despite the ever-greater accuracy of these modelling products, they rely 
 forcing winds from atmospheric reanalyzes, which often exhibit well-documented 
ases and long-term inconsistencies (Ramon et al., 2019; Torralba et al., 2017). In fact, 
spite the wave’s role in the climate system, no fully coupled ocean-wave-atmosphere 
imate model exists yet, although some attempts have been conducted (e.g., Lionello et 
. 1998; Rutgersson et al. 2010). 

Understanding the future evolution of the global wave climate poses one of the 
eatest challenges in climate modelling. At the same time, it became an important issue 
r decision and policy-makers in climate change adaptation and mitigation strategies 
agnan et al., 2016; Jones et al., 2014). Future wave climate projections rely on wind 

d sea ice simulations from global climate models (GCMs), used to force dynamic or 
atistical wave models (Stopa et al., 2019). Several studies exploring the impact of 
imate change in future global wave climate have been conducted recently, using forcing 
CM outputs from the World Climate Research Program (WCRP) Coupled Model 
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ang et al. (2015), Dobrynin et al. (2015), Erikson et al. (2015), Kamranzad et al. (2015), 
emer and Trenham (2016), Camus et al. (2017), Casas-Prat et al. (2018), Kamranzad 
d Mori (2018), Morim et al. (2018, 2019), Kamranzad and Mori (2019)  and Lemos et 
. (2019, 2020a, 2020b, 2021a, 2021b) and Lobeto et al. (2021a, 2021b, 2022). While 
e first studies were based on a single GCM forcing climate simulation (e.g., Mori et al., 
10; Hemer et al., 2013a; Semedo et al., 2013), the use of ensembles has been widely 
opted in more recent studies. The primary goal of the ensemble approach is to better 
antify the uncertainties associated with individual simulations (Hawkins and Sutton, 
09; Knutti and Sedlacek, 2010; Rauser et al., 2015) for a more realistic depiction of the 
riability, trends and extremes of past and future projected wave climates. These 
certainties arise from various sources, namely the use of different GCMs, scenarios, 

ave models, physical parameterizations, the inaccurate depiction of small-scale 
ocesses not yet fully understood, or processes not resolved due to computational 
nstrains (Stocker et al., 2013). Cascading uncertainties have often been a limiting factor 
 climate studies, particularly at regional scales (Foley, 2010; Falloon et al., 2014; Payne 
 al., 2015).  

Most wave climate ensembles rely on a multi-forcing strategy, i.e., different GCMs 
ere used to force dynamical or statistical wave model(s). Recently, Morim et al. (2019) 
mpiled the largest set (to date) of individual studies to quantify the uncertainties 
sociated with GCM wind forcing and emission scenarios. It was concluded that 
certainty in current wave climate projections is mostly GCM-driven, in such a way that 
nsidering multiple studies at once, robust projected changes in wave parameters (i.e., 
ceeding the natural historical variability) are only detectable for the RCP8.5 high 
issions scenario (Riahi et al., 2011). This study, however, did not investigate to what 

easure the use of different wave models and parameterizations while generating wave 
imate projections impacts their uncertainty range and robustness. In fact, this relevant 
certainty source has often been overlooked in the scientific literature (e.g., Erikson et 
., 2015; Hemer and Trenham, 2016; Bricheno and Wolf, 2018; Morim et al., 2019; 
mos et al., 2020b). Kumar et al. (2022), nevertheless, addressed it, in an attempt to 
antify the uncertainties in CMIP6 wave climate projections towards the end of the 21st 
ntury using a 4-member ensemble, being the parameterizations (source terms; STs) 
ithin the WaveWatchIII (WW3; Tolman et al., 2009; WW3DG, 2019) wave model the 
fferentiating factor. Despite keeping the GCM forcing constant, it was concluded that 
e uncertainties induced by different STs are enough to seriously affect the robustness 
 the projections in several areas of the global ocean, even considering a high-emission 
enario (SSP5-8.5; O’Neill et al., 2016). 

To accurately quantify the impact of climate change, as the differences between the 
ture projected and historical climates, the ability of the ensemble to reproduce the 
seline (present) wave climate conditions (mean conditions, intra- and inter-annual 
riabilities and extremes) must be previously evaluated. The accurate historical climate 
presentation is key to increasing user confidence in the associated future projections. 
erefore, a thorough evaluation of the ensemble’s performance skills against long-term 

storical observations or reanalyzes/hindcasts is required (e.g., Semedo et al., 2018b).  

In the present study, a unique type of ensemble is presented and evaluated. In our 
proach, a single CMIP6 GCM (EC-Earth3; Döscher et al., 2022) is used to force seven 
namic wave climate simulations. The differentiating factor between each ensemble 
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AN (Booij et al., 1996) and WAM (WAMDI Group, 1988) to produce seven different 
mulations with multiple STs. The ensemble used here is therefore a “single forcing, 
ulti wave model” one, built to investigate the (usually discarded) impact of multiple 
rameterizations on the wave climate (both historical and future projected ones). To do 
 in an effective way, the remaining sources of uncertainty (e.g., adopting a multi-forcing 
rategies, different initializations, or even multiple future emission scenarios) were 

ited. Near-surface wind speeds (𝑈10) and sea ice cover (SIC) are used as forcing for 
e wave models (except SWAN, for which only 𝑈10 is required), both during the 1995-
14 historical period (henceforth “PC20”) and 2081-2100 future projections (not 
alyzed here). The PC20 ensemble is extensively evaluated through comparison with an 
tensive in-situ observational set (buoys and platforms), and with the European Centre 
r Medium-range Weather Forecasts (ECMWF) ERA5 reanalysis (Hersbach et al., 
20). Our main goal is not to uniquely present a new ensemble of wave climate 

mulations and projections, or to focus on an optimal output, but instead to assess the 
certainty generated by an ensemble containing several wave models and 
rameterizations, as in Morim et al. (2018, 2019). For the same reason, although quick 
ogress has been made to improve the overall quality of wave modelling results, we use 
rameterizations that can be considered outdated, for example, ST1 (Komen et al., 
94), ST2 (Tolman and Chalikov, 1996) and ST3 (Janssen, 2004; Bidlot et al., 2007). 
e aim to demonstrate to which extent there is a negative impact when pairing older 
rameterizations with more recent ones in a single ensemble, in terms of uncertainty. 

The remainder of the paper is structured as follows. In section 2, the EC-Earth3 
CM, the wave models, the reanalysis and the observational data are described, as well 
 the general methodology for the evaluation process. In section 3, the performance skills 
 the PC20 ensemble are assessed in depth, focusing on the representation of means, 
tremes, short- and long-term variabilities and uncertainties along the historical time-

ice. A discussion of the obtained results, together with the concluding remarks, are 
fered in section 4.  
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2.1. The EC-Earth3 GCM 

The EC-Earth is a widely used GCM in both global and regional climate assessments, 
llaboratively developed by the European Consortium (Döscher et al., 2022). Here, the 

MIP6 generation of the model (EC-Earth3) is used, in version 3.3. The EC-Earth3 GCM 
ovides a description of the atmosphere (and its composition), ocean, sea ice, land 
rface, dynamic vegetation, ocean biogeochemistry and Greenland ice sheet, using the 
MWF Integrated Forecast System (IFS) model cycle CY36R4, coupled with the 

ucleus for European Modelling of the Ocean (NEMO) version 3.6, the sea ice model 
M3 and the Pelagic Interactions Scheme for Carbon and Ecosystem Studies (PISCES) 
ogeochemical model. Terrestrial parameters such as land use, dynamical vegetation and 
ogeochemistry are given by the Lund-Potsdam-Jena General Ecosystem Simulator 
PJ-GUESS). Additional details are available in Döscher et al. (2022). 

In the context of CMIP5, the EC-Earth GCM was shown to provide one of the most 
curate representations of the historical 𝑈10 and SIC amongst its remaining counterparts 
hu et al., 2015; Casas-Prat et al., 2018). More recently, within CMIP6, an evaluation 
r wave climate modelling purposes conducted by Meucci et al. (2023) showed that EC-
rth3 ranks as one of the best GCMs to represent sea level pressure and 𝑈10 values above 

e global ocean. Nevertheless, positive 𝑈10 biases were still identified in the Northern 
emisphere (NH) mid-latitudes, related to an equatorward storm track bias (Harvey et 
., 2020; Priestley et al., 2020), and a relatively poor performance for SIC was detected 
 the Southern Hemisphere (SH).  

In this study, one realization of the EC-Earth3 was considered, the r1i1p1f1 
realization” 1, “initialization” 1, “physics” 1, “forcing” 1) one, to force all the wave 
imate simulations. This approach eliminates the uncertainty related to different forcings 
 the GCM side, allowing the isolation of sources related to wave model physics and 
rameterizations. The spatial domain ranges from 80.36ºS to 80.64ºN and 180ºW to 
9.296875ºE in a 0.7º x 0.703125º (latitude x longitude) horizontal resolution grid for 

l variables (𝑈10, defined by its longitudinal and meridional components 𝑢𝑎𝑠 and 𝑣𝑎𝑠, 
d SIC, interpolated from a non-structured grid). The time resolution is 3 hours. The full 

mulation period corresponds to 1984-2014 and 2070-2100, under the SSP5-8.5 
enario. 

