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Abstract
We propose a new method for detecting high-frequency gravitational waves
(GWs) using high-energy pulsed lasers. Through the inverse Gertsenshtein
effect, the interaction between a GW and the laser beam results in the creation
of an electromagnetic signal. The latter can be detected using single-photon
counting techniques. We compute the minimal strain of a detectable GWwhich
only depends on the laser parameters. We find that a resonance occurs in this
process when the frequency of the GW is twice the frequency of the laser. With
this method, the frequency range 1013–1019 Hz is explored non-continuously
for strains h≳ 10−20 for current laser systems and can be extended to h≳ 10−26

with future generation facilities.
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1. Introduction

In 2015, the LIGO and the Virgo collaborations made the first observation of a gravitational
wave (GW) signal [1] almost a century after the existence of GWs was theoretically predicted
by Einstein. The signal was generated by a binary black hole (BH) merger and covered a range
of frequencies from a few tenths up to a few hundred Hz. This discovery opened a new path for
observing physical phenomena that happened early in the history of the Universe, as well as
more recent ones. Theoretically, GWs can be emitted at any frequency. Current ground-based
interferometers can detect GWs in the range 10Hz–10 kHz [2–5], whereas space-based inter-
ferometers like LISA are expected to cover the range 0.1mHz–1Hz [6]. Frequencies above
10 kHz have not been explored because detectors such as LISA have not been targeted for this
range. Moreover, the sensitivity of LIGO and Virgo decreases in the same range due to the cav-
ity response which becomes worse as the GW frequency increases. Nonetheless, they are of
particular interest [7]. For example, observing high-frequencyGWs can help with the detection
of extra dimensions [8]. On the other hand, several sources that produce high-frequency GWs
correspond to events in the early Universe, see [9, 10] for reviews. As an example of an event
we refer to the evaporation of primordial BHs which emits GWs whose spectrum peaks for
frequencies beyond 1 THz [11, 12]. Hypothetical dark matter candidates consisting of grav-
itationally bound atoms also show the possibility of emission of high-frequency GWs [13].
GWs decouple almost immediately after they are created which means that, contrary to elec-
tromagnetic (EM) waves they propagate freely even before the emission of cosmic microwave
background radiation. Therefore, they may be the only way to access information about these
events. Unfortunately, the sensitivity of today’s detectors does not allow for the observation
of GWs coming from cosmological sources due to the very strong Big Bang nucleosynthesis
(BBN) bound [14]. BBN correctly predicts the primordial abundances of light elements such
as deuterium or helium. The agreement between prediction and observation puts constraints
on additional forms of energy density present at the time of BBN such as the energy dens-
ity in GWs that are not included in the BBN computation. On the other hand, GWs coming
from astrophysical sources—such as binaries of BHs or compact objects—do not have the
same constraints since they are emitted after the BBN. The strain of GWs coming from these
objects is increased as the distance separating the source from the detector decreases. There-
fore primordial BHswhich have not evaporated todaymay form binaries located nearby, whose
gravitational radiation can be detected.

To observe these high-frequency GWs, the detection mechanism we propose uses the inter-
action between EM waves and GWs through the graviton-to-photon conversion, otherwise
known as the inverse Gertsenshtein effect. For a simple derivation of the Gertsenshtein effect,
see [15]. The production and detection of GWs in the laboratory through this mechanism has
been studied in the literature [16, 17]. More recent studies have looked at GW generation in
the laboratory using optical methods or EM waves [18–20]. Detection in the laboratory using
a constant magnetic field was studied more recently in [21]. Magnetic fields of cosmological
size can act as detectors as well [22]. In [23], bounds on the amplitude of GWs were found
with existing facilities used for the detection of weakly interacting particles, such as ALPS I
[24] or proposed facilities such as JURA [25], whereas in [26] it was shown that axion halo-
scopes can be used as GW telescopes. In this study we focus on a new experiment for detect-
ing GWs involving a high-energy laser as opposed to a constant magnetic field. An incoming
GW interacting with the laser will be converted into an EM signal. We are interested in GWs
whose frequencies are of the same order of magnitude as the laser frequencies. Since lasers
can operate in a wide range of frequencies (from 1013 Hz to 1019 Hz roughly) this will allow
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for the search of high-frequency GWs over many orders of magnitude. The goals of this study
will be to describe the interaction between GWs and the laser beam and determine the range
of GW strain that are detectable for today’s laser energies.

