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Abstract

Vision-based relative navigation technology is a key enabler of several areas of the space industry such as on-orbit servicing, space debris
removal, and formation flying. A particularly demanding scenario is navigating relative to a non-cooperative target that does not offer any
navigational aid and is unable to stabilise its attitude. This research integrates a convolutional neural network (CNN) and an EPnP-solver in a pose
initialisation system. The system’s performance is benchmarked on images gathered from the European Proximity Operations Simulator EPOS
2.0 laboratory. A synthetic dataset is generated using Blender as a rendering engine. A segmentation-based pose estimation CNN is trained using
the synthetic dataset and the resulting pose estimation performance is evaluated on a set of real images gathered from the cameras of the EPOS
2.0 robotic close-range relative navigation laboratory. It is demonstrated that a synthetic-image-trained CNN-based pose estimation pipeline is
able to successfully perform in a close-range visual relative navigation setting on real camera images of a 6-facet symmetrical spacecraft.
© 2023 COSPAR. Published by Elsevier Ltd All rights reserved.
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1. Introduction 1

Object pose estimation is usually an important component of close-range visual relative navigation with uncooperative targets. 2

The term ”pose” can refer to the relative position and attitude of an object or just one of these. Visual relative navigation with 3

uncooperative targets is likely an important technology in the future, especially for active debris removal efforts and potentially also 4

for in-orbit servicing. Generally, two tasks can be distinguished in pose estimation systems: initialisation and tracking. Initialisation 5

refers to a situation where no previous information exists about where a sought target is in the sensor field of view. Oestreich et al. 6

(2020), for example, present work on pose initialisation with CNNs. Tracking refers to a situation where previous estimates are 7
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available (after initialisation or from previous tracking steps) and so the search space for an estimate is smaller. Kelsey et al. (2006)8

for example presents a tracking-oriented work for relative navigation.9

Sensor and algorithm technologies are the backbone of close-range visual relative navigation. Multiple alternatives for sensors10

have been considered for the task of close-range relative navigation, such as monocular cameras (Sharma et al., 2018), LIDAR11

sensors (Nocerino et al., 2020), and PMD cameras (Klionovska et al., 2018) among others. Monocular cameras are an attractive12

option due to their accessibility and widespread use. Technology demonstrations so far have handled close-range relative navigation13

with monocular cameras via algorithms relying on solutions like template matching (Hannah, 2008) or image processing algorithms14

(Queen et al., 2008), perhaps seeking to fit lines of a wireframe model to the lines found in the image, for example. However,15

the general computer vision field has also focused on the application of CNNs for pose estimation (Hodan et al., 2020), also16

for navigational tasks (Wu et al., 2019). CNNs are a class of artificial neural networks (ANN), typically applied for computer17

vision problems. They are based on convolution kernels or filters that slide along input features, producing translation-equivariant18

responses also known as feature maps.19

Utilising CNNs for visual relative navigation in space would potentially offer several advantages over the state of the art. To20

start with, they have the potential to be applicable to targets of various appearances with different dominant visual features, not just21

ones that have distinguishable lines or silhouettes, which would be necessary for pose estimation systems relying on line filters or22

silhouette templates. Furthermore, they could potentially operate in various lighting conditions. If this flexibility can be capitalised23

on, CNNs could form a basis for a general visual relative navigation system that does not require a new integration for every new24

target with a possibly different appearance. This paper focuses on the integration of a state-of-the-art keypoint-regressing CNN into25

a visual relative navigation system.26

Using CNNs for keypoint regression usually means that the CNN is trained to predict coordinates in the 2D image space. This27

is done, because keypoints are easier to regress than quaternions, for example. 2D keypoints exist in a continuous Euclidean space,28

conforming to the continuous Euclidean output space of CNNs, whereas rotation spaces are non-Euclidean and non-linear. In some29

cases, like with quaternions, the representation is ambiguous, with multiple different quaternions referring to the same rotation30

(Saxena et al., 2009). Furthermore, rotation representations in real Euclidean spaces of less than five dimensions have been shown31

to be discontinuous (Zhou et al., 2019). CNNs can only accurately predict continuous spaces (Llanas et al., 2007).32

Keypoint-regression-based approaches to pose estimation have been the most accurate approaches featuring CNNs for monocular33

camera images. For example, this claim is supported by the fact that the top solutions to ESA Pose Estimation Challenge 201934

were keypoint-regression-based (Kisantal et al., 2020). In summary, this competition challenged entrants to estimate the relative35

position and orientation of a target spacecraft depicted in both synthetic and real monocular camera images.The focus is on the pose36

initialisation task, as it is the first step of any close-range relative navigation task.37

The CNN used here was developed by Hu et al. (2019), which achieved the top score in the ESA Pose Estimation Challenge38

2019 on real camera images of spacecraft while having been mostly trained on synthetic images. This is desirable as the aim is to39

train fully on synthetic images and to achieve robust performance on real camera images.40

The issue with training on synthetic images and evaluating on real images is that usually the target and the environment appears41

different. This difference between the two sets of images is also known as the domain gap problem. Often the light sources,42

shadowing, image dynamic range, materials, and background are different between synthetic and real images. There are two43

possible approaches to overcoming this difference: input data manipulation or the adoption of a CNN that has been designed to44

overcome this issue. When it comes to input manipulation, one can attempt to create a synthetic image dataset that is as similar45
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as possible to the real images (Brochard et al., 2018). This is a non-trivial effort; it is difficult to do when there is limited or no 46

access to real images. Even if real images with the targeted camera are available, they might not cover much of the pose space 47

or lighting conditions necessary to ensure robust operation in these unseen pose or lighting conditions. Furthermore, knowledge 48

about the target objects and the environment could also be limited. Attempting to create photorealistic images of the target object 49

might require knowledge about its materials, exact physical configuration, the lighting, and the rest of the environment, which also 50

participates in the lighting of objects in the scene. However, instead of trying to close the domain gap between the synthetic and 51

real images, success has been found in going in the other direction. Domain randomisation is a principle of trying to present as 52

many different domains as possible in the training image dataset such that the trained CNN learns to see the common features, 53

thus hopefully being applicable also for the image domain where the CNN will eventually be applied. This principle has also been 54

applied for CNNs performing navigational tasks (Loquercio et al., 2020). 55

Figure 1 depicts an exemplary target for close-range relative navigation with a monocular camera. This target exhibits symmetric 56

shape geometry, which poses an immediate issue when trying to adapt the CNN described in Section 3.4 to this target spacecraft. 57

Figure 1 shows the keypoints that are estimated in the experiments in these sections. Ideally, each 2D image space coordinate 58

predicted by the CNN would always have a fixed correspondence, or in other words, estimate the same uniquely identifiable specific 59

fixed keypoint. However, it is clear from Figure 1 that each of the six keypoints on the main hexagonal body of the spacecraft are not 60

uniquely identifiable as each of the six corners looks very similar to the other ones. However, the real physical mock-up spacecraft 61

in the robotic setup and simulation of course has a unique, single pose mathematically. The problem reveals itself during training of 62

the CNN - trying to optimise the weights of the CNN to predict these visually indistinct keypoints leads to the CNN estimating their 63

average. The six hexagonal body keypoints as shown in Figure 1 would all end up in the centre of the plane they belong on as each 64

visually ambiguous keypoint target drags the predictions in different directions, ultimately having a loss minimum in the centre of 65

the hexagonal front plate. Essentially, one would be trying to teach the CNN to estimate a one-to-many relationship, which it is 66

not prepared to do. In this paper, the issue is tackled with a modified loss function that uses the closest pose among the manually 67

constructed set of ambiguous plausible poses to train the CNN. 68

In the present work, the term ”pose” is used often, but the focus is mainly on the relative attitude estimation, though the presented 69

methods also provide relative position estimates. This is due to the rotational space being more difficult to estimate, especially due 70

to the domain gap and symmetric target. 71

The contributions of the paper are as follows. The chosen CNN is trained on domain-randomised synthetic images generated 72

via the open-source software Blender, using a novel loss function. The performance of the resulting CNN is demonstrated on real 73

images gathered from the EPOS 2.0 laboratory with different sets of manually chosen keypoint configurations. Similar accuracy is 74

achieved on synthetic and real images without taking into account any information about the real images. 75

