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Introduction 
In-line Process Analytical Technologies (PAT) are useful for measurement of particle 
characteristics (e.g. particle size distribution, PSD) in a non-destructive manner and with high 
time resolution inaccessible with off-line techniques. These in-situ, time-varying 
measurements can be essential for process monitoring and accurate population balance 
modelling.  

This work is concerned with assessing the performance of using in-line image and chord 
length distribution (CLD) analysis for PSD measurement. Imaging is obtained through in-line 
microscopy (e.g. BlazeMetrics’ Blaze 400, or Mettler Toledo’s Particle Vision and 
Measurement, PVM), while CLD can be obtained via light-scattering methods (e.g. Mettler 
Toledo’s Focused Beam Reflectance Measurement, FBRM). Sensor data is analysed through 
different methods to yield PSDs (amongst other key particle characteristics). Traditional 
white-box (i.e. not machine learning) analyses can involve length “tuning” steps wherein the 
analysis is adapted to work with the system (Cardona et al. 2018), or are derived 
mathematically and are restricted to a small domain (Agimelen et al. 2015). Despite these 
drawbacks, these techniques are demonstrably effective, once tuned or when applied to the 
appropriate domain. Deep learning (black box) models have potentially increased 
performance and flexibility over white box techniques. This is in part due to their large 
number of parameters and due to modern breakthroughs in model design (He et al. 2017). 
Deep learning models are widely used in image analysis, with further applicability to other 
domains such as CLD transformation. 

Different PAT sensors perform differently under different conditions. For image-based 
measurement: small particles may not be measurable with great accuracy due to resolution 
issues, concentrated systems will impact measurement of the particles due to particle 
overlaps, and large particles are more likely to interact with the edge of the image field of 
view and therefore are less likely to be sized resulting in left-skewed PSDs. For FBRM-based 
measurements: translucent particles cause a phenomenon called “chord splitting” wherein a 
single chord is mis-registered as multiple smaller chords resulting in modes appearing at lower 
bins than expected on the PSD. In addition, low concentration systems (small number of 
particles) can result in few counts in the CLD and present as noise and thus impacting the 
transformation from CLD to PSD.  
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Methods 
In-line measurements were taken with the Mettler Toledo FBRM G400 (CLD) and PVM V819 
(Imaging) probes of Polystyrene Standard Spheres (PolyS), a mixture of Polystyrene Spheres 
and Ellipsoids (PolyE), and of Lactose particles (Figure 3, (b)-(e)). In-line-derived PSDs from a 
range of crystal sizes and concentrations were compared with a ground truth either from off-
line microscopy (PolyE, Lactose) or from manufacturer specifications (PolyS). 

Two image analysis methods were employed. The first is a traditional approach (ImagingApp 
(Cardona et al. 2018)) wherein a grayscale image is converted (in a process called 
segmentation) to a black and white mask (black pixels representing background and white 
being part of a particle) by applying edge detection and binarising filters. The second image 
analysis is a machine learning approach. We used the Detectron 2 (Wu et al. 2019) framework 
to train a Mask-RCNN (He et al. 2017) image segmentation model. The model was used pre-
trained on the Common Objects in COntext (COCO) dataset and fine-tuned on a dataset 
composed of examples of PVM images from each system (PolyS, PolyE, Lactose) annotated to 
identify particles. Images are segmented (Figure 1) to find particles, which are sized by fitting 
a rotated rectangle. Sizes are collected, histogrammed, and normalised to yield the number 
density particle size distribution. 

Mirroring image analysis, two CLD analyses are employed: a white-box approach and a black-
box approach. The white-box approach (Agimelen et al. 2015) relies on a probabilistic model. 
The probabilistic model yields a transformation matrix for the forward problem of converting 
a PSD to its CLD. The inverse problem is complicated as the matrix is singular. An optimisation 
scheme is employed to search for the PSD most likely to correspond to the given CLD. A 
machine learning approach is also employed, using a model based on the popular ResNet (He 
et al. 2015) model used widely in image analysis. This model is trained on a subset of the 
measured CLD (PolyS, PolyE, Lactose) linked with offline-microscopy-derived PSDs 
(Morphologi G3). An example of applying these approaches is shown on Figure 2. 
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This gives in total four tools for obtaining particle size distribution: two analyses for each of 
two sensors, a sensor and analysis combination constitutes a “tool”. In order to choose 
between tools, they need to be evaluated.  
 
Tool evaluation is performed by comparing PSDs obtained using each tool with ground truth 
PSDs obtained from offline microscopy (for PolyE, Lactose) or manufacturer specification (for 
PolyS). Comparison is made through use of two metrics (distance functions): Root Mean 
Square Error (RMSE) and Integral Absolute Error of Cumulative Density Function (IAE of CDF). 
The RMSE metric (square root of the mean of the square difference in two PSDs) is well known 
and commonly used, however it saturates for large discrepancies in PSDs making it only 
suitable where the two inputs have some crossover. The second metric in use is the CDF of 
IAE, related to the Wasserstein Distance, and defined as the integral of the absolute error 
between the cumulative sum of the input PSDs. IAE of CDF gives an indication of how different 
two PSDs are but, importantly, the measure does not saturate. 
 