The rest of the paper is organised as follows. In section 2, the interaction between the laser
beam and a GW in the form of a plane wave is described and we find the minimal strain of
detectable GWs in terms of the laser parameters. The details for parts of the calculations are
given in appendix. In section 3, we apply the results found in the previous section to various
lasers and find their performance. We use natural units ℏ= kB = c= ϵ0 = µ0 = 1 unless spe-
cified otherwise and the metric signature (+,−,−,−). The Greek letters µ,ν etc, run over
spacetime indices, whereas Latin indices i, j etc run over space indices.

2. Detection

We consider a GW in the form of a monochromatic plane wave of frequency ωg generated by
an arbitrary source. It interacts with a laser beam described by a plane wave of frequency ω.
The two waves are assumed to be counter propagating, and we choose the coordinate system
such that they are aligned along the x̂ axis. A detector is placed along the x̂ direction to measure
the scattered EM wave (see figure 1). As it will be shown below, a resonance occurs only for
scattered waves of frequency ωg−ω (assuming ωg > ω) when ωg = 2ω. Therefore, to study
this resonance, we make the assumption ωg > ω for the rest of the paper.

In this section we compute the energy of the scattered wave and find bounds on the strain
of the GW. We start from the Maxwell action in curved space:

S=
ˆ
d4x

√
−g
(
−1
4
gµαgνβFµν Fαβ

)
(2.1)

where Fµν is the EM tensor, gµν is the metric tensor and g= det(gµν). In the presence of a
GW, the metric can be written as:

gµν = ηµν + hµν , (2.2)

where ηµν is the usual Minkowski metric and |hµν | ≪ 1. In what follows, we always keep only
the leading order terms in hµν in the calculations. The equations of motion are given by:

∂νF
νµ = jµeff , (2.3)

which are the Maxwell equations in curved space and where we defined the effective four-
current:

jµeff = ∂ν

(
1
2
hFµν + hναF

αµ − hµαF
αν

)
. (2.4)

Combining the Maxwell’s equations in (2.3) with Gauss’ law ∇⃗ · B⃗= 0 and Faraday’s law
∇⃗× E⃗+ ∂tB⃗= 0 (which are unaffected by the GW), one can write separate equations for the
electric and magnetic field:

□E⃗=−∂t⃗jeff −∇⃗j0eff , □B⃗= ∇⃗× j⃗eff . (2.5)

The current jµeff is not invariant between frames even at O(h). Therefore, to compute the
current, one must choose a frame. A convenient choice would be the proper detector (PD)
frame which is the preferred frame defined by the laboratory. The metric perturbation in this
frame was found in [27, 28]. We assume that the GW is well described by a monochromatic
plane wave. The Riemann tensor is then Rµνρσ ∝ eiωg(t−x). Using the fact that the Riemann
tensor is invariant between frames atO(h), we choose to write it in the transverse traceless (TT)
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Figure 1. Diagram of the experimental setup. An incident GW interacts with a linearly
polarised counter-propagating laser beam. Through this interaction an EM wave is pro-
duced which does not have the same polarization as the laser beam and passes through
the mirror. The distance perpendicular to the interaction region over which the laser
beam propagates before being deflected by the mirror is considered small compared to
the laser pulse length. The length of the interaction region is then taken to be the laser
pulse length.

frame for convenience since computations are more easily done in this frame.We neglect terms
of the form ai xi and ωr,ixi where ai is the acceleration due to the Earth’s gravitational field and
ωr,i the Earth’s angular velocity since we consider a region of space for which ai xi,ωr,ixi ≪ 1.
We choose the origin of the coordinate system to be the centre of the interaction region. With
these approximations, the metric in the PD frame takes the form5:

h00 =−ω2
gh

TT
ab x

axb
[
− i
ωgx

+
1− e−iωgx

(ωgx)2

]
(2.6a)

hij = ω2
g

[
(δi xh

TT
j a + δjxh

TT
i a )xx

a− hTTij x
2 − δixδjxh

TT
ab x

axb
][

−1+ e−iωgx

(ωgx)2
− 2i

1− e−iωgx

(ωgx)3

]
(2.6b)

h0i =−ω2
g

[
hTTia xx

a− δi xh
TT
ab x

axb
][

− i
2ωgx

− e−iωgx

(ωgx)2
− i

1− e−iωgx

(ωgx)3

]
(2.6c)

where a,b= y,z are the components perpendicular to the direction of propagation of the
GW and hTTij ∝ eiωgt is the metric perturbation in the TT frame evaluated at the origin of the
coordinate system [27, 28]. The non-vanishing components of hTTij are hTT22 =−hTT33 = h+ and
hTT23 = hTT32 = h×, where h+ and h× are the plus and the cross polarizations respectively.