The paper is structured as follows. Section 2 starts with an overview of the background and existing research in the field. Section 76

3 expands on the specific methods used in this work. Section 4 presents experiments that have been undertaken with the new CNN- 77

based pose initialisation system and discusses the results. Future work to improve the presented methods is detailed in Section 5. 78

Section 6 concludes the paper. 79

2. Background and State of the Art 80

CNNs are starting to be incorporated into visual relative navigation systems in a variety of ways. The same CNN used in the 81

present work was also used by Gerard (2019) in the ESA Pose Estimation Challenge 2019 to rank second in the leaderboard, with 82
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the highest score on real images. The post-competition analysis in Kisantal et al. (2020) found that all 20 submitted solutions used83

deep learning as a part of their pose estimation pipeline.84

Sharma et al. (2018) applied a CNN to the task of spacecraft pose estimation from images. The paper documents two primary85

contributions; the first is a CNN intended for pose initialisation. The CNN is set up to fit a classification task, so the output of the86

last layer is used in a softmax loss function, which produces a distribution over the class labels. In other words, it is a viewpoint87

classifer. The classes are tied to a discretisation of the relative attitude space such that each class refers to a particular attitude88

(a single rotation matrix, for example). During training, the closest pose in terms of the discretized pose space is chosen as the89

ground truth for the training images. The second major contribution of the paper is the development of a synthetic image generation90

pipeline to train the CNN. The pipeline is intended to produce an abundance of images that represent noise, colour, and illumination91

characteristics expected in orbit. The solution is suitable for symmetric objects, in the sense that images containing ambiguous92

viewpoints will yield some class probabilities that reflect uncertainty between the plausible pose estimates. Of course, the issue93

remains then that one of these ambiguous solutions will have to be chosen as an initial pose estimate for downstream systems that94

rely on it. This could be a Kalman filter, for example. Essentially, the ambiguity is passed downstream from the CNN. If this pose95

estimate would be naively connected to a state estimator, it would seriously disturb the accuracy of the state estimate every time the96

pose initialiser jumps to an alternative plausible pose estimate. When it comes to closing the domain gap, Sharma et al. (2018) do97

not explore the robustness of the trained CNN with respect to domain differences. The test dataset is independent from training and98

validation datasets, but they are sampled from the same domain.99

Pasqualetto Cassinis et al. (2022) deploys a CNN-based pose initialization system on monocular camera images from ESA’s GNC100

Rendezvous, Approach, and Landing Simulator (GRALS) testbed. In particular, they manage to achieve successful evaluation on101

more than 50 % of real camera images after training the CNN on synthetic images. The CNN relies on estimating 2D heatmaps of102

chosen keypoints on the ENVISAT spacecraft’s structure, with one heatmap belonging to each keypoint. The domain generalization103

is achieved via spacecraft texture, lighting, and background randomization, in addition to standard data augmentation methods.104

However, it is found that this generalization comes with the caveat of heatmaps starting to predict multiple keypoint locations due105

to ambiguity. This happens as the network no longer has access to as many specific visual details that could resolve ambiguous106

poses to one unique pose.107

Oestreich et al. (2020) explore questions such as the necessary quantisation of the pose space for classification-based pose108

estimation, the necessary amount of training images for it, as well as lighting condition impact on pose estimation performance.109

It is also worthwhile to look at the development of pose initialisation systems in the general computer vision field. In the process,110

we will also discuss how and if they consider symmetric objects.111

Kehl et al. (2017) use a viewpoint classifier to obtain a pose estimate. Viewpoint classifiers are able to tolerate better a one-to-112

many type problem as arises with viewpoint ambiguity, but still there are convergence problems. The one-to-many problem means113

that the same or a very similar input is given different output labels. To circumvent these, the authors select a subset of viewpoints114

during training such that ambiguous redundant poses are removed. This still requires manual intervention for every new type of115

object.116

Rad & Lepetit (2017) solve this issue for a keypoint-regressing CNN by restricting the keypoint labels to a pose interval where117

no ambiguity is present. The absolute pose is then obtained by a separate classifier that tries to determine which of the ambiguous118

pose intervals is present (if at all distinguishable) and this is taken into account in the final pose estimate. This process is not119

preferable as the intervals are manually designed and every new target would require a new consideration. Furthermore, this does120
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not work for objects with infinite ambiguous viewpoints such as a cylinder. 121

Corona et al. (2018) use an embedding via a CNN and then select the closest latent space vector from an offline generated 122

database of discrete viewpoints as the final pose estimate using cosine similarity. Latent space refers to a low-resolution representa- 123

tion of features in the narrowest part of the CNN, which contains high-level information about the processed input. However, they 124

additionally classify the order of the symmetry. This symmetry classification still requires manual intervention to label symmetry 125

orders for the target object. 126

Xiang et al. (2018) approach symmetric objects by using a loss function that focuses on the closest vertices of the 3d model 127

of the object being in agreement between estimate and ground truth orientations. Unfortunately, this approach comes with local 128

minimums during training. 129

Sundermeyer et al. (2018) presents a method for estimating the pose of an object with a CNN that uses the CNN to encode an 130

image into a latent space vector. This vector then compared to an offline generated database of viewpoints using cosine similarity, 131

yielding a pose estimate. The database format is inherently able to handle ambiguous poses as there is no conflict between storing 132

very similar embedding vectors with different output viewpoints. 133

Park et al. (2019a) uses a principle they call ’transformer loss’ to train their CNN to estimate the pose of a symmetric target. 134

Essentially, the keypoints of the closest plausible ambiguous pose to the predictions of the CNN are chosen for each image in a 135

training batch. 136

Manhardt et al. (2019) propose a fairly general method where a high number of redundant poses are predicted for an object. Due 137

to the high number of redundancy, the output is expected to reflect a distribution of poses that are plausible given a particular input 138

image. However, the suitability of this approach depends on the output of the CNN. This approach works quite well if the output of 139

the CNN is a rotation representation directly, such as a quaternion. However, many modern pose estimation frameworks actually 140

estimate 2D image space keypoints, which are then resolved to a pose via a Perspective-n-Point solver. However, Manhardt’s 141

approach gets complicated when a set of keypoints are estimated. The process gets more intensive as more keypoints are used, and 142

then there is the difficulty of having to move from 2D image space to pose space with all these redundant keypoint regressions. 143

Hodan et al. (2020) present a new approach to the pose estimation of symmetric objects. Essentially, a CNN is used to segment 144

the surface of the target object in the image into patches. To reiterate, the surface of the target object is divided into some fragments 145

of the whole, and these are then classified in the image per pixel. Per each identified fragment, a regressor is used to estimate the 146