2.2. Wave models and parameterizations 
 

2.2.1. WW3 

The WW3 is a third-generation spectral wave model vastly used for operational wave 
recasting, research, and engineering applications. Here, WW3 version 6.07 (WW3DG, 
19) is used to generate four of the seven global wave climate simulations that compose 
e ensemble. Within the model, physics and numerical schemes are defined by switches 
olman, 2009). The switches activated for the four WW3 runs considered here are as 
llows:  

 Third-order Ultimate Quickest (UQ) propagation scheme along with the 
averaging technique (PR3) for garden sprinkler reduction (Tolman, 2002); 
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 Linear input (switch LN1) from the parameterization of Cavaleri and 
Malanotte-Rizzoli (1981), along with a low-frequency filter from Tolman 
(1992), for consistent spin-up from calm conditions and improving initial 
wave growth.  

 Bottom friction (switch BT1) from the Joint North Sea Wave Project 
(JONSWAP; Hasselmann et al., 1973); 

 Depth-induced wave breaking, accounted using the Battjes and Janssen 
(1978) formulation (switch DB1); 

 Miche-style shallow water limiter (switch MLIM) for maximum wave height;  
 Deactivated reflections by shorelines and icebergs (switch REF0) and no 

bottom or sea ice scattering (switches BS0 and IS0); 
 Ice-blocking scheme (switch IC0) considering all grid-points with SIC over 

50% as land.  

Each of the four WW3 ensemble members correspond to a different input-dissipation 
rameterization (ST package), namely the ST2 (Tolman and Chalikov, 1996), ST3 
idlot et al., 2007 and Janssen, 2004; also named “BJA”), ST4 (Ardhuin et al., 2010) 
d ST6 (Zeiger et al., 2015, Rogers et al., 2012; Babanin, 2011). Generally, the default 
rameter settings of each ST package are used. In ST4, coefficients corresponding to the 
ST471 option are selected, with 𝛽𝑚𝑎𝑥 = 1.43, which generally provides the best results 

 global scale (WW3DG, 2019). In ST6, switch FLX4 is activated using the air-sea 
upling factor CDFAC = 1. It should be highlighted that the ST6 parameterization in 
W3 v6.07 suffered a re-calibration, following Rogers et al. (2017) and Liu et al. (2019), 
dating the 𝑈10 scaling factor to 32. Additional details can be found in Table SM1 in the 
pplementary Material and in Kumar et al. (2022). 

The bathymetry is based on ETOPO-1 (Amante and Eakins, 2009) and the Global 
lf-Consistent Hierarchical High-Resolution Shoreline (GSHHS) v1.10 Database. Three 
es were created: bathymetry, mask, and obstruction grid accounting for wave 
tenuation by unresolved islands, using the gridgen software package (Chawla and 
lman 2007; 2008). The global output time step in WW3 was set to 3 hours, using a 
ectral resolution of 29 frequencies, logarithmically ranging from 0.0350 Hz to 0.5047 
z, and 24 directional bins of 15º. The domain and horizontal resolution of the wave 
lds were kept the same as in the EC-Earth3 forcing winds. Bathymetry, time steps, 
ectral characteristics, domain and resolution were kept the same for the remaining 
semble members produced using the SWAN and WAM wave models, to limit 
ditional sources of uncertainty. The remaining model configurations were kept constant 
henever possible. 

2.2.2. SWAN 

The Simulating Waves Nearshore (SWAN; Booij et al., 1999; Ris et al., 1999) is a 
ird-generation spectral wave model used for several operational, research and 
gineering applications. Here, the SWAN version 41.20AB is used to generate two of 
e seven wave climate simulations. Similarly to the WW3 runs, each of the SWAN 
embers correspond to a different parameterization within the model, namely the ST1, 
 the recommended SWAN default setting (SWAN Team, 2022) and ST6, with a degree 
 equivalence to the WW3-ST6 (Donelan et al., 2006; Rogers et al., 2012). In fact, 
though SWAN is more frequently employed to simulate waves across local to regional 
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 global scale (e.g., Mori et al., 2010; Liang et al., 2019; Li and Zhang, 2020). Within 
e model, run in non-stationary model, general configurations are considered as follows: 

 Garden sprinkler effect reduction according to Tolman (2002); 
 DIA according to Hasselmann et al. (1985); 
 Bottom friction formulation according to the JONSWAP (Hasselmann et al., 

1973), but considering 𝐶𝑓𝑗𝑜𝑛 = 0.067 m2s-3 as in Zijlema et al. (2012); 
 Depth-induced wave breaking as described in Battjes and Janssen (1978); 
 Courant-type limiter, which deactivates quadruplets permanently when the 

Ursell number exceeds 10 (excluding cases when the fraction of breaking 
waves exceeds 1 under decreasing action density); 

 Third-order upwind scheme according to Stelling and Leendertse (1992) with 
a diffusive correction for the garden sprinker effect as in Booij and 
Holthuijsen (1987). 

In ST1, the wind and whitecapping formulations follow Komen et al. (1994) and 
ogers et al. (2003). In ST6, some differences to the WW3-ST6 run should be 
ghlighted, namely the inclusion of the new “SSWELL ARDHUIN” option for non-
eaking dissipation from Ardhuin et al. (2010) as well as a 𝑈10 scaling factor of 28 
wang, 2011). Additional details can be found in Table SM1. 

2.2.3. WAM 

The third-generation WAM wave model (WAMDI Group, 1988) version 4.6 is used 
 produce one of the seven wave climate simulations that compose the ensemble. 
ecifically, the default WAM settings of physical parametrizations from ECMWF 

Y45R1 (WAM Cycle 4.6.2.2; ECMWF, 2018) are considered, defined by the switch 
HYS = 0 (overall similar to the WW3-ST3 run), as follows: 

 Wind input and wave growth according to Miles (1957) and Janssen (1991); 
 DIA according to Hasselmann et al. (1985) and Komen et al. (1994); 
 Bottom friction formulation as in Komen et al. (1994); 
 Whitecapping dissipation according to Hasselmann (1974) and Janssen 

(1989a); 
 Shallow-water mode. 

 This simulation, forced by the same 3-hourly EC-Earth3 winds and daily SIC as 
evious ensemble members, also preserves all remaining setup characteristics, including 
thymetry (despite previously converted into a WAM format regular grid), time steps 
d spectral resolution. Additional details can be found in Table SM1. 

2.3. The ERA5 reanalysis 

The ERA5 reanalysis provides a comprehensive, high-resolution record of the global 
mosphere, land surface, and ocean wind waves from 1950 onwards, continuing to be 
tended in almost real-time. It is produced using the IFS cycle CY41R2 (ECMWF, 
16), used for the operational forecast from March to November 2016. ERA5 uses an 
vanced data assimilation system (4D-Var scheme). The horizontal resolution of the 
mospheric model in ERA5 is about 30 km (0.25º x 0.25º), being the resolution of the 
ave parameters approximately 40 km (0.36º x 0.36º). The time resolution is 1 hour. The 
ave component in ERA5 is produced with a specific configuration of the WAM model 
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scribed in Bidlot et al. (2012). Extra output parameters were also introduced to better 
aracterize freak waves, based on the work from Janssen and Bidlot (2009).  ERA5 wave 
ectral domain ranges for 30 logarithmically spaced frequency bins, from 0.03453 Hz to 
5478 Hz, and 24 directional bins of 15º. The bathymetry in ERA5 is based on the 
OPO2 (NGDC, 2006) dataset. Altimeter wave height wave has been assimilated by 

e wave model component of the system. Additional details regarding the ERA5 
analysis can be found in Hersbach et al. (2020). Here, the ERA5 is used upon 
terpolation into the wave climate simulations’ grid. 

2.4. In-situ data 

An extensive in-situ observational dataset (from buoy and oil platform observations) 
 used to complement the ensemble performance evaluation. The original ECMWF in-
tu observational data set, obtained via the WMO Global Telecommunication System 
TS), has regularly been used to evaluate the operational wave forecasts (Bidlot et al., 
02, 2007; Bidlot, 2017), was complemented with in-situ wave and wind measurements 

om Australia, Portugal (mainland and Azores), Baltic Sea and Brazil. The in-situ 
servations from Australia were supplied by Australia’s Integrated Marine Observing 
stem (IMOS; enabled by the National Collaborative Research Infrastructure Strategy 

NCRIS). The in-situ data from Portugal mainland and the Azores were supplied by the 
rtuguese Hydrographic Institute and by the CLIMAAT (Portuguese acronym, as Clima 

Meteorologia dos Arquipélagos Atlânticos) project, respectively. On the other hand, the 
servations from the Baltic Sea were supplied by the CMEMS (Copernicus Marine 
vironment Monitoring Service) and the BOOS (Baltic Operational Oceanographic 
stem) online platforms, and the in-situ data from Brazil were obtained from the 
BOIA (Portuguese acronym, as Programa Nacional de Bóias). 