Due to the large energy per laser pulse and the high photon occupation number, the EM
fields of the laser beam are well described classically as external fields. Furthermore, we con-
sider them to be plane waves since the laser pulse length is much larger compared to the
wavelength. In addition, we choose, for simplicity, the laser to be linearly polarised such that
the third component of the electric field vanishes, Ez = 0. The non vanishing components of
the EM tensor then are F20 =−F21 = E0e−iω(t+x), with E0 the amplitude of the electric field.
The minus sign in the exponential is chosen because we are interested in scattered EM waves
whose frequency is ωg−ω. This frequency allows for a resonance effect as it will be seen

5 The result in equations (2.6) was first derived in [21].
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below. The scattered wave with frequency ωg+ω does not allow for the same resonance.
Replacing these expressions as well as equations (2.6) into equation (2.3), one obtains for the
effective four-current:

jµeff = E0e
i(ωg−ω)t−iωxωg


(h+y+ h×z)(ωg f1(u)+ iωf2(u))
−i(ω−ωg)(h+y+ h×z)f2(u)
h+( f2(u)+ (∂u− i)(u2f1(u)))
h×( f2(u)+ (∂u− i)(u2f1(u)))

 , (2.7)

where u= ωgx and :

f1(u) =−1+ e−iu

u2
− 2i

1− e−iu

u3
, f2(u) =−i 1− e−i u

u2
− 1
u
+
i
2
. (2.8)

The interaction region is assumed to be a rectangular cuboid with sides of length b× b×
L, b⩽ L , with L the pulse length, satisfying bωg ∼ bω ≫ 1. We wish to measure the fields
at a distance R much larger that the typical length of the interaction region. Explicitly, we
assume that ωb2/R≪ 1. If L≫ b we additionally assume ωL4/R3 ≪ 1. In this case, solving
equation (2.5) for one component as an illustration, we obtain (see appendix):

Ey(t, x⃗) = E0ωgh+
ei(ωg−ω)(t−R)

4πR
b2sinc

[
b(ωg−ω)n2

2

]
sinc

[
b(ωg−ω)n3

2

]
×
ˆ Lωg/2

−Lωg/2
du e

i(1− ω
ωg

)n1u−i ω
ωg

u
{
−f1(u)− if2(u)− i

(
1− ω

ωg

)
(∂u− i)

[
u2f1(u)

]}
, (2.9)

where n1 = cosϕsinθ,n2 = sinϕsinθ,n3 = cosθ are the three spatial directions in spherical
coordinates. Assuming b(ωg−ω)≫ 1, the sinc functions are maximised for n2,n3 ≪ 1, which
is the case for our choice of detector location. Therefore, we expand around θ = π/2,ϕ =
0,2π . Neglecting second order terms, n1 = 1. The integral in equation (2.9) to leading order
in Lωg is given by (for a= ω/ωg ̸= 1/2):

2(1− a)sin(aLωg)
a

+
3− 2a
2a− 1

sin

[
(2a− 1)

Lωg
2

]
+ 2i(a− 1)(−2iπ ± 2iπ) , (2.10)

where the + sign corresponds to a> 1/2 and the − sign corresponds to a< 1/2. Since a=
O(1), for a ̸= 1/2, the expression above isO(1). When a−→ 1/2, the integral in equation (2.9)
to leading order is O(Lωg), as it can be seen as well from the second term in (2.10). We
assume ωg = 2ω for the rest of the computation to study the resonance. We give the result
when ωg ̸= 2ω below. In the case of the resonance, equation (2.9) is given by (along with
the other components of the EM fields) equation (A.4). The total power reaching the detector
which is located at a distance R from the interaction region is:

P=

ˆ
dΩ R2n⃗ · S⃗. (2.11)

where S⃗= E⃗× B⃗ is the Poynting vector. The integral is highly peaked around the direction
n̂= (1,0,0)T. Therefore assuming our detector is large enough, we can take the integral over
the whole sphere. Using equation (A.5), the total power in equation (2.11) is then:

P= 2E2
0 cos

2 [ω(t−R)]b2(h2+ + h2×)(2L
2ω2 + 1) , (2.12)

where the first term in the last factor of equation (2.12) corresponds to the contribution of
the transverse components of the EM fields and the second term is the contribution of the
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longitudinal component. We then compute the total energy entering the detector during a laser
pulse τ = L:

Epp =
ˆ L

0
dt P≈ E2

0b
2L(h2+ + h2×)(2L

2ω2 + 1) , (2.13)

where we assumed L≫ ω−1. The laser energy per pulse is Elas = E2
0b

2L/2 and since Lω ≫ 1,
we can write:

Epp = 4Elas(h
2
+ + h2×)L

2ω2 . (2.14)

For ωg ̸= 2ω, Epp ∼ Elas(h2+ + h2×) which is smaller by a factor of (Lω)2. The number of
photons entering the detector is simply Nγ = Eppns/ω, where ns is the number of shots during
the experiment. We assume that single photon count is possible [29]. Therefore, to detect a
signal, at least one photon has to enter the detector: Nγ ⩾ 1. For h× = h+ = h, restoring the
units, the minimal strain is given by:

hmin =

√
ℏ

8nsωτ 2Elas
, ωg = 2ω

hmin ∼

√
ℏ(ωg−ω)

2nsElas
, ωg ̸= 2ω .

(2.15)

The results differ from the ones found in [23] where a constant magnetic field was used. The
reason for this difference resides in the fact that in [23] the TT frame was used whereas in
our case the PD frame has been used. We have performed the computations in the PD frame
because it corresponds to the laboratory frame and is usually the frame in which the EM fields
are measured.

3. Projected bounds

The result (2.15) allows for the search of GWs with frequencies in the THz, optical and x-
ray regimes. For illustration purposes, we consider three types of lasers, each working in a
different frequency range. For each laser we assume that the duration of the experiment is one
day.

(i) THz regime: We assume we use the THz free electron laser [30] having the following
characteristics: τ = 1 ps, ns = 1.7 · 1010 (repetition rate of 200 kHz), 1 THz< ω/2π < 30
THz and Elas = 100 µJ.

(ii) Optical regime: We assume we use the National Ignition Facility (NIF) laser [31] which
has a total of 192 beamlines. For each beam: τ = 20 ns, ns = 4, and Elas = 9.4 kJ. The
NIF laser can, in principle, operate at three different wavelengths: 1053, 527 and 351 nm
(or in terms of frequency ω/2π = 2.4× 1014Hz,5.7× 1014Hz,8.5× 1014Hz).

(iii) X-ray regime: We assume we again use a free-electron laser, but operating in the x-
ray regime such as the European XFEL or the one at the SLAC National Accelerator
Laboratory [32]. The characteristics are τ = 0.1 ps, ns = 8.6× 105 (repetition rate of 10
Hz), and 5.8 keV < ω/2π < 24 keV. The energy per pulse depends on the frequency of
the beam. Between 5.8 and 9.3 keV, Elas = 2 mJ. Between 9.3 and 12 keV, Elas = 1 mJ and
between 12 and 24 keV Elas = 0.5 mJ.

6
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Figure 2. Sensitivity of existing detectors as well as different lasers. Data from
ARCADE [33] constrain hc ≲ 10−24 in the GHz range [22]. For illustration purposes
we also show the LIGO sensitivity [2]. The potential sources considered are mergers
of BH binaries made of objects of equal mass located at the innermost stable circular
orbit (ISCO). The ISCO radius corresponds to the minimal radial distance beyond which
stable circular orbits are no longer allowed [34]. All cosmological sources are located
below the BBN bound and are out of reach. The characteristic strain hc for BH binar-

ies is related to the GW amplitude h by a factor of
√

2ḟ/f 2 [35], which is O(1) [34].
Therefore, we use the two quantities interchangeably. For the bounds of XFEL and the
THz undulator beamline, the first case in equation (2.15) was used. Since the NIF laser
operates at fixed frequencies, the resonance in equation (2.15) can be applied only for
three frequencies depicted by the red peaks. We also show projected bounds for next
generation NIF laser which are expected to have higher repetition rates.