3D coordinate of the fragment’s centre. These 2D-to-3D correspondences are then used with the Progressive-X scheme (Baráth 147

& Matas, 2019) incorporating a robust and efficient PnP-RANSAC algorithm (Fischler & Bolles, 1981). In addition to inherently 148

dealing with symmetric objects, this approach has the added value of not needing specific visual features on the object to relate 149

keypoints to. Rathinam & Gao (2020) compare a viewpoint classifier and an architecture that features an object detector for initial 150

image cropping, a keypoint regressor, and a PnP-solver. They note that to achieve similar results, the viewpoint classifier requires 151

approximately 6-10 times more trainable parameters. However, they do stress that this depends heavily on the setup. Furthermore, 152

this does not take into account the PnP-solver that is still necessary to move from keypoints to an actual pose. 153

Domain randomisation has been demonstrated to be an effective tool for enabling synthetic-image-trained CNNs to perform in 154

real world conditions in different navigation and movement tasks of different fields. Tobin et al. (2017) demonstrated that an object 155

detector trained on synthetic domain-randomised images can form an effective basis for robotic grasping in real world conditions. 156

Loquercio et al. (2020) demonstrate an autonomous racing drone navigation system trained on domain-randomised synthetic images 157

that is able to fly through a real-world gated racetrack at high speeds. 158



6 / Advances in Space Research xx (2023) xxx-xxx

3. Methods159

This section presents the methods used to conduct the research. First, the tools and settings of the synthetic image production160

pipeline are explained in Section 3.2. Following that, the laboratory yielding real camera images of physical spacecraft is described161

in Section 3.3. Lastly, the details of the pose estimation pipeline incorporating the CNN are presented in Section 3.4.162

3.1. Datasets163

For ease of reference, the datasets have been described and assigned unique identifiers in this section. This is to prevent confusion164

in the description of the experiments. The details of the production of the synthetic datasets are explained in Section 3.2. For165

completeness, all parameters have also been summarized in Tables 1 and 2.166

• Training dataset A Includes 15000 images rendered with Blender. Target spacecraft rotations are randomly sampled from the167

entire pose space. Target range random between 5 - 30 m. Lateral relative displacement random, while being limited to168

within 1.3 m of the limits of the camera field of view. The largest dimension of the spacecraft is 1.32 m from the centre of169

rotation, so this limitation ensures the spacecraft is in full view of the camera. The direction of the Sun is randomised. The170

orientation of the background is randomised.171

• Training dataset B Includes 15000 images rendered with Blender. The differences with respect to dataset A will be described.172

Target ranges are now not sampled uniformly with respect to distance, but rather with respect to the size of the target in173

the image. This is an attempt to improve accuracy at closer ranges as otherwise images where the spacecraft dominates the174

space of the image are underrepresented. Furthermore, multiple other factors are varied as a part of the domain randomisation175

scheme. Additionally varied parameters include camera exposure time, background texture brightness, background and target176

surface texture mixing with random ’Magic’ and ’Voronoi’ procedural textures of Blender as well as the parameters of these177

textures, Sun illumination strength, target material colours, roughness, and metallicness, as well as a random Gaussian blur178

on the images.179

• Test dataset C Includes 760 images rendered with Blender. Target spacecraft rotations cover entire pose space with 20 degree180

spacing in all three Euler angles. In terms of the rotation angle around symmetric axis, only a space between two ambiguous181

poses are covered (60 degree range due to the six-fold finite symmetry of the main hexagonal body). Target range is fixed at182

5 meters and is not laterally displaced. The additional domain randomisation variations present in training dataset B are not183

featured here. Other parameters (lighting, materials, etc) are equivalent to training dataset A.184

• Test dataset D Same as test dataset C, but at a fixed target range of 17.5 meters.185

• Test dataset E Same as test dataset C, but at a fixed target range of 30 meters.186

• Test dataset F This dataset is composed of 3346 real images of a physical target spacecraft mock-up from DLR EPOS 2.0187

laboratory at various ranges at less than 25 m. Rotations and positions conform to samplings from representative approach188

and inspection manoeuvres. Lighting conditions vary, also exhibiting some extremely overlit images. Not a lot of lateral189

displacement is exhibited as target is mostly centred in camera view.190

• Test dataset G Synthetic reproductions of poses in test dataset F. Lighting conditions randomised.191
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Parameter Dataset A Dataset B Dataset C, D, E Dataset F Dataset G
Number of im-
ages

15000 15000 760 3346 3346

Origin Blender Blender Blender DLR EPOS 2.0 Blender
Rotation space
sampling

Random across
entire pose
space

Random across entire pose space Uniformly
distributed
across entire
pose space

Representative
approach and
inspection
maneuver

Representative
approach and
inspection
maneuver

Range sam-
pling

Random be-
tween 5-30
m

Random diameter of object, be-
longing to range 5-30 m

5 m, 17.5 m,
and 30 m, re-
spectively, for
C, D, E datasets

5.8 - 17 m 5.8 - 17 m

Lateral dis-
placement

Within camera
FOV

Within camera FOV None Not significant Not significant

Direction of the
Sun

Random Random Random Fixed Random

Sunlight inten-
sity

”Sun”-type
parallel light
source with
10W/m2 power

”Sun”-type parallel light source
with power varying between 0 −
100W/m2

”Sun”-type
parallel light
source with
10W/m2 power

”Sun”-type
parallel light
source with
10W/m2 power

”Sun”-type
parallel light
source with
10W/m2 power

Background
texture

Random trans-
lation and
rotation of
orbital en-
vironment
image

Variable-strength mixture of ran-
domly translated, rotated or-
bital environment image, ran-
domly designed ”Voronoi” and
”Magic” texture patterns, and
complete darkness

Random trans-
lation and
rotation of
orbital en-
vironment
image

DLR EPOS
2.0 laboratory
backdrop

Random trans-
lation and
rotation of
orbital en-
vironment
image

Background
brightness

Fixed Random Fixed Fixed - labora-
tory backdrop

Fixed

Camera expo-
sure time

Blender ”Film
exposure”
parameter
set to 1.0,
non-physical
unit

Blender ”Film exposure” param-
eter varies between 0 - 1.0, non-
physical unit

Blender ”Film
exposure”
parameter
set to 1.0,
non-physical
unit

Fixed 5000 µ s Blender ”Film
exposure”
parameter
set to 1.0,
non-physical
unit

Camera resolu-
tion

2048x2048 2048x2048 2048x2048 2048x2048 2048x2048

Camera field of
view

47.6◦ horizon-
tally and verti-
cally

47.6◦ horizontally and vertically 47.6◦ horizon-
tally and verti-
cally

47.6◦ horizon-
tally and verti-
cally

47.6◦ horizon-
tally and verti-
cally

Table 1: Summary of the dataset parameters (1/2)
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Parameter Dataset A Dataset B Dataset C, D, E Dataset F Dataset G
Spacecraft materi-
als

MLI Foil: Princi-
pled BSDF, HSV
color [1,0.375,0],
metallicness 1.0,
roughness 0.2. So-
lar panel: Glossy
BSDF, HSV color
[0.621,1,0.321],
roughness 0.0.
Structure: Prin-
cipled BSDF,
HSV color [0,0,1],
metallicness 0.0,
roughness 1.0

