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ABSTRACT The electrification of heat and transport through the uptake of low carbon technologies (LCTs)
is expected to pose significant planning and management challenges for distribution network operators
(DNOs) in the coming decades. Therefore, to support investment decision making there is a requirement
to understand the impact LCTs will have on low voltage (LV) distribution network infrastructure across
diverse geographical areas. However, LV networks are not only radically different in terms of topology
and physical asset characteristics, but also in terms of the demand they serve which is sensitive to the
diversity of local conditions such as climate, consumer demographic and building stock. As such, there is
an increasing requirement to capture elements of this diversity in the development of LV network and LCT
modeling approaches to better quantify place-based LCT impact and to inform the quantification of local
area flexibility. In turn, using Python and OpenDSS, this work presents a novel scalable approach to localized
LV network and LCT impact modeling by coupling two methodologies; a LV network model development
methodology and a LCT impact assessment methodology which accounts for both the electrification of
heat and transport with consideration for the diversity of residential heat demand. The methodology is
demonstrated on LVnetworks in Scotland through quantification of LCT network impact against key network
assessment metrics. The findings demonstrate the value in spatial and temporal high-resolution modeling at
scale, emphasizing a need to consider the combined impact of electrified heat and transport in future network
investment planning.

INDEX TERMS Distribution networks, GIS, heat pumps, electric vehicles, flexibility management.

I. INTRODUCTION
A. MOTIVATION
Akey component of achievingmajor carbon emissions reduc-
tion targets will be the electrification of existing widely used
carbon-intensive technologies in the domestic heating and
transport sectors [1]. With up to 913,000 electric vehicles
(EVs) and up to 564,000 heat pumps (HPs) anticipated in
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the north of Scotland by 2045, the displacement of internal
combustion engine vehicles with EVs and conventional gas
boilers with HPs is expected to be at the forefront of this elec-
trification [2]. The nature of these technologies dictates that
they will be connected to low voltage (LV) distribution net-
works. However, as existing LV networks were not designed
to accommodate their variable demand requirements, dis-
tribution network operators (DNOs) are tasked with the
challenge of economically ensuring appropriate investment
in infrastructure and the development of new management
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FIGURE 1. Diversity in building stock across Scotland (excluding
Shetland) based on available EPC data from the homes energy efficiency
database mapped to geospatial data zone boundaries. (a) EPC band.
(b) heat source.

solutions to support their uptake without compromising net-
work resiliency [3]. To ensure cost efficient investment,
there is a growing requirement to reduce the uncertainty
surrounding the impact these technologies will have on exist-
ing infrastructure in different geographic areas [2]. Such
insights will support DNO decision making by informing
the network planning and management requirements of key
infrastructure. Also, supporting wider decarbonization efforts
within the context of local area energy planning by informing
stakeholders such as local authorities on the impacts of their
decarbonization strategies.

A significant challenge with achieving the decarbonization
of heat and transport at the volumes and scales required is that
across any given DNO license area, sections of LV network
are not only diverse in network topology and the underlying
physical characteristics but also in terms of the demand they
serve which is sensitive to the diversity of local conditions
such as local climate, consumer demographic and building
stock which can be key influencing factors for LCT uptake
and utilization [4], [5], [6]. To emphasize the scale of diversity
in building stock across Scotland, Fig. 1 is presented where
available household energy performance certificate (EPC)
data from the homes energy efficiency database (HEED) [7]
is mapped to geospatial data zone boundaries1 highlighting
the variations in household energy performance and heat
source.

At present, the direct impact local conditions have on
domestic heat and transport demand is not yet fully under-
stood [4] and therefore the uncertainty of LCT impact on
LV distribution networks is exacerbated across different geo-
graphical areas. Fig. 2 highlights that this uncertainty is
further exacerbated when there are a combination of LCTs
of different types connected within the network which are

1Data zones are groups of Census output areas which have populations of
between 500 and 1,000 household residents.

FIGURE 2. High level overview of how interrelated local conditions are
contributing to an increasing uncertainty in DNO decision making.

influenced by a complex interdependency of these local
conditions. This motivates the authors to further investigate
the scalability of high-resolution LV network modeling in
tandem with localized combinational LCT impact modeling
within the context of electrified heat and transport.

B. RELATED LITERATURE
1) DISTRIBUTION NETWORKS
Historically, due to the relatively predictable nature of res-
idential LV network demand there was a limited technical
requirement for modeling of LV networks; subsequently,
consumer demand was typically modeled as lumped loads
with a greater emphasis placed on the high voltage (HV) and
transmission networks [8]. However, the need to accurately
model these networks has evolved and is now of significant
interest to DNOs as they look to support and manage the
uptake of LCTs on their networks [9]. In recognition of that
need, literature such as [10], [11], [12], and [13] considered
the use of fractal geometry in a bid to capture the com-
plexity and disparate nature of LV networks. This approach
along with others e.g., [14], allows for modeling of ‘generic’
LV networks that are useful for broad assessments where
less consideration is placed on specific networks and their
locale. However, in order to conduct more comprehensive
place-based assessments of physical infrastructure, litera-
ture such as [15] has identified that geographic information
system (GIS) data which includes technical and spatial infor-
mation of infrastructure has significant network modeling
potential. The GIS driven LV distribution network models
developed in [15] and [16], have been extensively validated
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and used in numerous works including [15], [17], [18], [19]
demonstrating the value of GIS data-driven modeling for
LV network development. However, since the publication
of [15] and [16] GIS data quality and modeling capability
has progressed in line with the need for detailed localized
place-based modeling [20], [21].