The bounds on the strain of detectable GWs for the different lasers are shown in figure 2.
As the NIF laser operates at three fixed frequencies, the resonance condition ωg = 2ω is

valid for three GW frequencies. This can be seen by the three red peaks in figure 2. For other
frequencies, the non resonant result has to be taken. On the other hand, the XFEL and THz
undulator beamline operate in continuous frequency ranges. Therefore the resonant result in
equation (2.15) can be taken throughout the operating frequency range. The bounds for these
lasers are:

7
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hTHzmin = 2.3× 10−16

(
1.7× 1010

ns

)1/2(
30 THz
ωg/2π

)1/2(1 ps
τ

)(
100 µJ
Elas

)1/2

(3.1a)

hoptmin = 1.8× 10−20

(
4
ns

)1/2(8.5× 1014 Hz
ωg/2π

)1/2(
20 ns
τ

)(
9.4 kJ
Elas

)1/2

(3.1b)

hXraymin = 1.3× 10−16

(
8.6× 105

ns

)1/2(
1.4× 1019 Hz

ωg

)1/2(
0.1 ps
τ

)(
2 mJ
Elas

)1/2

. (3.1c)

In the optical regime, we can also produce projected bounds for a new generation laser.
For this new NIF laser, we assume that all 192 beams are available with a total energy Elas =
1.8 MJ, and a repetition rate of ∼10 kHz and the duration of the experiment being one day. In
this case the lower bound becomes:

hopt,futmin = 6.3× 10−26

(
8.6× 108

ns

)1/2(
8.5× 1014 Hz

ωg/2π

)1/2(
20 ns
τ

)(
1.8 MJ
Elas

)1/2

. (3.2)

For the x-ray regime instead, we can augment the sensitivity by increasing the interaction
time between the GW and the laser beam. Suppose that the laser beam enters a region sep-
arated by two crystal planes. The beam is reflected every time it reaches a crystal plane. If
during that time the beam interacts with a GW, a scattered EM wave is produced. At the res-
onant frequency, the scattered EM wave has the same frequency as the incoming one and is
propagating in the opposite direction being reflected every time it reaches a crystal plane. The
total energy reaching the detector found in equation (2.14) is then enhanced by the number of
times the beam is reflected. This number is given by nref = l/(cτ cosθB), where l is the length
of the crystal and θB the Bragg angle. If the distance separating the two crystals is cτ sinθB,
with l∼ 1 m, nref ∼ 104, we find for the lowest bound:

hXraymin = 1.3× 10−18
(
8.6× 105

ns

)1/2(
1.4× 1019Hz

ωg

)1/2(
0.1 ps

τ

)(
2 mJ
Elas

)1/2(
104

nref

)1/2

. (3.3)

As stated in the introduction, GWs created in the earlyUniverse by cosmological sources are
severely bounded from the BBN bound. BBN predicts successfully primordial abundances of
light elements without taking into account the energy density in GWs. Therefore any additional
energy density considered must be small enough to not spoil the BBN results. The constraint
takes the form [10, 36]:

ΩGW =
4π2

3H2
0

(ωg
2π

)2
h2c ≲ 3× 10−6, hc ≲ 10−33

(
1012 Hz
ωg/2π

)
(3.4)

where H0 is the Hubble rate of expansion today. ΩGW = ρ−1
c (dρGW/d ln f) represents the

energy density of GWs ρGW per logarithmic frequency normalised to the critical energy dens-
ity today ρc. These sensitivities are out of reach for today’s laser detectors. The reason for this
is due to the brief interaction duration imposed by the pulse of the laser. GWs from cosmolo-
gical sources form a stochastic background which can interact continuously with a detector.
Therefore, for these sources it is convenient to consider a constant magnetic field instead of a
laser as it has been done in [23]. On the other hand, coherent sources such as binary BH mer-
gers can be detected if they are close to the detector since their strain decreases as h∝ D−1,
with D the distance to the source [34, 37]. The highest frequency GWs for a given binary are
emitted just before coalescence, when the objects of the binary are located on the innermost
stable circular orbit (ISCO). The ISCO frequency scales as fISCO ∝ m−1, where m is the total

8
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mass of the binary [34]. Detecting high-frequency GWs can therefore lead to the discovery of
light binaries in the nearby interstellar space.