MLI Foil: Princi-
pled BSDF, HSV
color random,
metallicness ran-
dom between 0.8
- 1.0, roughness
random between
0 - 0.2. Solar
panel: Glossy
BSDF, HSV color
random, roughness
random between
0 - 0.2. Structure:
Principled BSDF,
HSV color random,
metallicness ran-
dom between 0.8
- 1.0, roughness
random between 0
- 0.2

MLI Foil: Princi-
pled BSDF, HSV
color [1,0.375,0],
metallicness 1.0,
roughness 0.2. So-
lar panel: Glossy
BSDF, HSV color
[0.621,1,0.321],
roughness 0.0.
Structure: Prin-
cipled BSDF,
HSV color [0,0,1],
metallicness 0.0,
roughness 1.0

Real, representa-
tive materials

MLI Foil: Princi-
pled BSDF, HSV
color [1,0.375,0],
metallicness 1.0,
roughness 0.2. So-
lar panel: Glossy
BSDF, HSV color
[0.621,1,0.321],
roughness 0.0.
Structure: Prin-
cipled BSDF,
HSV color [0,0,1],
metallicness 0.0,
roughness 1.0

Gaussian blur 7x7 filter, σ up to
0.5

7x7 filter, σ up to
0.5 + up to 5x5 fil-
ter size and radius
in Blender

None None None

HSV-colorspace
pixel brightness
variation

Up to ±10% in
Hue, ±50% in Sat-
uration, ±50% in
Value

Up to ±10% in
Hue, ±50% in Sat-
uration, ±50% in
Value

None None None

Random added
noise

From normal distri-
bution, σ = 0.1

From normal distri-
bution, σ = 0.1

None None None

Table 2: Summary of the dataset parameters (2/2)
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3.2. Production of synthetic camera images of spacecraft in relative navigation setting using Blender 192

The open-source 3D-rendering software Blender is used to generate simulated synthetic images of a representative target space- 193

craft in relative navigation scenarios, as if a chaser spacecraft was observing it. A few sample images are shown in Figure 2. 194

3.2.1. Rendering engine 195

The images are rendered using a ray-tracing engine Cycles . The use of a ray-tracer allows the generation of more realistic 196

shadows and reflections, which are important in relative navigation settings. Often the only source of light in the orbital environment 197

is the Sun and therefore significant parts of the spacecraft can be obscured by shadows. Also, many spacecraft incorporate highly 198

reflective materials and components such as solar panels or Multi-Layer Insulation (MLI). 199

3.2.2. Background environment 200

The background of the rendered environment varies depending on the experiments. Training dataset A described in Section 3.1 201

and used in the first experiment described in Section 4.1 merely feature a static panoramic image taken at an Earth orbit position, 202

produced using SpaceEngine (Romanyuk, 2011). SpaceEngine is a realistic virtual universe simulator. It is an HDR-image, so 203

the stars and Sun are visible simultaneously. This is perhaps not realistic, but it adds more visual information to reflect off of the 204

MLI and the solar panels. The particular height of the orbital position or the lighting environment does not matter too much as the 205

background is merely added to provide somewhat realistic reflections for training. The orientation of the background is randomised 206

along all three axes. Training dataset B described in Section 3.1 and used in the second experiment described in Section 4.2 features 207

modifications to this background baseline. The first modification is that the brightness of the background is allowed to vary between 208

fairly bright and entirely black. The second modification is that Blender’s procedural textures Magic and Voronoi are also mixed in 209

with the SpaceEngine-produced environment image at randomly varying strengths. 210

Figure 3 provides the Blender setup for generating a background environment. The background environment essentially is 211

composed of multiple shaders. The background environment is a sphere around the spacecraft object onto which a texture is 212

projected. This background texture is a mixture of an Environmental Texture Node output, a Magic Texture Node output, a Voronoi 213

Texture Node output, and a completely black shader. The Environmental Texture Node takes in the equirectangular projection 214

image given in Figure 4 and projects it onto the encompassing background sphere. This image was generated using SpaceEngine. 215

The observing position for this image is near Earth, on a line between the Earth and the Sun. The comprehensive world environment 216

shader emits light into the scene such that the spacecraft reflects light from the Sun, the darker areas, and the Earth itself. The Mix 217

Shader nodes enable mixing the four distinct textures, allowing variations such as a completely dark background, a pure Earth 218

environment texture, a background with randomised Voronoi and/or Magic texture, or any combination in between. The purpose 219

is of this design is to provide the capability to produce dark images, realistic images, and randomised images all at once. The 220

randomisation textures Magic and Voronoi are there to make it more difficult for the CNN to learn a specific surrounding as the 221

CNN is intended to work in any background environment. Figure 5 shows samples of Voronoi and Magic Texture Node outputs. 222

The spatial frequencies, colours, and pattern configurations are variable via the Node parameters. 223

3.2.3. Lighting and camera sensor 224

There is a single light source in the scene besides the background which also emits light. This is a parallel ray light source to 225

mimic the Sun. For training dataset A merely the direction of the Sun is randomised. For training dataset B the Sun’s light emission 226

strength is also varied between a bright value and nearly completely dark value. Furthermore, the camera exposure time is varied 227

in order to provide globally dark or bright images as well. 228
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3.2.4. Spacecraft229

The spacecraft is a simplified version of a physical mock-up described in Section 3.3. It exhibits finite symmetry about its230

longitudinal or docking axis, though at various multiplicities. There are three material groups used in the model. The front231

hexagonal plate and column are wrapped in MLI, which is mimicked via a golden reflective material. The folds of the MLI are232

replicated via Blender’s procedural Voronoi and Magic textures applied to the surface normal map, which means that light bounces233

off the surface similarly to how a folded and crinkled foil would. The second material is the solar panel, mounted on the sides of234

the hexagonal main body of the spacecraft. This is also a reflective material with a dark blue hue. The third material is a glossy235

white paint featured on the details of the body and docking adapter. The model is simplified in the sense that it lacks certain MLI236

cutouts that are featured on the physical mock-up as well as some small scale details like screws that are a part of the original237

complex CAD drawing of the spacecraft. There are a few further discrepancies. One of them is a missing solar panel plate on one238

side of the hexagonal body, which leaves a gap where one can look at the interior of the mock-up. The second discrepancy is that239

the front hexagonal railing on the docking adapter has been deformed slightly (a few centimetres out of the plane of the railing) due240

to impacting the floor in a previous accident. Overall, these differences should not stand in the way of applying a CNN trained with241

simulated images on real images of the physical mock-up taken with a camera. They are rather viewed as opportunities to see how242

local differences impact tested CNN solutions. The above-described setup is used for training dataset A and testing datasets C, D, E,243

and G. Training dataset B comes with further modifications, though. More precisely, the three materials are randomised per image244

in various ways. The randomly varied parameters include material colour, metallicness, and reflectivity. Furthermore, random245

Magic and Voronoi textures with randomly varied magnitudes and other parameters governing the appearance of the procedural246

textures are mixed in with the base materials to increase the unpredictability of the surface textures.247

3.3. Pseudo-real images of physical spacecraft mockups in relative navigation setting and EPOS 2.0 laboratory248

The intention of this research is to deploy -CNN-based relative navigation system in realistic settings after training them with249

synthetic images. The DLR EPOS 2.0 laboratory facilitates the imaging of physical scale model mock-ups with real cameras as250

well as closing the loop and using computer vision to guide and control relative navigation manoeuvres (Benninghoff et al., 2017).251

The facility also features the simulation of orbit and attitude dynamics for both chaser and target spacecraft. Training dataset B uses252

real images recorded at EPOS during representative close range approach and flyby manoeuvres.253