A quality control assessment was performed for all in-situ observations. From the 
w dataset, in the first stage, only the in-situ instruments with unchanged geographical 
sitioning by more than 1º latitude or longitude from their nominal locations were 
lected. If this limit was exceeded during a short time (random errors), nevertheless, the 
servations outside the interval were still considered valid. If the geographical position 
anged consistently to a different location, observations were still considered valid, yet 
parately for both locations. All in-situ measuring instruments with a reported significant 
ave height resolution above 0.1 m, a mean or peak wave period resolution above 1 s, 
d a wind speed resolution above 1 m/s, were automatically excluded. Finally, in-situ 
cations with less than 10 years of measurements or more than 30% of invalid data were 
moved from the analysis. Upon the selection process, a total of 260 (194) in-situ 
cations remained for the significant wave height (peak wave period) parameter. Their 
ographical distribution is shown in Fig. 1. 

2.5. Methodology 

The ensemble in the present study is composed of seven members, being the 
fferentiating factor the wave model and/or the physics parameterization (ST) used to 
nerate each wave climate simulation. All spatial and temporal resolutions between the 
rcing fields and final outputs are the same. Other inputs, such as bathymetry and land 
ask, were also preserved between ensemble members, even when considering different 
ave models. Here, we aimed to restrict the ensemble uncertainty sources (the “degrees 
 freedom”) to represent only the impact of varying wave model architectures and STs. 
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All the remaining sources, better illustrated in Morim et al. (2019), are kept constant to 358 
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A set of four wave parameters is analyzed, comprising long-term climate simulations 
 significant wave height (𝐻𝑆), mean energy wave period (𝑇𝑚−1,0 or simply 𝑇𝑚), peak 
ave period (𝑇𝑝) and mean wave direction (𝑀𝑊𝐷). The ensemble mean considers a 
mocratic approach: the unweighted mean of the seven ensemble members (as in 
medo et al., 2018b; Lemos et al., 2019; 2020a; 2020b; 2021a; 2021b; Kumar et al., 
22). For convenience, when referring to individual ensemble members, the notation 
20-i (where i = 1 to 7) is used. The first four members (i = 1 to i = 4) correspond to the 

W3 wave climate simulations under ST2, ST3, ST4 and ST6 parameterizations, 
spectively. The remaining members (i = 5 to i = 7) refer to the SWAN (ST1 and ST6) 
d WAM simulations, respectively. The 3-hourly wind and wave parameters were 
ocessed for both an annual and seasonal (December to February – DJF and June to 
ugust – JJA) analysis.  

The performance evaluation is carried out at both global and regional scales, 
nsidering 13 different sub-areas, chosen according to Alves (2006). These are detailed 
 Fig. 1 and Table SM2. The evaluation metrics considered here include the Bias (Eq. 
, the normalized bias (NBias; Eq. 2), the root mean squared error (RMSE; Eq. 3), the 
rrelation coefficient (R; Eq. 4), the normalized RMSE, or scatter index (SI; Eq. 5), the 

ope associated with the linear regression between simulated and reference fields (SL), 
d the non-dimensional arcsin–Mielke score, or M-score (Watterson, 1996; Watterson 
 al., 2014; Semedo et al., 2018b; Lemos et al., 2020a; Eq. 6), the mean annual variability 
dex (MAV; Stopa et al., 2014; 2018; Eq. 7) and the inter-annual variability index (IAV; 
opa et al., 2018; Lemos et al., 2019; Eq. 8). 

Bias = PC20̅̅ ̅̅ ̅̅ ̅ −  REF̅̅ ̅̅ ̅ (1) 

NBias =
PC20̅̅ ̅̅ ̅̅ ̅ −  REF̅̅ ̅̅ ̅

REF̅̅ ̅̅ ̅
∗ 100% (2) 

RMSE = √
∑ (PC20i  −  REFi)2N

i=1

N
 (3) 

r =
∑ (REFi −  REF̅̅ ̅̅ ̅)(PC20i −  PC20̅̅ ̅̅ ̅̅ ̅)N

i=1

√∑ (REFi −  REF̅̅ ̅̅ ̅)2N
i=1 √∑ (PC20i −  PC20̅̅ ̅̅ ̅̅ ̅)2N

i=1

 (4) 
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SI = N
REF̅̅ ̅̅ ̅

 
(5) 

M =
2

π
arcsin (1 −

MSE

VPC20 + VREF + (GPC20 + GREF)2
) ∗ 1000 (6) 

MAV =
1

Y

∑ √1
N

∑ (Xji − (
1
N

∑ Xji
N
i=1 ))

2

N
i=1

Y
j=1

1
N

∑ Xji
N
i=1

= (
σX

X̅
)

̅̅ ̅̅ ̅̅
 

(7) 

IAV = MAV, but considering an inter-annual scale (i.e., excluding i) (8) 

In Eqs. (1) to (8), PC20 refers to the wave climate simulations, REF to the reference 
ta (ERA5 reanalysis or in-situ observations), and X to situations where both are used. 
roughout the formulas, N corresponds to the number of outputs considered. In Eq. (6), 

SE is the mean squared error, V the spatial variance and G the spatial mean. The M-
ore performance measure ranges from a hypothetic zero for no skill (MSE = ∞), to a 
pothetic maximum score of 1000 (MSE = 0). In Eqs. (3-5) and (7-8), i corresponds to 
e data index, here as multi-year daily means, computed prior to the evaluation process, 
 order to avoid the constraints of non-synchrony between the wave climate simulations 
d the reference data. In Eq. (7), j corresponds to the Julian year’s index, being 𝑌 the 
tal number of Julian years considered (here set as 20). The MAV (IAV) corresponds to 
e average of the intra-annual (inter-annual) standard deviation normalized by the yearly 
ull) mean, providing an indication of the dataset’s spread and ability to simulate 
tremes. 

For the comparison between PC20, ERA5 and in-situ observations, all multi-year 
ily averages were collocated through bilinear interpolation to the in-situ locations. In 
e higher latitudes, SIC extent variability can dramatically affect the quality of the mean 
ave fields, due to a considerable reduction of the available outputs at each grid-point 
onsidered as land when SIC exceeds 50%). Therefore, here, possible inadequate 
mpling issues at the higher latitudes were dealt with by using one of the approaches 
oposed by Tuomi et al. (2011): grid-points coded as land during 30% or more of the 
alyzed period were ruled out of the statistics, leaving only the remaining grid-points to 
 treated as open water.  
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The normalized biases (in %) between the annual, DJF and JJA EC-Earth3 and ERA5 
ean 𝑈10 values are shown in Fig. 2. At an annual scale (corresponding to the entire 
95-2014 period; Fig. 2a), the EC-Earth3 performs better in the extratropical areas than 
 the tropical, where mostly underestimations are visible, surpassing -20% in the Atlantic 
gion between Brazil and the Gulf of Guinea, and in the tropical North Pacific, south of 
awaii. Local overestimations of up to 20% are visible near the Maritime Continent. In 
e remaining areas of the global ocean, normalized biases are generally low, below 12%. 
should be noted that differences are even lower throughout the Southern Ocean (the 

ngle largest global wave generation area), ranging mostly between -4% and 4%. During 
JF (Fig. 2b), the patterns are similar to the ones in Fig. 2a, with exacerbated differences 
 the tropical areas, ranging between -52% and 28% in the Atlantic, -36% and 44% in 
e Pacific and -20% and 28% in the Indian basins. These are essentially related to the 
sitioning of the Intertropical Convergence Zone (ITCZ) in EC-Earth3, showing a 

ightly positive latitudinal displacement during DJF, when compared to ERA5. In JJA 
ig. 2c), normalized biases are usually higher, above 4% in most of the global ocean. 
uring this season, while some of the greatest differences are still visible along the 
pical areas (mostly negative, down to -36%), positive ones are detectable in the higher 

titudes of both hemispheres (up to 36% in the SH and 44% in the NH). Such behavior 
ight be related to a worse representation of the polar vortexes by EC-Earth3 during JJA 
öscher et al., 2022). Nevertheless, Fig. 2 demonstrates that the EC-Earth3 is able to 

present the near-surface wind speeds at a global scale with relatively high accuracy. It 
ould be noted that the modelling frameworks of EC-Earth3 and ERA5 are relatively 
milar (e.g., both using IFS), which could contribute to an enhanced performance against 
is reanalysis. Overall, EC-Earth3 is considered appropriate to provide forcing to the 
ven wave climate simulations. 