In equations (3.1) and (3.2), it is assumed that the frequency of the GW is the resonant
frequency throughout the duration of the experiment, which is one day. But for BH binaries,
the frequency changes rapidly close to the coalescence. We therefore wish to find the duration
for which the frequency of the GW emitted by the binary satisfies the resonance condition.
We first assume that the GW frequency is not exactly twice the laser frequency but that it is
ωg+ δωg, with ωg = 2ω. From equation (2.10), we find that for the EM fields to be enhanced
by a factor of (Lω):

δωg
ωg

≪ 1
Lω

≪ 1 . (3.5)

The frequency of a GW emitted by a BH binary is [34]:

ωgw(̃t) = 2

(
5

256̃t

)3/8

(GMc)
−5/8, t̃= tcoal − t (3.6)

where Mc is the chirp mass and tcoal is the time of the coalescence. We assume that the GW
frequency changes from 2ω to 2ω+ δωg in a duration∆t. Then using equations (3.5) and (3.6),
we find that for the resonance condition to still be applicable the duration must satisfy:

∆t≪ 5c6

24(Gm)5/3Lω11/3
∼ 10 days

(
1 ps
τ

)(
30 THz
2ω/2π

)11/3(10−22 M⊙

m

)5/3

(3.7)

where we restored the units and with m the total mass of the binary assuming an equal mass
binary. We have replaced the laser parameters by the ones for a THz laser as an illustration. We
find that when the total mass of the binary is m∼ 10−22M⊙, GWs are emitted at the resonant
frequency for a duration comparable to the experiment duration. Therefore, the heavier the
binary, the shorter the duration of emission of resonant GWs. There are two ways for the
frequency emitted to be resonant throughout the experiment. Either the total mass of the binary
is small enough or there are multiple heavier binaries emitting at the resonant frequency such
that at any moment during the experiment there is at least one binary emitting GWs at the
desired frequency. For both cases, the sensitivity is the one found in equations (3.1) and (3.2)—
but in the first case the astrophysical reach is reduced due to the smaller mass. Nonetheless,
lighter binaries are still of interest. Assuming dark matter is made of primordial BHs, the
characteristic size of a region containing at least a merger per unit time decreases as the mass
of the merger decreases [38]. Therefore, even though the astrophysical reach is smaller for
light binaries, their density can be higher.

4. Conclusion

We studied the interaction between a planar GW and a high-energy laser beam. By measuring
the energy of the scattered EM wave, we have obtained lower bounds on the strain of the GW
that can be detected by laser beams. It was found that a resonance occurs when the frequency
of the GW is twice the frequency of the laser beam. In this particular case, the energy of the
scattered EM wave was enhanced by a factor of (ωτ)2. Applying the general result found for
existing lasers, we find lower bounds in three different frequency ranges: the THz, the optical
and the x-ray ranges. Although the minimal strain decreases as hmin ∝ ω−1/2, it was found that
the most sensitive laser detector operates in the optical range (and not in the x-ray) because
of the high-energy and long pulses available for optical lasers. In this case, hmin ∼ 10−20. We
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computed sensitivities for future laser facilities as well. By assuming a higher repetition rate
(10 kHz) for the NIF laser, the minimal strain is then given by hoptmin ∼ 10−26. The limitation
of this detection mechanism is that it allows for the detection of a monochromatic GW, the
one for which ωg = 2ω. GWs generated by cosmological sources cannot be detected due to
their weak strain imposed by the BBN bound. Regarding astrophysical sources, only mergers
made of very light BHs or exotic compact objects [39, 40] can emit GWs in the frequency
range of interest. We looked at the former source because the GW strain is higher in this
case. For these sources, the GW frequency increases as time passes and the duration during
which the emitted GWs have a resonant frequency is short. This duration is increased either
for smaller binary masses or if we consider multiple heavier binaries with the GWs interacting
continuously with the laser. In the second case the astrophysical reach is higher because of
the heavier mass. We conclude by noting that the detection of GWs at high frequency remains
relatively unexplored. Even with current laser facilities, the proposed laser experiments have
the potential of unlocking novel physics.
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Appendix. Computation