3.4. Pose estimation using segmentation-based keypoint regression CNN254

A full relative navigation system often requires target object position and orientation estimates to function. A full relative255

navigation system usually composes of multiple components. For example, there might be a component that determines target256

object pose information without prior state information, or a pose initialiser. This information could then be fed to a state estimator257

like a Kalman filter to take advantage of the information contained in previous estimates.258

The details of the utilised CNN solution are described in Hu et al. (2019). This publication does not explicitly describe the259

layers of the CNN and the application of the network to the ESA Kelvins competition was only documented via a presentation. The260

specific structure of the network is implied by the software repository of the method as received from the author. This repository is261

not public. Therefore, the CNN layers are given in Table 3. To understand the architecture, a brief explanation of the layers is given262

here.263

A convolutional layer in PyTorch (Paszke et al., 2019) applies 2D convolution filters over an input signal composed of several264

input channels. Let N be the batch size, C the number of channels, H and W be the height and width of input planes in pixels,265
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respectively. If monocular camera images are processed by a CNN, the input plane is the input image only in the first convolutional 266

layer, after that it will be the output feature maps of the previous layer. In the simplest case, the output value of the layer with input 267

size (N,Cin,H,W) and output size (N,Cout,Hout,Wout) can be determined by, 268

out(Ni,Cout j ) = bias(Cout j ) +
Cin−1∑
k=0

weight(Cout j , k) ⋆ in(Ni, k) (1)

where ⋆ is the 2D cross-correlation operator. The widths, heights, and channels of an input and output tensor are not necessarily 269

the same, which is why a distinction has been made with subscripts. The stride of a convolutional filter refers to the amount of 270

skipped convolutions when the filter slides over an image. With a stride of 1, the convolutional filters shift by one pixel to calculate 271

the next output, whereas with a stride of 2, they shift by two pixels. Stride allows a resolution reduction for the output feature map 272

compared to the input. For example, if a 3-channel image of size 320x320 is the input tensor to a layer with 54 1x1 convolutional 273

filters at a stride of 2 are applied to it, the output tensor has a width of 160, a height of 160, and 54 channels. 274

The residual layer maps the feature from before each block (note how Table 3 divides the architecture into repeating boldly 275

outlined blocks) are summed with the feature maps of the layer immediately before the residual layer. To learn about the benefits 276

of residual layers, one can refer to (He et al., 2016), for example. These connections in the CNN allow the use of deeper CNNs as 277

the gradients propagate more easily through the CNN during back-propagation. 278

The deconvolutional layer applies a 2D transposed convolution operator over an input image composed of several input planes. 279

This module can be seen as the gradient of the convolutional layer with respect to its input. It is also known as a fractionally- 280

strided convolution or a deconvolution (although it is not an actual deconvolution operation as it does not compute a true inverse of 281

convolution). More details on these layers can be found in (Zeiler et al., 2010). 282

Route layers refer to the concatenation of certain previous feature maps to the current last feature maps. These feature maps 283

have to be the same size. For example, a route-to-16x16 layer refers to the concatenation of the last feature maps that had that 284

size to the layers immediately before this route, which also have to have the same size. 285

This CNN architecture was selected given the good performance evaluated using real images of the Tango spacecraft of the 286

PRISMA mission. This aligns with the goal of applying this CNN on the pseudo-real robotic laboratory images. On its input side, 287

the CNN consumes a three-channel colour image of size 256x256 pixels. The CNN outputs a 3D-tensor. Two dimensions of this 288

tensor correspond to the 2D spatial dimensions of the image, essentially dividing the input image into a lower-resolution grid. The 289

third dimension contains the 2D normalised image coordinates of the estimated keypoints as well as two probabilities belonging to 290

”spacecraft” or ”not spacecraft” classes. This way, each grid cell or ’pixel’ in the output side contains its own estimate for all of 291

the keypoints as well as the class probabilities. This means that there is a large amount of redundancy with respect to the predicted 292

keypoints as each output subpixel of the output tensor produces a complete set of keypoints predictions and a strategy is needed to 293

condense these to a single set of image coordinates for each of the keypoints. In the present work, the predictions of all cells labeled 294

spacecraft are used with the OpenCV implementation of EPnP (Lepetit et al., 2009) to obtain the 3D coordinates of the keypoints. 295

The original approach as published in (Hu et al., 2019) predicts the 2D coordinates of a 3D bounding box around the target object 296

projected into the image. However, the solution that was used for the ESA Pose Estimation Challenge 2019 featured a modification 297

where the predicted keypoints belonged to the geometry of the spacecraft body (Gerard, 2019). This approach was also used by 298

the solution that scored highest on the synthetic dataset in the challenge (Chen et al., 2019), with the justification that it creates a 299

stronger relationship between the keypoints and specific geometric features of the spacecraft. The same approach is adopted in the 300

present work. 301



12 / Advances in Space Research xx (2023) xxx-xxx

Layer type Filters Size / Stride Output
Convolutional 32 3x3 256x256
Convolutional 64 3x3 / 2 128x128
Convolutional 32 1x1

1x Convolutional 64 3x3
Residual 128x128

Convolutional 128 3x3 / 2 64x64
Convolutional 64 1x1

2x Convolutional 128 3x3
Residual 64x64

Convolutional 256 3x3 / 2 32x32
Darknet-53 from (Redmon & Farhadi, 2018) Convolutional 128 1x1

8x Convolutional 256 3x3
Residual 32x32

Convolutional 512 3x3 / 2 16x16
Convolutional 256 1x1

8x Convolutional 512 3x3
Residual 16x16

Convolutional 1024 3x3 / 2 8x8
Convolutional 512 1x1

4x Convolutional 1024 3x3
Residual 8x8

Convolutional 512 1x1
2x Convolutional 1024 3x3 8x8

Convolutional 512 1x1 8x8
Convolutional 256 1x1 8x8

Head from (Hu et al., 2019) Deconvolutional 256 2x2 / 2 16x16
Route to 16x16
Convolutional 256 1x1

2x Convolutional 512 3x3 16x16
Convolutional 256 1x1 16x16
Convolutional 128 1x1 16x16

Deconvolutional 128 2x2 / 2 32x32
Route to 32x32
Convolutional 128 1x1

3x Convolutional 256 3x3 32x32
Convolutional 2 + 2*# of keypoints 1x1 32x32

Table 3: Architecture of segmentation-based keypoint regression CNN.