Fig. 3 shows the annual mean (left) and 95% percentile (right) 𝐻𝑆 normalized biases 
tween each member of the PC20 ensemble and ERA5. Ensemble members are ordered 
rtically from PC20-1 to PC20-7. Substantial differences between each member are 
sible, in both the representation of the annual mean 𝐻𝑆 values, and the extremes. 
ormalized biases range from mostly negative at a global scale (PC20-1 – WW3-ST2 
d -6 – SWAN-ST6, in Figs. 3a,b,k,l), to mostly positive (PC20-5 – SWAN-ST1 and -7 
WAM4.6, in Figs. 3i,j,m,n, but also visible for the extreme 𝐻𝑆 values for the PC20-2 – 
W3-ST3, in Fig. 3d). For the 𝐻𝑆 annual mean, the WW3-ST4 (PC20-3) corresponds to 
e model-parameterization pair that yields overall lower global biases, averaging at 
98% (Table SM3) and not exceeding 20% (Fig. 3e). For the 95% percentile 𝐻𝑆, PC20-
(WW3-ST6) shows the best performance, with differences averaging globally at 0.27% 
ig. 3h and Table SM3). Interestingly, the opposite is visible for the SWAN-ST6 pair, 
eraging at -25.2% and -20.1%, respectively. The impact of model parameterizations in 
e accuracy of swell propagation is clearly noticeable: for PC20-5 (SWAN-ST1) and -7 

AM4.6), the highest (positive) normalized biases are found in the tropical latitudes, 
ith lower values in the extratropics, revealing an overestimation of long swell energy 
ntent. For PC20-1 (WW3-ST2) and -6 (SWAN-ST6) a similar pattern is observed, 
wever in a global underestimation. Throughout the WW3 simulations (PC20-1 to -4), 
e agreement between each member and ERA5 tends to increase. This feature highlights 
e latest efforts in creating ever-more accurate wave model parameterizations, such as 
e ST4, with an improved swell attenuation scheme (Ardhuin et al., 2010), and ST6, 
ntaining both physical and observation-based source terms (Liu et al., 2019; 2021). 
ote that the widespread 𝐻𝑆 underestimation in PC20-1 (WW3-ST2; Fig. 3a,b) is related 
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to a known overestimation of swell dissipation in ST2 which, as a result, underestimates 453 

deep-ocean wave growth under stable atmospheric conditions (Tolman, 2002). On the 454 
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her hand, the overestimations visible for PC20-2 (WW3-ST3; Fig. 3c,d) are mainly 
lated to dissipation constrains depending on swell height, influencing dissipation at the 
ind-sea peak. Note that, while similar to the WAM4 parameterization (here represented 
 PC20-7, WAM4.6), the WW3-ST3 run with “BJA” dissipation terms shows a generally 
tter performance than the former, a result which is also described in the WW3 v6.07 
anual (WW3DG, 2019).  

An optimal balance between the correct description of energy input from the 
erlaying winds at the wave generation areas, its conversion into swell, and the correct 
ssipation upon propagation, is not yet obtained, as it is visible in Fig. 3. Even for the 
W3-ST4 pair (PC20-3; Figs. 3e,f), with better global performance, slightly positive 
egative) biases are visible in the extratropical (tropical) latitudes. Such differences 
veal that inaccuracies may still be present in processes such as swell attenuation (wave 
owth and dissipation due to white-capping) mostly in the low (mid-to-high) latitudes, 
 comparison with ERA5. Note that ERA5 presented a very reasonable 𝐻𝑆 agreement 
ith observations in tropical areas, as it was shown in Bidlot et al. (2019). For DJF and 
A mean and 95% percentile 𝐻𝑆 (Figs. SM1 and SM2 in the Supplementary Material – 

), despite an expected seasonal shift in the main and extreme patterns from each 
semble member, the overall bias behavior remains similar. Therefore, it is only fair to 
sume that the main features shown in Fig. 3 are preserved throughout the year. 

Fig. 4 is similar to Fig. 3, but for the 𝑇𝑚 parameter. As shown for 𝐻𝑆, ensemble 
ember performance varies considerably depending on the model-parameterization pair. 
lthough, in general, a slight overestimation of the mean and extreme (95% percentile) 
 values is visible, mostly below 28%, for PC20-1 (WW3-ST2) and -6 (SWAN-ST6) a 

idespread underestimation occurs, especially along the subtropics (down to -20%). 
mong the seven ensemble members, PC20-4 (WW3-ST6) shows the best agreement 
ith ERA5, globally differing, on average, 0.83% (2.11%) considering the mean (95% 
rcentile) 𝑇𝑚 (Table SM4). Seasonally, while the normalized bias patterns are similar to 
e annual ones during DJF (despite slightly higher values in the tropical areas, as visible 
 Fig. SM3 in the SM), during JJA (Fig. SM4 in the SM), differences are especially 
levant in the NH. In fact, during the Austral winter (JJA), the increase in wave 
orminess in the Southern Ocean (Lobeto et al., 2022) allows for the generation of longer 
d more energetic swells that deflect to the left (due to the Coriolis force) and propagate 
rthwards, easily surpassing the equator line (Lemos et al., 2021b). Accurate modelling 
 swell attenuation rates is especially challenging, and therefore, for most ensemble 
embers, normalized biases attain higher values at longer-swell-arriving locations during 
A. 

Fig. 5 depicts the annual mean 𝑀𝑊𝐷 absolute biases (in º) between each PC20 
semble member and ERA5. 𝑀𝑊𝐷 means are obtained following the appropriate 
rmula for directional means, i.e., by computing the arctangent of the quotient between 
mponents. Each member from PC20-1 to -7 is presented sequentially (Fig. 5a-g). 𝑀𝑊𝐷 
ases are usually higher in high intra-annual variability areas, such as in the subtropics, 
here a clear influence of the ITCZ positioning is visible, and along near-polar areas, but 
pecially in the NH, possibly due to a more challenging representation of SIC variations. 
r PC20-5 (SWAN-ST1; Fig. 5e) and -7 (WAM4.6; Fig. 5g), the enhanced swell 
opagation from the Southern Ocean compared to ERA5 (also revealed by the 
erestimations found for 𝐻𝑆 and 𝑇𝑚 in Figs. 3 and 4) is visible through large areas of 
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positive (clockwise) biases, especially in the central Pacific (Table SM5). For the 501 

remaining ensemble members, the overall agreement is good, with differences below 36º 502 
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 most of the global ocean. Along the extratropical latitudes of both hemispheres, biases 
low 12º are dominant. The seasonal behavior of the 𝑀𝑊𝐷 biases (in Figs. SM5 and 

6 of the SM for DJF and JJA, respectively) is strongly related to seasonal atmospheric 
enomena, such as the main position of the main atmospheric synoptic circulation 
stems, ITCZ, and the aforementioned swell propagation issues. Higher seasonal biases 
e dominant in the SH during DJF (except for PC20-5 and -6) and in the NH during JJA. 
asonal biases remain relatively low in most of the global ocean, nevertheless. 

Figs. 6 and 7 show the (left) 𝐻𝑆 and (right) 𝑇𝑝 merged scatter-QQ-plots and the intra-
nual cycles, respectively, for the performance evaluation between PC20-1 to -7 and the 
ference datasets, here exclusively at the in-situ locations. It should be noted that until 
cently, the WMO GTS data only reported 𝐻𝑆 and 𝑇𝑝 for most in-situ locations. 
erefore, the majority of the wave period observations in the dataset correspond to 𝑇𝑝 

stead of 𝑇𝑚. To avoid the effects of the non-synchronized climates between model 
mulations and reference datasets, multi-year annual means were considered in both 
ures, and only in-situ locations with at least 10 years of continuous observations were 

lected. The global ocean is divided into areas to evaluate regional performance. Only 
eas with at least 10 in-situ locations available were selected. TWSP and ETSP are 
own together to enhance the robustness of the results, given the low number of locations 
ailable for ETSP. 

Across the ETNA area, 89 (24) locations were selected for 𝐻𝑆 (𝑇𝑝). At these 
cations, Fig. 6a shows compatible results to those in Fig. 3: while PC20-1 (WW3-ST2) 
d -6 (SWAN-ST6) show a consistent 𝐻𝑆 underestimation, with mean biases of -0.29 m 
d -0.27 m, respectively, PC20-5 (SWAN-ST1) and -7 (WAM4.6) show the greatest 
erestimations, with mean biases of 0.41 m and 0.37 m (Table 1). Biases for the 99% 
rcentile range from -0.80 m (PC20-6) to 0.64 m (PC20-7). Such features are noticeable 
roughout the entire year, as shown in Fig. 7a. Nevertheless, differences attain greater 
lues during the boreal winter season, when the uncertainty range between ensemble 
embers exceeds 1 m. Table 2 shows that, for some members, the performance of 
treme 𝐻𝑆 is better than the average. In fact, for PC20-2, -3 and -5, biases tend to 
crease above the 90% percentile. Nevertheless, the best overall agreement is found for 
e PC20-3 (WW3-ST4) and -6 members (as in Fig. 3), with mean (extreme) biases of 
12 m and -0.02 m (0.01 m and -0.09 m). The remaining metrics show relatively similar 
lues for all model-parameterization pairs, with RMSEs, Rs and SIs ranging between 
46 m (PC20-3) and 0.60 m (PC20-7), 0.87 (PC20-1) and 0.88 (PC20-7) and 0.24 (PC20-
 and 0.32 (PC20-7). In terms of 𝑇𝑝 (Fig. 6b), PC20-1 and -6 show consistent 
derestimations, averaging at -1.01 s and -0.31 s, respectively (Table 3). The greatest 
erestimations are visible for PC20-5, -7 and -2, at 1.49 s, 0.78 s and 0.47 s on average, 
spectively. For these members, biases for the 99% percentile onwards surpass 2 s (Table 
. Throughout the year, 𝑇𝑝 differences are greater during the boreal summer season, 
hen the inter-member uncertainty range exceeds 3 s (mostly due to the PC20-2 and -5 
embers; Fig. 7a). Similarly to 𝐻𝑆, PC20-3 and -4 (WW3-ST6) show the best agreement 
ith in-situ observations, with mean (extreme) biases of 0.11 s and 0.06 s (below 1.4 s). 
verall, RMSEs and SIs range from 0.95 s and 0.12 (PC20-3) to 1.83 s and 0.22 (PC20-
, being the R values generally lower than for 𝐻𝑆. 