Results and Discussion 
Statistical (white-box) CLD analysis is found to be sensitive to non-uniform particle shape 
distributions, and to the artefacts introduced by the sensor itself. This is due to the physical 
basis of the transformation model and complicated by the non-trivial optimisation problem 
of finding the likely solution. In general, this method performs best with smaller particle sizes, 
but does not have an apparent trend with respect to concentration. The size dependency is 
understandable as our test materials for this method (polystyrene particles) are translucent 
and are therefore prone to chord splitting. The shape of the distribution should be preserved 
even at lower concentrations and the shape is important in the transformation (more so than 
raw count values). Low counts due to low concentration could yield noisier CLD, but this was 
not seen in our data (possibly due to large acquisition time making up for the low number of 
particles). 
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ML (black-box) CLD analysis yields improved results: output is very close to the ground truth 
(manufacturer specification, offline microscopy, or offline laser diffraction) but is limited by 
the training data: a much more varied training set is required for broader applicability. 
 
Both white- and black-box approaches for image analysis show a similar trend in error with 
size: the largest (>30% of frame) and smallest (<10% of frame) particle sizes have higher error. 
This effect is shown for the machine-learning (black-box) approach on Figure 3 (a). This is due 
to resolution impacting measurement of small particles, while larger particles are less likely 
to be sampled at all. However, the white-box approach shows a trend in concentration: higher 
concentrations give higher error. This is not seen in the machine learning approach as the 
Mask-RCNN model is able to segment particles even in overlap (at least the particle in front, 
if not the background particle). 
 
Conclusions 
In this work we demonstrate a process for evaluation of in-line PAT through two in-line 
sensors, PVM and FBRM, each analysed using two techniques (a deterministic/white-box 
approach and a machine-learning/black box approach). These evaluations were shown in 
detail, showing trends in size and concentration. Image analysis has higher error for the 
largest particle sizes (> 30% of the frame) and smallest particle sizes (< 10% of the frame), 
for the PVM V819 sensor employed here. White-box CLD to PSD transformation has a strong 
reliance on size (directly proportional), but for our data shows no concentration 
dependence. This could inform the choice of using image analysis for middling sizes, and 
CLD transformation for small sizes. Larger particles may require the use of a larger imaging 
sensor, lesser magnification, or another in-line measurement technique not considered 
here. 
 
Acknowledgements 
This work was funded jointly by AstraZeneca, Bayer, Eli Lilly, GlaxoSmithKline, Novartis, 
Pfizer, Roche, Takeda, and UCB and was carried out within the CMAC Future Manufacturing 
Research Hub (Grant ref: EP/P006965/1). We are grateful to Francesca Perciballi 

Improved particle characterisation from in-line PAT: comparison of deep learning and white-box methods

4



(AstraZeneca), Neda Nazemifard (Takeda), Vaclav Svoboda (Pfizer), Chris Burcham (Eli Lilly), 
and Jan-Sebastiaan Uyttersprot (UCB) for project guidance.  
 
References 
Agimelen, O. S., Hamilton, P., Haley, I., Nordon, A., Vasile, M., Sefcik, J., and Mulholland, A. 
(2015) Estimate of particle size distribution and aspect ratio of non-spherical particles from 
chord length distribution. Chemical Engineering Science, 123: 629-640. 
 
Cardona, J., Ferreira, C., McGinty, J., Hamilton, A., Agimelen, O. S., Cleary, A., Atkinson, R., 
Michie, C., Marshall, S., Chen, Y.-C., Sefcik, J., Andonovic, I., and Tachtatzis, C. (2018) Image 
analysis framework with focus evaluation for in-situ characterisation of particle size and shape 
attributes. Chemical Engineering Science, 191: 208-231. 
 
He, K., Xiangyu Z., Shaoqing R., Jian S. (2015) Deep Residual Learning for Image Recognition. 
https://doi.org/10.48550/arXiv.1512.03385  
 
He, K., Gkioxari, G., Dollár, P., Girshick, R. (2017) Mask R-CNN. IEEE International Conference 
on Computer Vision (ICCV). 2980-2988 
 
Wu, Y., Kirillov, A., Massa, F., Lo, W.-Y., and Girshick, R. (2019) Detectron 2. 
https://github.com/facebookresearch/detectron2 

Improved particle characterisation from in-line PAT: comparison of deep learning and white-box methods

5

https://doi.org/10.48550/arXiv.1512.03385

	Introduction
	Methods
	Results and Discussion
	Conclusions
	Acknowledgements
	References