In relative navigation scenarios, target spacecraft can appear at various distances from the observing spacecraft. The CNN used302

in the present work performs more effectively when the input image contains most to all of the spacecraft. Therefore, the target303

spacecraft is cropped in the input images for the experiments using the ground truth class segmentation image also produced by304

Blender. In this image, pixels corresponding to the spacecraft have a maximum intensity value and the background pixels have a305

zero value. This of course means that the location of the spacecraft in the image is presumed to be known. In a full navigation306

system this is obviously not a realistic expectation and would therefore require a solution such as training the CNN on all kinds of307

target distances without cropping or using an object detector to crop the image. In this work it is done as a simplification to study308

the pose estimation pipeline’s domain generalisation characteristics and suitability for symmetric target objects.309
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3.5. Training a keypoint regressor for symmetric targets 310

The symmetry problem introduced in Section 1 can be solved if the relationship of the input and output of the CNN can be 311

reduced to a one-to-one relationship. This has been done in a simple way in Park et al. (2019a), for example, where during training 312

the closest of all of the ambiguous pose solutions is selected for loss calculations. This should pull the estimated keypoints to one 313

of the six ambiguous pose solutions in this case, though one would not be able to control which of them. A similar approach is 314

adopted in this work, though it has to be adapted with some modifications. It’s a preferred solution as it is a simple change to get 315

CNNs otherwise not designed for symmetric objects specifically to perform with symmetric objects. Since the CNN predicts one 316

full set of coordinates and classes for each cell of the subgrid that the output is divided into it yields highly redundant predictions. 317

One has two options then during training - to select the closest ambiguous pose solution for the entire group of keypoint estimates 318

or to let each cell in the subgrid approach its own closest solution. 319

In the present work, the total loss used during training is a modified version of the loss used by Hu et al. (2019). Two loss 320

components are considered and modelled: a keypoint regression loss, and a focal loss for the class labels. The CNN does not 321

directly regress coordinates in the same coordinate system as the image pixels. Instead, each output subgrid cell predicts a 2D offset 322

vector from the centre of that cell to each keypoint on the spacecraft. Each 2D keypoint gi on the spacecraft in normalised image 323

space can be expressed as gi = c + hi(c), where c is the centre of each cell and hi(c) is the corresponding 2D offset vector from the 324

centre of the cell. The CNN is trained to regress the 2D offset vector expressed as hi(c) = gi − c. The keypoint regression loss is 325

therefore given by, 326

Lxy,1 = argmin
ht

∑
h∈M

N∑
i=1

|ht − hp| (2)

Lxy,2 =
∑
h∈M

argmin
ht

N∑
i=1

|ht − hp| (3)

where ht and hp refer to the training target and predicted 2D keypoint offset vectors from grid cell centres, respectively, M refers 327

to the output subgrid pixels that predict that they are a part of the spacecraft class rather than the background class, N is the set of 328

keypoints on the spacecraft that have been selected for localisation and | · | refers the the L1 loss. 329

The focal loss for class labels is a dynamically weighted version of cross-entropy, as presented by Lin et al. (2020). 330

3.6. Error metrics 331

The error metrics used in the work are unusual from the point of view of comparing CNNs performing a certain task as they are 332

dependent on the target object, but they are useful when trying to determine the performance of this CNN as a part of a navigation 333

system. The focus is on producing metrics that are intuitive for a navigation engineer. 334

• Longitudinal axis projection error In the case of the target object featured in this work, there is one axis that is more important 335

than the others. It is the symmetry axis and also the axis along which one would approach the docking adapter. This error 336

is calculated by projecting the predicted longitudinal axis onto the ground truth longitudinal axis and extracting the angle 337

between them via the cosine law. 338

• Lateral axis projection error The error is calculated the same way as the longitudinal axis projection error, but instead an axis 339

is used that is perpendicular to the longitudinal axis. This error expresses rotation error about the symmetry axis, which is an 340

important quantity to estimate during the approach with the docking adapter. 341
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• Position error magnitude The absolute position error magnitude is also calculated to determine the quality of the position342

estimate.343

4. Experiments344

This section presents the experiments, their results, and the underlying reasoning for them.345

4.1. Experiment 1: baseline pose estimation results with synthetic images346

The first experiment focuses on evaluation of the CNN trained using the loss in (2). The CNN is trained on training dataset A347

and tested on test datasets C, D, and E. The results of the experiment are presented in Figure 7 in terms of the metrics explained in348

Section 3.6.349

The first thing to note is that the loss function attains meaningful results compared to the symmetry-unaware loss as presented350

by Hu et al. (2019). The results for that arent shown here, but training would collapse all keypoints onto the symmetry axis, which351

are not valid inputs for the EPnP-solver.352

The largest rotational errors occur at close range, while position error is reduced closer to the target.353

The lateral axis projection error figure displays four distinguishable peaks. Since we use an axis projection as an input to an arc-354

cosine function to calculate a rotational error, the six symmetry-caused ambiguous solutions can be distinguished as four separate355

peaks here. A −60 or 60 degree rotation error about the symmetry axis are both going to show as positive 60 degree lateral axis356

projection error, and the same for −120 and 120 degrees of error. Thus there are four, not six peaks corresponding to the hexagonal357

main body of the spacecraft. This demonstrates that the pose estimation system is able to identify one of the six plausible ambiguous358

poses due to symmetry of the main body of the spacecraft.359

It is interesting to note that the ambiguous poses are not identified in a balanced way as some of the lateral axis projection error360

peaks dominate over others. A similar pattern of the 120-degree error being dominating shows up in later experiments as well. It361

could be due to the EPnP-solver, as the ordering of the keypoints given by the CNN do not play a role in its inputs.362

Another aspect to note is that the highest longitudinal axis error is not actually centred at zero at any distance, and this also363

shows in later experiments. No experiments have been conducted to study what causes this exactly, but there are a few sources that364

could contribute to this phenomenon. The keypoint estimates might be biased in a way that shifts pose estimate, or it could also be365

a result of the EPnP-solver. Furthermore, there are cases where the predicted pose is actually flipped such that the symmetry axis366

directions are opposite between ground truth and predicted pose. To put it differently, the pose estimation system predicts that it367

is looking at the back of the spacecraft when it’s looking at the front, or vice versa. Both of these phenomenons could be due to368

the choice of keypoints as for the case of the observer being exactly on the symmetry axis, the keypoint locations on the image are369

indistinguishable between the cases of looking at the front or back of the hexagonal main body.370

Overall, the pose estimation system trained with the loss given by Equation (2) successfully yields one of the plausible symmetry-371

caused ambiguous poses. However, some outlying poses are seen with reversed symmetry axes.372

4.2. Experiment 2: pose estimation results with synthetic images featuring domain randomisation373

The second experiment is largely the same as the first one with a few changes. This time, the CNN was trained using loss of374

Equation (2) on training dataset B, featuring domain randomisation and a different sampling of target ranges, designed to make375

the apparent size of the target in the pictures uniformly represented in the dataset (more images at closer ranges). The CNN was376

tested on datasets C, D, and E. The apparent diameter of the target spacecraft was uniformly sampled from an interval that results377
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in relative ranges between 5 to 30 meters. This change was inspired by the results of the first experiment in an attempt to improve 378

accuracy at closer ranges. The results are presented in Figure 8. 379

The performance in terms of the lateral and longitudinal axis projection errors has not changed in an significant way according 380

to the histogram metrics. The inclusion of more images captured at close range has not had an appreciable effect on improving 381

rotational accuracy at close range. Making the dataset more challenging via domain randomisation has not caused an accuracy drop 382

across any of the tested ranges. 383

In summary, the experiment is encouraging the use of domain randomisation as it does not necessarily incur an accuracy penalty. 384

Furthermore, the inclusion of more images at close range has not improved close-range accuracy, so the issue does not stem from 385

dataset statistics. 386

4.3. Experiment 3: a more flexible loss function for a symmetric target object 387

The third experiment is the same in terms of used datasets as the second experiment - the CNN is trained on dataset A and tested 388

on datasets C, D, and E. However, here the loss given by Equation (3) was used for training. 389

Compared to the second experiment trained with the first loss function, the outlying longitudinal axis projection error maximums 390

decrease in all cases. Looking at the inlying pose estimates, the accuracy has also improved in all cases, also notably in the close- 391

range 5-meter range case. The improvement is likely due to the less constraining nature of the second loss, allowing all output cells 392

to seek their own closest pose loss minimum. This result has inspired the use of the second loss function in the fourth experiment. 393