For the TNAO area, a set of 42 (39) in-situ locations were used to locally evaluate 
𝑆 (𝑇𝑝). In Fig. 6c, it can be seen that 𝐻𝑆 is mostly underestimated at these locations, with 
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only PC20-5 (SWAN-ST1) and -7 (WAM4.6) showing a consistent overestimation 549 

(Table 1), nevertheless, starting from the 30% percentile (Table 3). Note that across 550 
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AO, ERA5 also shows a slight underestimation compared to observations and 
erefore, while PC20-2 (WW3-ST3) and -3 (WW3-ST4) biases are very close to zero 
mpared to the reanalysis, deviations assume greater values facing the in-situ 
servations (-0.07 m and -0.04 m, respectively; Table 1). However, overall, the bias 
nge (also a proxy to the overall ensemble uncertainty range) is tighter compared to 
NA, from -0.36 m (-0.46 m) to 0.09 m (0.54 m) for the mean (95% percentile) 𝐻𝑆 

ables 1 ad 2). Throughout the year, while PC20-1 (WW3-ST2), -4 (WW3-ST6) and -6 
WAN-ST6) show consistent underestimations, more evident during the boreal summer 
etween -0.2 m and -0.3 m), the remaining members’ performance varies between 
treme seasons, being most differences positive (negative) during the boreal winter 
ummer), as visible in Fig. 7c. At TNAO, 𝐻𝑆 RMSEs, Rs and SIs vary between 0.34 m 
d 0.50 m, 0.79 and 0.83 and 0.27 and 0.39, respectively. For 𝑇𝑝, Fig. 6d shows a more 
nsistent representation between ensemble members, with mean biases between -0.17 s 
d 0.24 s, apart from PC20-1 (-0.97 s) and -6 (-1.02 s; Table 3). Deviation patterns are 
so relatively constant throughout the year (Fig. 7d). RMSEs, Rs and SIs range between 
02 s and 1.55 s, 0.75 and 0.84 and 0.14 and 0.21. 

At ETNP, 84 (79) in-situ locations matched the required criteria for 𝐻𝑆 (𝑇𝑝). The 
rformance of individual ensemble members in this area varies considerably, even 
ithin each model-parameterization pair. While the 𝐻𝑆 performance in Fig. 6e is similar 
 ETNA’s one (Fig. 6a), at ETNP the bias range is greater and inter-member uncertainty 
 dominated by the SWAN simulations, from -0.38 m (PC20-6; SWAN-ST6) to 0.70 m 
C20-5; SWAN-ST1) for the mean 𝐻𝑆 (Table 1). For PC20-5 and -7 (WAM4.6), 
fferences peak between the 10% and the 50% percentiles (Table 2). R coefficients peak 
r the WW3 simulations, at 0.91, the highest value found for all analyzed areas. RMSEs 
ry between 0.38 m and 0.78 m and SIs between 0.19 and 0.38. Within the average year, 
 Fig. 7e, the behavior of the ensemble members is relatively consistent, despite a slight 
st (worst) performance for PC20-2 and -3 (PC20-5) during the boreal summer. 𝑇𝑝 
lues are generally higher across ETNP than in the remaining areas of the global ocean, 
rtially due to the arrival of long swells generated in the Southern Ocean (Fig. 6f). 
evertheless, most ensemble members reveal a consistent overestimation (except PC20-
 Tables 3 and 4), up to 2.85 s for the mean 𝑇𝑝 (PC20-5). R values are slightly lower than 
r 𝐻𝑆, within 0.68–0.86. RMSEs and SIs range between 1.18 m and 3.37 m, and 0.11 
d 0.31, respectively. The mean yearly cycles in Fig. 7f show that, at ETNP, most 
semble members perform worse during summer. In fact, while the mean observed 𝑇𝑝 

 close to 10 s from May to September, overestimations of up to 4 s (~40%) are visible 
ring this period. 

Across the TWSP / ETSP areas, 22 (29) in-situ locations were selected for 𝐻𝑆 (𝑇𝑝). 
g. 6g shows that 𝐻𝑆 is mostly overestimated by the ensemble members, with only a very 
ight underestimation (on average) by PC20-1 (WW3-ST2), of -0.02 m (Table 1). This 
, in fact, the best performing model-parameterization pair at these areas. The remaining 
ositive) biases for the mean 𝐻𝑆 reach 0.63 m (PC20-7; WAM4.6). For the extreme 𝐻𝑆, 
vertheless, both PC20-1 and -6 (SWAN-ST6) show underestimations, down to -0.70 m 
able 2). RMSEs, Rs and SIs range within 0.43–0.67 m, 0.76–0.82 and 0.35–0.57 
ighest obtained values), respectively. The generalized 𝐻𝑆 overestimation is visible 
roughout the year, especially for PC20-5 (SWAN-ST1) and -7 (WAM4.6). Ensemble 
rformance (inter-member uncertainty range) is slightly better (lower) during the austral 
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winter (Fig. 7g). In terms of 𝑇𝑝 (Fig. 6h), mean biases vary between -1.09 s and 1.90 s for 597 

PC20-1 and -5, respectively (Table 3). Extreme differences are usually below 2 s (Table 598 
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. The remaining metrics show 𝑇𝑝 performance to be slightly better than the 𝐻𝑆 one, with 
s ranging between 0.75 s and 0.88 s and SIs between 0.11 and 0.24. RMSEs vary within 
26–2.17 s. Similar to 𝐻𝑆, Fig. 7h shows that along the average year, 𝑇𝑝 biases and inter-
ember uncertainty are reduced during the austral winter in TWSP / ETSP. 

Fig. 8 displays the average intra-annual 𝐻𝑆 cycles for each of the 13 regional areas, 
nsidering all grid-points available across each one, for both the PC20 ensemble 
embers, and ERA5. At ETNA, TNAO and ETNP, results are somewhat similar to those 
 Fig. 7. Yet, at ETNA (Fig. 8a), most members show a slight underestimation versus 
A5, and at ETNP (Fig. 8b), the performance of PC20-5 (SWAN-ST1) and -7 
AM4.6) is considerably better than in Fig. 7e. While the intra-annual 𝐻𝑆 cycles are 

nerally well represented by all ensemble members, the agreement with ERA5 is 
aximized at the extratropical areas of the NH (Figs 8a,b). At ETSA, ETSP and ETSI 
igs. 8c,d,e), PC20-1 (WW3-ST2) and -6 (SWAN-ST6) show a worse, isolated 
rformance, considerably increasing inter-member uncertainty. In fact, in these areas (as 
ell as in TENP and TESP), parameterization-driven uncertainty ranges consistently 
tween 1 m and 1.5 m. Fig. 9 is similar to Fig. 8, but for 𝑇𝑚. For this parameter, 
rformance is more consistent between areas, with an overall underestimation by PC20-
and -6, and overestimation by PC20-5, -7, and often -2. Inter-member uncertainty varies 
tween 2 s and 3 s. Complementarily, the evolution of the global and regional monthly 

𝑆 and 𝑇𝑚 means during the historical 1995-2014 period is shown in Figs. SM7 and SM8 
 the SM. At a global scale (Figs. SM7n and SM8n), the differences between members 
d ERA5 are similar to the regionally described in Figs. 8 and 9. No major trends are 
entifiable during this period for both the PC20 simulations and ERA5. 

Fig. 10 presents the 𝐻𝑆 MAV (Eq. 7) normalized differences (in %), between each 
20 ensemble member and ERA5. It is noticeable that most model-parameterization 

irs tend to overestimate intra-annual variability, especially in the tropical and 
btropical areas of the NH (mostly below 18%), potentially due the combined 
isrepresentation of local tropical phenomena (such as the positioning and strength of 
e ITCZ; Fig. 2) and the highly seasonal mid-latitude storm belt. An exception is PC20-
(SWAN-ST1; Fig. 10e) and partially PC20-7 (WAM4.6; Fig. 10g), for which a slight 
t generalized variability underestimation is visible. PC20 MAVs show a better 
reement with ERA5 across the SH, with differences generally below 6%, especially in 
e Southern Ocean, possibly due to lower seasonal variability resulting from the almost 
rmanent zonal winds. While results are similar for 𝑇𝑚 (Fig. SM9 in the SM), MAV 
fferences for this parameter are more circumscribed to the tropical areas.  

Fig. 11 is similar to Fig. 10, but for the differences between the 𝐻𝑆 IAVs (in %). 
hile most ensemble members showed an overestimation of the MAVs, in this case, 

ight underestimations are dominant, mainly between -0.5% and -3.5%. Most ensemble 
embers depict areas of positive differences, however, in regions dominated by tropical 
clone activity, namely across the western tropical Pacific and in the Gulf of Mexico. 