Writing explicitly equation (2.5) gives:

□Ex = E0e
i(ωg−ω)t−iωxω3

g(h+y+ h×z)

[
2i

ω

ωg
f1(u)+

(
1− 2ω

ωg

)
f2(u)− f ′1(u)

]
□Ey = E0e

i(ωg−ω)t−iωxω2
gh+

[
−f1(u)− i f2(u)− i

(
1− ω

ωg

)
(∂u− i)(u2f1(u))

]
□Ez = E0e

i(ωg−ω)t−iωxω2
gh×

[
−f1(u)− if2(u)− i

(
1− ω

ωg

)
(∂u− i)(u2f1(u))

]
□Bx = 0

□By = E0e
i(ωg−ω)t−iωxω2

gh×

[
i f2(u)+

(
iω
ωg

− ∂u

)
(∂u− i)(u2f1(u))+ f1(u)

]
□Bz =−E0e

i(ωg−ω)t−iωxω2
gh+

[
i f2(u)+

(
iω
ωg

− ∂u

)
(∂u− i)(u2f1(u))+ f1(u)

]

(A.1)

where u= ωgx. The solutions for the generated EM fields are of the form:

Ey(t, x⃗) =
ˆ
d3y ei(ωg−ω)(t−|⃗x−⃗y|)−iωy1 fE2 (⃗y)

4π |⃗x− y⃗|
, (A.2)
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where the integral is taken over the volume of the interaction region, which we assume to be a
rectangular cuboid with sides of length b× b× L, b⩽ L, bωg ≫ 1. For |⃗x| ≫ |⃗y|, the denom-
inator is just 4π |⃗x|. Regarding the exponent, assuming that ωg−ω ∼ ω, we Taylor expand:

ω|⃗x− y⃗|= ωR−ωn⃗ · y⃗+ ωy2

2R
− ω(⃗n · y⃗)2

2R
+

ωy2n⃗ · y⃗
2R2

− ω(⃗n · y⃗)3

2R2
+O

(
ωy4

R3

)
, y⩽ L , (A.3)

where R= |⃗x| is the distance from the interaction region to the detector and n⃗= x⃗/R≈
(1,0,0)T. In the case L∼ b, we choose x⃗ such that ωb2/R≪ 1, such that we keep only the
two first terms in the expansion. In the case L≫ b, we additionally assume ωL4/R3 ≪ 1 which
allows us to neglect the additional terms beyond this expansion. For n1 ≈ 1 and forω/ωg = 1/2
(the resonance), it is straightforward to show that all the components take the form:

Ex = E0
eiω(t−R)

4πR
b3ω2

g
1
Lωg

(
h+sinc

(
bωn3
2

)
cos
(
bωn2
2

)
− sinc

(
bωn2
2

)
bωn2
2

+h×sinc

(
bωn2
2

)
cos
(
bωn3
2

)
− sinc

(
bωn3
2

)
bωn3
2

)

Ey = E0
eiω(t−R)

4πR
ω2
gh+Lb

2sinc

(
bωn2
2

)
sinc

(
bωn3
2

)
Ez = E0

eiω(t−R)

4πR
ω2
gh×Lb

2sinc

(
bωn2
2

)
sinc

(
bωn3
2

)
Bx = 0

By =−E0
eiω(t−R)

4πR
ω2
gh×Lb

2sinc

(
bωn2
2

)
sinc

(
bωn3
2

)
Bz = E0

eiω(t−R)

4πR
ω2
gh+Lb

2sinc

(
bωn2
2

)
sinc

(
bωn3
2

)
.

(A.4)

Having all the components of the EM fields, we can compute the integral in equation (2.11),
to leading order in (bω)−1. The integral is peaked along the direction x̂. Therefore, assuming
our detector is large enough, we can take the integral over the whole sphere. Taking the real
part in the expressions above and using:ˆ

dΩ sinθ cosϕ sinc2
(
bω
2

cosθ

)
sinc2

(
bω
2

cosϕ sinθ

)
≈ 4π2

(bω)2
, (A.5)

to leading order in (bω)−1, we find that the total power is given by equation (2.12).
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