4.4. Experiment 4: estimating pose from real camera images 394

The fourth and last experiment focuses on evaluation on real camera images. The CNN is trained on training dataset B and 395

evaluated on test dataset F (real camera images) and G (synthetic copies of the poses represented in the real camera image dataset). 396

The loss function given by Equation 3 is used again. The results are shown in Figure 10. 397

Contrasting Figures 10 a and c reveals the expected result that the relative attitude prediction about the symmetry axis is slightly 398

more accurate for the case of synthetic images, which are a part of the domain that the CNN was trained on. Comparing the 399

longitudinal axis projection errors in Figures b and d show that in the case of the real image dataset, there are pose estimates, where 400

the symmetry axis is pointing in the wrong direction. 401

The domain randomisation process has been successful in this case as the CNN trained on the domain randomized images of 402

training dataset B gives mostly reasonable pose estimates, similar to how the CNN performs on the synthetic dataset. However, it 403

has also been demonstrated that the domain randomization procedure is inadequate for covering the specific lighting issues related 404

to a too high exposure time setting on the camera sensor as these produce symmetry-axis flipping pose estimation errors. 405

4.5. Summary of experiment results 406

Table 4 summarizes the accuracy and recall metrics of the presented experiments 1-4. All errors are calculated with respect to 407

the closest plausible ambiguous pose solution out of the set of six ambiguous poses due to the hexagonal main body structure of the 408

satellite. Recall is determined as the percentage of pose estimates with less than 30◦ degrees of error. Furthermore, the accuracy 409

metrics are only calculated on pose estimates that pass this accuracy threshold criteria. This threshold was chosen as the maximum 410

plausible error in terms of the set of possible ambiguous poses due to symmetry. Anything larger than this is definitely a case of 411

failure. 412
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Experiment Lateral axis error [◦] Longitudinal axis er-
ror [◦]

Quaternion error [◦] Recall

Experiment 1, 5 meter range 2.55 ± 2.68 2.58 ± 2.88 3.27 ± 3.14 100 %
Experiment 1, 17.5 meter range 0.75 ± 0.69 0.77 ± 0.72 0.94 ± 0.80 99.86 %
Experiment 1, 30 meter range 1.14 ± 2.38 1.10 ± 1.97 1.33 ± 2.26 98.81 %
Experiment 2, 5 meter range 2.08 ± 2.36 2.05 ± 1.55 2.66 ± 2.43 99.86 %
Experiment 2, 17.5 meter range 1.17 ± 1.08 1.33 ± 0.93 1.59 ± 1.19 100 %
Experiment 2, 30 meter range 1.35 ± 1.59 1.50 ± 1.22 1.80 ± 1.67 99.73 %
Experiment 3, 5 meter range 1.57 ± 1.01 1.75 ± 1.21 2.13 ± 1.25 99.86 %
Experiment 3, 17.5 meter range 0.91 ± 0.72 1.15 ± 0.82 1.36 ± 0.92 100 %
Experiment 3, 30 meter range 1.04 ± 1.01 1.37 ± 1.87 1.60 ± 1.88 100 %
Experiment 4, real camera images,
ranges 6 - 17 meters

1.26 ± 1.56 1.52 ± 2.44 1.81 ± 2.45 71.66 %

Experiment 4, synthetic images, ranges
6 - 17 meters

0.77 ± 0.64 0.89 ± 1.01 1.09 ± 1.00 100 %

Table 4: Summary of the accuracy and recall metrics of the presented experiments 1-4.

4.6. Dissecting outliers from experiments 1-4413

Some outlying pose estimates can be seen in the error histograms of all experiments. However, the combined effect of domain414

randomisation in training images and the more flexible loss function of Equation (3) seem to have a reducing effect in terms of415

outliers. This section will explore some of the outlying cases seen in experiments 1-4.416

The first discovered failure mode is such that the symmetry axis is flipped in the case of some pose estimates, most prominently417

in the case of the real image dataset F in the fourth experiment. Most of the images in the representative approach image datasets F418

and G are such that the chaser approaches the target along the symmetry axis towards the front column with the docking adapter.419

From this viewpoint, the projected keypoints are quite similar for the two relative attitudes where the column is in the front or420

back. Some adverse lighting conditions with intense reflections cause the CNN to predict the keypoints for the wrong pose as421

demonstrated in Figure 11. The predicted keypoints fit better the situation where the column with the docking adapter is on the422

other side of the spacecraft, despite some visible details from the front octagonal rail that clearly correspond to the front of the423

spacecraft. Admittedly, the camera images with these conditions are perhaps unnecessarily difficult as an exposure correction could424

mitigate the issue, but it’s still desirable for the CNN to not make this mistake in conditions where distinguishing visual details425

are available to make the correct pose prediction. Figure 12 presents a comparison of the lighting conditions of the spacecraft and426

the corresponding longitudinal axis error. The lighting of the spacecraft has been measured as the mean of the pixel intensities427

over the part of the image corresponding to the spacecraft. The coverage of the synthetic dataset is wider in terms of the mean428

brightness, but that has not been enough to trigger the same sorts of erroneous pose estimates as the real image dataset. It is likely429

that the synthetic image production pipeline has not been able to suitable reproduce the sort of local lighting issues as seen in the430

real image dataset. To illustrate this further, Figure 13 presents histograms of pixel intensities belonging to the spacecraft across the431

entire synthetic and real camera image datasets. It is clear that the real camera image dataset features many images with maximum432

brightness values, given that the histogram in Figure 13a shows a 40 percent likelyhood of nearly maximum brightness pixels on433

the spacecraft throughout the dataset. This corresponds with the assessment that the exposure time for the camera has been too434

high.435

The second failure mode is to do with the keypoint estimates from the CNN not agreeing on which symmetrically ambiguous436

pose to estimate. An example of this failure mode is shown in Figure 14, which shows the failed predictions on a real camera image437

from the EPOS robotic navigation laboratory. First of all, the predictions of the keypoints belonging to the hexagonal main body438
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Solution eq[◦] PnP
Team ”UniAdelaide” (Chen et al., 2019) 0.41 ± 1.50 Yes
Team ”EPFL cvlab” (Gerard, 2019) 0.91 ± 1.29 Yes
Team ”pedro fairspace” (Proença & Gao, 2020) 2.49 ± 3.02 No
SLAB baseline (Park et al., 2019b) 2.62 ± 2.90 Yes
Our solution (experiment 3, 5m range) 2.24 ± 3.11 Yes
Our solution (experiment 3, 15m range) 1.36 ± 0.92 Yes
Our solution (experiment 3, 30m range) 1.60 ± 1.88 Yes
Our solution (experiment 4) 1.91 ± 3.34 Yes

Table 5: Comparison of the solution presented in this paper with the solutions of the 2019 Pose Estimation Challenge.

are spread between several ground truth keypoints. Secondly, the predicted keypoint cluster belonging to the tip of the docking 439

column has moved away from the actual tip of the column toward the back of the spacecraft. Most likely, the rather intense lighting 440

conditions on the front of the spacecraft as discussed for the case of the first failure mode has confused the CNN in terms of whether 441

it is seeing the front or back of the spacecraft, and that is why it has predicted an average location between front and back positions 442

for the front column. 443

The problematic lighting conditions featured in the real camera dataset may not necessarily be encountered in operation as 444

the camera automatic exposure compensation mode has been turned off and is likely set such that the image is overexposed. 445