𝑆 IAVs also tend to diverge in the higher latitudes, possibly due to long-term differences 
 sea ice area extent between EC-Earth3 and ERA5 (except for the PC20-7 and PC20-6; 
gs. 11e,f). Considering 𝑇𝑚 (Fig. SM10 in the SM), differences are generally of lower 
agnitude, however, following similar overall patterns as for 𝐻𝑆.  
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The boxplots of the ensemble members’ 𝐻𝑆 and 𝑇𝑚 M-scores (Eq. 6), computed for 643 
the global ocean and for each of the 13 regional areas, are shown in Fig. 12, considering 644 
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e annual (grey), DJF (blue) and JJA (red) mean fields. The highest mean 𝐻𝑆 M-scores, 
nerally with the lowest uncertainty ranges between model-parameterization pairs, are 
sible for the extratropical latitudes of both hemispheres, peaking at ETNA (annually 
d during DJF) and ETSP (during JJA; Fig. 12a). Between members, the highest (lowest) 
tratropical annual M-score is obtained for the ETNP (ETSP) area at 928 (511). 
asonally, ETNP (ETSI) presents the highest (lowest) M-score, at 895 (509) during DJF, 

hereas ETSP presents both during JJA, from 464 to 908 (Table SM6). Interestingly, 
treme seasonal M-scores are found in the same hemisphere or even in the same area, 
ghlighting the potential differences induced by model-parameterization pairs in the 
scription of the seasonal 𝐻𝑆 climate. Overall, the lowest extratropical scores are 
tained for the PC20-6 (SWAN-ST6), and the highest occur for the PC20-4/2 (WW3-
4/ST2) members. Across the tropical areas, 𝐻𝑆 M-scores are generally lower, 

pecially at TWSP during JJA, ranging between 119 (PC20-5; SWAN-ST1) and 571 
W3-ST3). The remaining tropical areas show 𝐻𝑆 M-scores between 198 and 952 

able SM6). For 𝑇𝑚, the regional behavior differs: while lower scores are generally 
servable for some of the tropical areas (TSAO, TENP and TESP; Fig. 12b), others show 
rformances comparable to the extratropical latitudes (TNAO, TWNP, TWSP, TNIO 
d TSIO). On the other hand, ETSP and ETSI show only reasonable overall 𝑇𝑚 M-
ores, mostly between 400 and 700 (Table SM7). At a global scale, nevertheless, both 

𝑆 and 𝑇𝑚 show a good agreement with ERA5, with M-scores between 713 and 940, and 
8 and 911, respectively. Between ensemble members, scores are consistently higher for 
20-2 to 4 (WW3-ST3, -ST4 and -ST6).  
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4. Discussion and conclusions 667 
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In this paper, a performance evaluation was conducted for a 7-member CMIP6 
ngle-forcing, multi-model ensemble of wave climate simulations. The ensemble was 
ilt using three different wave models, to investigate the influence of different model-
rameterization pairs on the description of the present global wave climate, and on the 
ture projections towards the end of the 21st century (not shown). This uncertainty source 
 often overlooked in wave climate studies using large, multi-model ensembles, and an 
curate quantification of its impacts on the overall ensemble spreads had not yet been 
nducted. Large uncertainty ranges within ensembles are one major constraint in the 
rrect attribution of future climate change signals (Wallace et al., 2015; Dobrynin et al., 
15). Here, we aimed to characterize the ensemble performance in representing the 
obal and regional wave climates, using the ERA5 reanalysis and an extended, quality-
ntrolled set of in-situ observations as references to conduct the analysis. 
multaneously, we focused on the model-parameterization-induced spreads within the 
semble. Note that the 7-member ensemble used in this study contains several 
rameterizations that could be considered outdated by the present-day wave modelling 

andards. These were purposedly included to account for the uncertainty generated by an 
semble containing multiple model-parameterization configurations, even outdated 
es, as in Morim et al. (2018, 2019). 

Regarding the forcing EC-Earth3 wind speeds, it was shown in Fig. 2 that the greatest 
fferences are located in the equatorial areas at the annual and seasonal (DJF) scales. 
uring JJA, relatively large areas of mainly positive differences were also shown to be 
tected in the higher latitudes, especially in the Atlantic and Pacific basins. Overall, 
though the normalized 𝑈10 biases were shown to be mostly below 36%, these 
fferences could be responsible for both local and remote misrepresentation of the wave 
lds on all ensemble members. 

The global normalized (Figs. 3 and 4) and absolute (Fig. 5) biases between each 
semble member and ERA5 for the mean 𝐻𝑆, 𝑇𝑚 and 𝑀𝑊𝐷, and 95% percentile 𝐻𝑆 and 
, versus ERA5, revealed considerably distinct patterns for each model-
rameterization pair. Overall, the consistently best-performing ensemble members were 
own to be PC20-3 (WW3-ST4) and -4 (WW3-ST6). While most members tended to 
erestimate 𝐻𝑆 and 𝑇𝑚 at a global scale, especially in the extratropical latitudes, PC20-
(WW3-ST2) and -6 (SWAN-ST6) showed a consistent opposite behavior. Within the 
W3 simulations (PC20-1 to -4), despite the different STs, uncertainty was shown to 
main relatively contained. However, the integration of the remaining simulations led to 
considerable decrease in the ensemble’s robustness. SWAN runs (PC20-5 and -6), in 
rticular, not only showed systematically different behaviors between each other, but 
so in comparison to other model-parameterization pairs. Despite sharing a similar 
nfiguration, SWAN-ST6 (PC20-6) and WW3-ST6 (PC20-4) revealed a distinct 
presentation of the wave climate in Figs. 3 to 9, 12 and Tables 1 to 4, especially in the 
tratropical areas. As it was shown in Sections 2.2.1. and 2.2.2., as well as in Table SM1, 
e implementation of the ST6 parameterization in WW3 and SWAN revealed slight 
ssimilarities (e.g., 𝑈10 scaling factors and swell dissipation terms) which may have 
ntributed to the distinct representations of the global wave climate. A similar contrast 
as shown to be visible for the WW3-ST3 (PC20-2) and WAM4.6 (PC20-7) simulations, 
hich produced slightly different global outputs despite their numerical similarities. 

 Fig. 13 reveals the present climate normalized ensemble inter-member uncertainty 
nge (NUR) considering the full (7-member) ensemble (top), the WW3 subset (middle), 
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and the SWAN subset (bottom), respectively. In the context of climate projections, the 715 

NUR represents the minimum ensemble/subset projected change necessary to exceed the 716 
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esent climate ensemble spread. Fig. SM13 is similar to Fig. 13, but for 𝑇𝑚. Both figures 
ow that for the WW3 subset of the ensemble (Fig. 13c,d and SM13c,d), the NUR 
aches up to 20% in the extratropical latitudes, and up to 50% (𝐻𝑆) and 30% (𝑇𝑚) in the 
pical areas. On the other hand, the two SWAN simulations induce spreads within 30%–
% (60%–70%) at the extratropical (tropical) latitudes, for the mean 𝐻𝑆 (Fig. 13e), and 
 to 30% across most of the global ocean for 𝑇𝑚 (Fig. SM13e). Considering the full 
semble, the NUR attains values above 70% in the tropical Atlantic, Pacific and Indian 
sins, for both the mean and 95% percentile 𝐻𝑆 (Fig. 13a,b), remaining above 30% in 
e remaining global ocean. For 𝑇𝑚, these values range between 30% and 40% for the 
ean and extremes in most locations (Fig. SM13a,b). The seasonal NURs, in Figs. SM11 
JF) and SM12 (JJA) for 𝐻𝑆, and SM14 (DJF) and SM15 (JJA) for 𝑇𝑚, are consistent 

ith the ones at an annual scale, despite slightly higher values in the respective summer 
misphere. Note that, overall, the NURs found for both the 𝐻𝑆 and 𝑇𝑚 surpass even the 
ghest emission scenario projections obtained for these parameters towards the end of 
e 21st century, in recent scientific literature (e.g., Hemer et al., 2013a; Semedo et al., 
13; Wang et al., 2015; Lemos et al., 2020b; albeit for CMIP3 and CMIP5). Ensemble 
reads of such magnitudes can lead to serious robustness issues within future projected 
anges in wave climate. It should be highlighted that a single-forcing EC-Earth3 

mulation was used here, and therefore, a multi-forcing approach under similar 
nditions could potentially lead to even greater NURs.  

The comparison between the PC20 ensemble members and in-situ observations, in 
g. 6, revealed a reasonable agreement for all model-parameterization pairs across five 
fferent regional areas, for both 𝐻𝑆 and 𝑇𝑝. Overall, the main behavior of each member 
as shown to be similar to those represented in Figs. 3 and 4 (for 𝑇𝑚, nevertheless). Biases 
ere shown to generally increase towards the higher quantiles and assume positive values 
ables 2 and 4). Exceptions include PC20-2 (WW3-ST3) and -3 (WW3-ST4) 𝐻𝑆 and 
20-1 (WW3-ST2) 𝑇𝑝 across ETNA, and most members across ETNP (𝑇𝑝). For 𝐻𝑆 (𝑇𝑝), 

e lowest RMSEs and SIs combined with the highest Rs were found for the ETNP 
WSP/ETSP) area, despite the higher mean biases when compared to ETNA and TNAO 
ables 1 and 3). Regarding the mean annual cycles, the PC20 ensemble was shown to 
 in better agreement with observations for 𝐻𝑆 than for 𝑇𝑝, especially across ETNP and 

SP/ETSP. In these areas, both PC20-5 (SWAN-ST1) and -7 (WAM4.6) struggled to 
pict a correct 𝑇𝑝 intra-annual climatology. A similar misrepresentation was visible for 
20-5 across ETNA. It should be noted, however, that in Fig. 9, the mean intra-annual 

cles for 𝑇𝑚 show a relatively accurate depiction from all ensemble members, despite 
e consistent biases compared to ERA5. 

The 𝐻𝑆 M-scores shown in Fig. 12a revealed a better overall agreement between 
semble members and ERA5 across the extratropical areas, with average values ranging 
tween 700 and 900. In the tropical regions, not only was the inter-member M-score 
nge shown to be greater, revealing less consistency in the overall performance, but the 
ean values were also shown to be lower, mostly between 500 and 800, and down to the 
0-400 range for TENP and TESP. These areas were also shown to be the most 
allenging for 𝑇𝑚, with a mean M-score of approximately 200 for TESP. The highly 
riable sea state conditions across the eastern Pacific basin, dominated by both the long 
ells from the Southern Ocean (Lemos et al., 2021b) and local tropical phenomena, 
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contribute to lower modelling performance across TENP and TESP, also noted by 762 

Semedo et al. (2018a).  763 
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Finally, Fig. 14 shows the normalized biases (in %) from the comparison between 
e democratically built PC20 ensemble 𝐻𝑆, 𝑇𝑚 and 𝑀𝑊𝐷 annual means and extremes 
or 𝐻𝑆 and 𝑇𝑚), and ERA5, similar to the initially presented in Figs. 3, 4 and 5 for each 
semble member. For the three wave parameters, it is clear that the performance of the 
20 ensemble as a whole is far better than the ones from each model-parameterization 

ir. In fact, Figs. 14a,b show that for the annual mean (95% percentile ) 𝐻𝑆, differences 
nge from -20% to 12% at a global scale, except in the Maritime Continent (higher 
titudes of the Southern Ocean – due to undersampling issues caused by sea ice cover), 
here slightly greater positive differences can be found. Similar normalized biases can 
 found for 𝑇𝑚, ranging between -12% and 20%, whereas for the 𝑀𝑊𝐷 differences are 
ly evident at the tropical and subtropical latitudes of the NH (areas dominated by local 
pical phenomena). For the three parameters, normalized and absolute biases attain 

ightly higher values during the extreme seasons (Figs. SM16 and SM17 in the SM), 
nging nevertheless between -28% and 20% for 𝐻𝑆, -12% and 28% for 𝑇𝑚 and generally 
low 36º for 𝑀𝑊𝐷. 

The performance assessment carried out in this study, with specific focus on wave 
odel and physical parameterization uncertainty sources, led to two major conclusions. 
e first being that all PC20 ensemble members are able to reasonably represent the 

ference wave climate (both reanalyzed and observed), especially PC20-3 (WW3-ST4) 
d -4 (WW3-ST6), for which the overall accuracy was shown to be the highest. Finally, 
 an ensemble, PC20 was shown to perform better than each of its individual members. 
condly, however, despite the increased agreement with observations, changing the 

ave-model-parameterization combinations within PC20 ensemble members was shown 
 be enough to produce considerable spreads for the analyzed variables. The impact of 
is specific uncertainty source in the future wave climate projection ensembles requires 
rther investigation. Nevertheless, it should be highlighted that substantial progress has 
en recently achieved in improving the global and regional wave climate description by 
ave models. A dedicated focus on reducing the wave-model-parameterization source of 
certainty in future assessments is paramount for modelling teams, and preference 
ould be given to more recent and balanced parameterizations.  
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gure 1 – Map with areas, following Alves (2006). Selected areas: extratropical North 
tlantic (ETNA), extratropical South Atlantic (ETSA), extratropical North Pacific 
TNP), extratropical South Pacific (ETSP), extratropical South Indian (ETSI), tropical 
orth Atlantic (TNAO), tropical South Atlantic (TSAO), tropical western North Pacific 
WNP), tropical eastern North Pacific (TENP), tropical western South Pacific (TWSP), 
pical eastern South Pacific (TESP), tropical North Indian (TNIO), tropical South 

dian (TSIO). Further details can be seen on Table SM1. Selected in-situ locations are 
arked according to the available wave parameters: (blue) 𝐻𝑆, (red) 𝑇𝑝 and (green) both. 
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igure 2 – Normalized differences (in %) between the (a) annual, (b) DJF and (c) JJA 

EC-Earth3 and ERA5 𝑈10 means for the 1995-2014 historical period. 
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Figure 3 – Normalized differences (in %) between the (top) PC20-1 (WW3-ST2) to 
(bottom) -7 (WAM4.6) ensemble members’ and ERA5 (left) annual mean 𝐻𝑆 and 

(right) 95% percentile 𝐻𝑆 (1995-2014). 
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Figure 4 – Same as in Figure 3, but for 𝑇𝑚 (s). 
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gure 5 – Absolute differences (in º) between the (a) PC20-1 (WW3-ST2) to (g) -7 
AM4.6) ensemble members’ (red arrows) and ERA5 (green arrows) annual mean 

𝑊𝐷 (1995-2014). 
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gure 6 – Merged scatter-QQ-plots from the comparison between in-situ multi-year 
995-2014) daily (left) 𝐻𝑆 and (right) 𝑇𝑝 means, ERA5 and PC20-1 (WW3-ST2) to -7 
AM4.6) ensemble members at the available in-situ locations across (a,b) ETNA, (c,d) 
AO, (e,f) ETNP and (g,h) TWSP/ETSP regional areas. Highlighted percentiles in the 

Q-plots refer to the 1%, 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% and 
% ones. 
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gure 7 – Mean intra-annual (left) 𝐻𝑆 and (right) 𝑇𝑝 cycles (1995-2014) considering the 
-situ observations, ERA5 and PC20-1 (WW3-ST2) to -7 (WAM4.6) ensemble members 
 the available in-situ locations across (a,b) ETNA, (c,d) TNAO, (e,f) ETNP and (g,h) 

SP/ETSP regional areas. 
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gure 8 – Mean intra-annual 𝐻𝑆 cycles (1995-2014) considering the ERA5 and PC20-1 
W3-ST2) to -7 (WAM4.6) ensemble members across (a) ETNA, (b) ETNP, (c) ETSA, 

) ETSP, (e) ETSI, (f) TNAO, (g) TSAO, (h) TWNP, (i) TENP, (j) TWSP, (k) TESP, (l) 
IO and (m) TSIO regional areas. 
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Figure 9 – Same as in Figure 8, but for 𝑇𝑚 (s). 
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igure 10 – Normalized differences (in %) between the (a) PC20-1 (WW3-ST2) to (g) -

7 (WAM4.6) 𝐻𝑆 MAVs and ERA5 ones (1995-2014). 
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igure 11 – Normalized differences (in %) between the (a) PC20-1 (WW3-ST2) to (g) -

7 (WAM4.6) 𝐻𝑆 IAVs and ERA5 ones (1995-2014). 
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gure 12 – Boxplots representing the range of (a) 𝐻𝑆 and (b) 𝑇𝑚 M-scores within the 
20 ensemble (1995-2014), from the comparison with ERA5, globally and across each 

 the regional areas. Extratropical areas are outlined in blue, tropical areas in red and the 
obal in green. Grey shading represents the annual boxplots, while blue and red shadings 
present DJF and JJA, respectively. 
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gure 13 – Normalized uncertainty range (NUR; in %) for (a,b) the PC20 ensemble, (c,d) 
e WW3 subset of PC20 (i.e., only PC20-1 to -4; ST2 to ST6) and (e,f) the SWAN subset 
 PC20 (i.e., only PC20-5 and -6; ST1 and ST6), considering the annual (left) 𝐻𝑆 means 
d (right) 95% percentiles (1995-2014). 
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gure 14 – 7-member PC20 full ensemble mean (a-d) normalized (in %) and (e) absolute 
 º) differences in comparison with ERA5, considering the annual mean (a) 𝐻𝑆, (c) 𝑇𝑚 
d (e) 𝑀𝑊𝐷, as well as the annual 95% percentile (b) 𝐻𝑆 and (d) 𝑇𝑚 (1995-2014). 
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Table 1 – Statistic metrics representing the PC20-i (1 to 7) performance in representing 1242 

the 𝐻𝑆 climate at the selected in-situ locations across each area (89 at ETNA, 42 at TNAO, 1243 
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 at ETNP and 22 at TWSP/ETSP). 
 ETNA (89) 

Bias (m) RMSE (m) R SI Slope 
WW3-ST2 -0.29 0.56 0.87 0.30 0.85 
WW3-ST3 0.13 0.46 0.87 0.24 1.07 
WW3-ST4 0.12 0.46 0.87 0.24 1.06 
WW3-ST6 -0.02 0.46 0.87 0.24 0.99 

SWAN-ST1 0.37 0.54 0.88 0.29 1.20 
SWAN-ST6 -0.27 0.55 0.87 0.29 0.86 

WAM4.6 0.41 0.60 0.88 0.32 1.22 
 TNAO (42) 

Bias (m) RMSE (m) R SI Slope 
WW3-ST2 -0.32 0.46 0.83 0.36 0.75 
WW3-ST3 -0.07 0.35 0.82 0.27 0.95 
WW3-ST4 -0.04 0.34 0.83 0.27 0.97 
WW3-ST6 -0.23 0.43 0.82 0.33 0.82 

SWAN-ST1 0.09 0.40 0.78 0.31 1.08 
SWAN-ST6 -0.36 0.50 0.79 0.39 0.72 

WAM4.6 0.06 0.38 0.79 0.29 1.05 
 ETNP (84) 