Furthermore, the camera features a high dynamic range mode that is not used for this dataset. Likely, the CNN would perform 446

better if these more optimal camera modes were used. However, these borderline cases help to understand the limits of the CNN in 447

terms of estimating the pose in various conditions. 448

4.7. Comparison to state-of-the art 449

This section compares the performance of the presented method against the performance of the solutions submitted to the ESA 450

Pose Estimation Challenge 2019 as presented in (Kisantal et al., 2020). The mean and standard orientation errors of the challenge 451

solutions and the solution as presented here are presented in Table 5. The comparison is not direct due to a number of reasons. 452

Firstly, the image datasets that the pose initializers were subjected to are different - the Pose Estimator Challenge utilized the 453

SPEED dataset for training and evaluation. The first three solutions of the competition cannot be trained or evaluated on the dataset 454

presented in this work as they are not prepared to handle symmetric targets. The second important difference is that for our solution 455

the rotational error has been calculated with respect to the closest ambiguous pose solution, as the presented solution is yet unable 456

to provide the correct unique pose solution out of the six possible answers. This capability is left for future work. The third 457

important difference is that in the case of the present work, the solution is ”helped” by pre-cropping the images rather than using 458

an object detector as many of the challenge solutions to crop the image. The fourth important distinction is that in the case of our 459

solution, training was stopped at a point where keypoint estimation loss was still reducing, whereas the challenge solutions were 460

likely pushed to limits in terms of the attainable accuracy. Regardless of these differences, comparing the presented solution to the 461

performance of the 2019 Pose Estimation Challenge solutions is valuable in order to show that the performance has not dropped 462

significantly as a result of the loss function modification. 463

5. Future work 464

There are further developments planned to improve the presented pose initialisation system. The first drawback of the system is 465

that it yields one of the plausible ambiguous poses due to symmetry. However, the spacecraft does feature a few mechanical compo- 466

nents on the docking adapter that allow unique identification of the pose. The next step in this respect is to include functionality that 467
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allows to identify these details such as to yield the correct unique pose at least when the chaser is close to the target. The second468

drawback of the system is related to the application of the pose initialisation system to the real camera images. Here, multiple469

steps are planned. First, adjustments to the domain randomisation procedure should be explored with the intention to capture the470

intense local lighting phenomena seen in the real camera image dataset, which were the cause of multiple failure modes. Secondly,471

it should be explored whether the keypoint predictions can be made more reliable in the cases where the adverse light conditions472

obscured most of the docking adapter column, yet still revealing some details where a human observer could correctly identify the473

front side of the spacecraft.474

6. Conclusions475

The experiments conducted demonstrate that the keypoint-regression CNN combined with a EPnP-solver have the potential to476

be viable for a spacecraft target exhibiting finite symmetry in a relative navigation setting. It was demonstrated that a domain477

randomisation procedure enables to train the pose estimation system on synthetic images, and successfully evaluate it on real478

camera images without a significant loss in pose estimation accuracy. On the other hand, 30 percent of the pose estimates were479

associated with a 180-degree-flip of the symmetry axis. As these flips were only seen in the real camera images and not the synthetic480

images, it was concluded that the domain randomisation procedure presented is not adequate for dealing with local overlit regions481

due to camera exposure time being too high and with the sun reflecting directly into the camera. A modified loss function that482

allows convergence on selected ambiguous poses due to symmetry enables the CNN to converge on the ground truth keypoints483

successfully. However, multiple undesirable phenomena were demonstrated in this respect. Firstly, the selection of the keypoints484

is non-trivial, and can have an impact on nature of the specific failure modes of the system. For example, estimating the corner485

keypoints on the front octagonal docking railing is less successful than the corner keypoints of the main hexagonal body, because486

the column railing is sometimes fully hidden and has a certain geometric relationship to the hexagonal body as well. Secondly, a487

high intensity local reflection off the MLI on the front side of the spacecraft with the docking column could shift the entire entire488

group of redundant keypoint estimates toward an alternative estimate due to visual ambiguity. This phenomenon makes it clear that489

the spread of the redundant keypoint estimates is not a good enough indicator that the pose estimate is actually wrong, and therefore490

an alternative source of uncertainty must be found for self-diagnostic capability. Furthermore, it points to the fact that the redundant491

estimates are not actually fully independent and all point toward the same problematic answer despite being situated in different492

locations spatially in the output tensor. In other words, the spatial location of the keypoint estimates does not correlate with a more493

reliable estimate locally in an area of the input image with better visibility of details of the spacecraft body.494
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Fig. 1: Estimated keypoints on the spacecraft body as marked with coloured circles.
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(a) (b)

(c)

Fig. 2: Several views of the representative target spacecraft as rendered in Blender.
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Fig. 3: Node setup for background environment in Blender

Fig. 4: Equirectangular projection of the surrounding environment texture, generated via SpaceEngine
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Fig. 5: Example outputs of Magic Texture Node (left) and Voronoi Texture Node(right)

Fig. 6: A view of the robotic arm system that simulates proximity manoeuvres via movement of a sensor package and a physical spacecraft mock-up at the EPOS
2.0 laboratory. Photo: DLR, CC-BY 3.0
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(a) (b)

(c) (d)

(e) (f)

Fig. 7: Comprehensive results of the first experiment. Figures a, c, and e correspond to lateral axis projection error histograms at ranges 5, 17.5, and 30 m,
respectively. Figures b, d, and f correspond to longitudinal axis projection error histograms at ranges 5, 17.5, and 30 m, respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: Comprehensive results of the second experiment. Figures a, c, and e correspond to lateral axis projection error histograms at ranges 5, 17.5, and 30 m,
respectively. Figures b, d, and f correspond to longitudinal axis projection error histograms at ranges 5, 17.5, and 30 m, respectively.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9: Comprehensive results of the third experiment. Figures a, c, and e correspond to lateral axis projection error histograms at ranges 5, 17.5, and 30 m,
respectively. Figures b, d, and f correspond to longitudinal axis projection error histograms at ranges 5, 17.5, and 30 m, respectively.
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(a) (b)

(c) (d)

Fig. 10: Comprehensive results of the fourth experiment. Figure a and c present lateral axis projection errors for real and synthetic data for a representative approach
maneuver, respectively. Figures b and c present longitudinal axis projection errors for real and synthetic data, respectively.
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Fig. 11: A failure mode of the CNN, where the CNN predicts keypoints for the wrong pose due to intensely adverse lighting conditions. The large colored circles
correspond to the grount truth keypoints, and the smaller clusters of points correspond to the keypoints predicted by all the cells on the output side of the CNN.
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(a) (b)

Fig. 12: Comparison of longitudinal error versus mean brightness of the spacecraft for the synthetic and real image dataset. Figure a corresponds to the real camera
image dataset and Figure b corresponds to the synthetic image dataset. Pixel brightness ranges have been normalized to range from 0 to 1.

(a) (b)

Fig. 13: Comparison of spacecraft pixel intensity histograms across the whole dataset for the synthetic and real image dataset. Figure a corresponds to the real
camera image dataset and Figure b corresponds to the synthetic image dataset. Pixel brightness ranges have been normalized to range from 0 to 1.
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Fig. 14: A failure mode of the CNN, where it is unable to decide which of the ambiguous poses to estimate, spreading the keypoints between the two possibilities.
The large colored circles correspond to the grount truth keypoints, and the smaller clusters of points correspond to the keypoints predicted by all the cells on the
output side of the CNN.
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