Bias (m) RMSE (m) R SI Slope 
WW3-ST2 -0.37 0.59 0.90 0.29 0.82 
WW3-ST3 0.13 0.38 0.91 0.19 1.06 
WW3-ST4 0.04 0.40 0.91 0.20 1.02 
WW3-ST6 -0.10 0.44 0.91 0.22 0.95 

SWAN-ST1 0.70 0.78 0.84 0.38 1.35 
SWAN-ST6 -0.38 0.65 0.87 0.32 0.82 

WAM4.6 0.58 0.66 0.88 0.32 1.29 
 TWSP / ETSP (22) 

Bias (m) RMSE (m) R SI Slope 
WW3-ST2 -0.02 0.48 0.79 0.41 0.98 
WW3-ST3 0.32 0.43 0.82 0.39 1.27 
WW3-ST4 0.30 0.44 0.80 0.38 1.25 
WW3-ST6 0.15 0.42 0.81 0.35 1.13 

SWAN-ST1 0.70 0.67 0.80 0.57 1.60 
SWAN-ST6 0.29 0.50 0.76 0.42 1.02 

WAM4.6 0.63 0.62 0.80 0.52 1.54 
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Table 2 – Summary of PC20-i (1 to 7) 𝐻𝑆 biases (in m) in comparison with in-situ 1247 

observations at ETNA, TNAO, ETNP and TWSP/ETSP, at specific percentiles (10%, 1248 
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%, 90%, 95% and 99%). 
 ETNA (89) 

Bias P10% Bias P50% Bias P90% Bias P95% Bias P99% 
WW3-ST2 -0.11 -0.27 -0.52 -0.63 -0.74 
WW3-ST3 0.13 0.10 0.14 0.09 0.06 
WW3-ST4 0.13 0.10 0.08 0.04 0.01 
WW3-ST6 -0.03 -0.05 0.01 -0.04 -0.09 

SWAN-ST1 0.34 0.33 0.43 0.39 0.29 
SWAN-ST6 -0.09 -0.25 -0.47 -0.58 -0.80 

WAM4.6 0.28 0.33 0.61 0.61 0.64 
 TNAO (42) 

Bias P10% Bias P50% Bias P90% Bias P95% Bias P99% 
WW3-ST2 -0.36 -0.29 -0.32 -0.33 -0.35 
WW3-ST3 -0.23 -0.04 0.08 0.09 0.16 
WW3-ST4 -0.26 -0.0004 0.12 0.12 0.16 
WW3-ST6 -0.39 -0.21 -0.08 -0.07 0.02 

SWAN-ST1 -0.16 0.08 0.31 0.28 0.54 
SWAN-ST6 -0.33 -0.36 -0.39 -0.47 -0.46 

WAM4.6 -0.12 0.04 0.24 0.22 0.54 
 ETNP (84) 

Bias P10% Bias P50% Bias P90% Bias P95% Bias P99% 
WW3-ST2 -0.29 -0.38 -0.52 -0.59 -0.63 
WW3-ST3 0.05 0.13 0.12 0.12 0.14 
WW3-ST4 -0.06 0.02 0.08 0.09 0.13 
WW3-ST6 -0.19 -0.14 0.01 0.02 0.06 

SWAN-ST1 1.04 0.80 0.41 0.33 0.30 
SWAN-ST6 0.05 -0.37 -0.74 -0.84 -0.91 

WAM4.6 0.80 0.60 0.47 0.47 0.55 
 TWSP / ETSP (22) 

Bias P10% Bias P50% Bias P90% Bias P95% Bias P99% 
WW3-ST2 0.11 0.02 -0.36 0.08 -0.14 
WW3-ST3 0.27 0.38 0.19 0.51 0.40 
WW3-ST4 0.26 0.36 0.07 0.51 0.42 
WW3-ST6 0.10 0.23 -0.12 0.34 0.29 

SWAN-ST1 0.59 0.80 0.62 0.70 0.52 
SWAN-ST6 0.26 0.10 -0.37 -0.40 -0.70 

WAM4.6 0.62 0.68 0.55 0.65 0.54 
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Table 3 – Similar to Table 1, but for 𝑇𝑝 (s). 1252 
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Bias RMSE R SI Slope 
WW3-ST2 -1.01 1.51 0.72 0.19 0.88 
WW3-ST3 0.47 1.17 0.71 0.14 1.06 
WW3-ST4 0.11 0.95 0.73 0.12 1.01 
WW3-ST6 0.06 1.02 0.69 0.13 1.01 

SWAN-ST1 1.49 1.83 0.63 0.22 1.18 
SWAN-ST6 -0.31 1.09 0.68 0.13 0.96 

WAM4.6 0.77 1.31 0.69 0.16 1.09 
 TNAO (39) 

Bias RMSE R SI Slope 
WW3-ST2 -0.97 1.55 0.75 0.21 0.87 
WW3-ST3 -0.17 1.15 0.78 0.16 0.98 
WW3-ST4 -0.10 1.02 0.78 0.14 0.99 
WW3-ST6 -0.16 1.08 0.77 0.15 0.98 

SWAN-ST1 0.24 1.25 0.84 0.17 1.03 
SWAN-ST6 -1.02 1.30 0.81 0.18 0.86 

WAM4.6 -0.05 1.03 0.82 0.14 0.99 
 ETNP (79) 

Bias RMSE R SI Slope 
WW3-ST2 -0.56 1.18 0.85 0.11 0.95 
WW3-ST3 1.78 2.12 0.81 0.20 1.17 
WW3-ST4 1.00 1.41 0.86 0.13 1.09 
WW3-ST6 1.08 1.49 0.82 0.14 1.10 

SWAN-ST1 2.85 3.37 0.68 0.31 1.26 
SWAN-ST6 0.72 1.58 0.78 0.15 1.07 

WAM4.6 2.63 3.10 0.74 0.29 1.25 
 TWSP / ETSP (29) 

Bias RMSE R SI Slope 
WW3-ST2 -1.09 1.84 0.83 0.20 0.88 
WW3-ST3 0.10 1.33 0.88 0.14 1.01 
WW3-ST4 -0.25 1.26 0.87 0.14 0.97 
WW3-ST6 -0.22 1.28 0.86 0.14 0.98 

SWAN-ST1 1.90 2.17 0.80 0.24 1.21 
SWAN-ST6 -0.12 1.04 0.84 0.11 0.99 

WAM4.6 1.67 2.07 0.75 0.23 1.18 
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Table 4 – Similar to Table 2, but for 𝑇𝑝 (s). 1255 
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Bias P10% Bias P50% Bias P90% Bias P95% Bias P99% 
WW3-ST2 -1.07 -1.20 -0.81 -0.19 -0.16 
WW3-ST3 0.15 0.35 1.10 1.74 2.04 
WW3-ST4 0.08 -0.06 0.33 1.10 1.37 
WW3-ST6 -0.04 -0.09 0.34 1.10 1.29 

SWAN-ST1 1.29 1.48 1.96 2.18 2.21 
SWAN-ST6 -0.45 -0.40 -0.05 0.40 0.58 

WAM4.6 0.53 0.58 1.29 1.99 2.37 
 TNAO (39) 

Bias P10% Bias P50% Bias P90% Bias P95% Bias P99% 
WW3-ST2 -0.62 -1.05 -1.16 -0.94 -0.23 
WW3-ST3 -0.56 -0.20 0.20 0.88 1.74 
WW3-ST4 -0.30 0.03 -0.14 0.20 1.10 
WW3-ST6 -0.42 -0.09 -0.12 0.14 1.11 

SWAN-ST1 -0.85 0.68 0.56 1.33 2.28 
SWAN-ST6 -1.31 -0.89 -1.07 -0.71 0.44 

WAM4.6 -0.52 0.04 0.15 0.84 1.94 
 ETNP (79) 

Bias P10% Bias P50% Bias P90% Bias P95% Bias P99% 
WW3-ST2 -0.27 -0.60 -0.89 -1.01 -1.23 
WW3-ST3 1.80 2.00 1.53 1.38 1.11 
WW3-ST4 1.05 1.05 0.95 0.86 0.61 
WW3-ST6 1.14 1.08 1.02 1.04 0.87 

SWAN-ST1 3.33 3.38 1.91 1.60 1.09 
SWAN-ST6 1.08 0.89 0.37 0.30 0.18 

WAM4.6 2.80 3.11 1.96 1.71 1.30 
 TWSP / ETSP (29) 

Bias P10% Bias P50% Bias P90% Bias P95% Bias P99% 
WW3-ST2 -0.09 -1.66 0.02 -0.15 -0.38 
WW3-ST3 -0.84 -0.22 2.03 2.02 1.95 
WW3-ST4 -0.40 -0.69 1.45 1.52 1.45 
WW3-ST6 -0.25 -0.70 1.42 1.47 1.33 

SWAN-ST1 2.82 1.61 2.21 1.99 1.83 
SWAN-ST6 0.49 -0.47 0.40 0.33 0.09 

WAM4.6 2.68 1.21 2.42 2.20 2.00 
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Model Ensemble of Wave Climate Simulations – Highlights

A performance evaluation of a new CMIP6 ensemble of wave climate simulations

Ensemble architecture focused on model-parameterization-induced uncertainties

Evaluation through comparison with ERA5 and an extensive in-situ observational set

Ensemble spreads found to exceed even high-end projected change rates until 2100
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Multi Wave Model Ensemble of Wave Climate
Simulations
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