2) IMPACT OF LCT UPTAKE
Due to the stochastic demand requirements of LCTs, numer-
ous studies including [11], [22] have been concerned with the
impact their uptake will have on existing LV network infras-
tructure. Other impact assessment works such as [17], [23],
and [24] have also focused on understanding the network
impact associated with individual technologies and were used
as means of demonstrating modeling capability. However,
these works did not consider the simultaneous impact from
different types of LCTs. In [25], the combinational impact
of multiple LCTs on household demand profiles is explored.
However, network impact is neglected. Additionally, in [26],
although the impact of electrified heat and transport is
explored, only a single network is considered. While there is
a wealth of research on the effects individual LCTs have on
distribution networks, and some area-specific combinational
works, there is limited research on the combinational effects
of EVs and HPs on network infrastructure across different
locations with diverse characteristics. Primarily as detailed
modeling of these technologies and the LV networks typically
involves a trade-off between modeling effort and scalability.
Works such as [15], have looked to overcome this where
Navarro-Espinosa et al. use a Monte Carlo assessment tech-
nique to stochastically assign HP and EV demand profiles,
which were produced from heating demand data and EV trial
data respectively, to network models of 128 UK distribution
feeders in order to evaluate the voltage and thermal impacts
of these technologies for a set of penetration scenarios. How-
ever, existing works tend not to consider the geographical
and demographic context of the households involved. The
principle of incorporating locally-specific dimensions into
LV and LCT network modeling has been considered in works
such as [6], where consumer demographic information is used
in a probabilistic assessment of EV penetration on a GIS
modeled distribution network demonstrating the potential of
diversified EV charging and in [27] which considers PV
and HP modeling via a probabilistic building physics mod-
eling approach. However, there remains scope to progress
place-based LCT impact modeling by accounting for local
conditions and highly representative LV network modeling.

3) CONTRIBUTION
From the related literature described in Section I-B it is evi-
dent that although works have explored this research space,
gaps remain within the collective knowledge and therefore
this paper aims to address them as follows:

Firstly, this work recognizes that the diversity of LV
distribution networks, consumer demographic and building

stock across a geographic area presents a complex set of
interdependence that requires consideration when developing
LV network models and modeling LCT demand. Therefore,
a scalable data-driven modeling methodology is described in
this work (Section II) that includes the mapping and integra-
tion of external local-specific spatial datasets with network
GIS data and builds on the existing works (described in
Section I-B.1) used to develop ‘generic-GIS’ electrical net-
workmodels by including a local spatial reference that is used
to support high-resolution place-based analysis and granular
localized LCT demand modeling.

Secondly, a localized LV network assessmentmethodology
is presented (Section III) which incorporates modeling of
both EVs and HPs. Where works described in Section I-B.2
infer heat demand from metadata for HP modeling, this
work couples two established methods to convert geospa-
tially linked gas demand to equivalent electrical heat demand
(Section III-A.1) to account for the diversity of domestic
heat demand across different consumer demographics and
building stock. The developed methodology takes a statisti-
cal approach to LCT impact assessment where the primary
objective is to demonstrate model scalability and provide jus-
tification against the literature that such modeling is valuable
and necessary.

These two methodologies are coupled together to form a
novel scalable approach to localized LV network LCT impact
assessment which is summarized by Fig. 3. The value of
which is outlined in terms of its ability to inform DNO
decision making.

The remainder of the paper is organized as follows.
Section II describes the localized LV network development
methodology by detailing the data, mapping and heuristic
used to develop detailed representative LV network models.
Section III describes the localized LV network assessment
methodology by detailing the EV and HP modeling tech-
niques and summarizing the assessment metrics used to
quantify impact. Section IV provides a breakdown of the
results and relevant discussion, and Section V concludes the
work and provides a recommendation for future research.

II. LOCALIZED LV NETWORK DEVELOPMENT
This section of the paper describes the methodology used to
develop localized LV network models which is summarized
by Fig. 4. This includes a description of the data used to
drive model development and the associated transformation
process. A description of the approach used to model domes-
tic consumer demand across different geographical areas is
also provided along with a summary of a small sample of
developed networks.

A. DESCRIPTION OF GIS DATA
In support of this research, GIS data for Scottish hydro elec-
tric power distribution (SHPED) was made available to the
authors in the form of shapefiles, which is a geospatial vector
data format developed by the environmental systems research
institute (ESRI) [28]. This includes spatial and technical
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FIGURE 3. High-level overview of the methodology coupling for localized LV network LCT impact assessment.

FIGURE 4. High-level overview of the localized LV network development methodology.

information for all infrastructure across their entire license
area which supplies the north of Scotland, specifically in
relation to this work:

• Substations: both primary and secondary transformers.
• Cables and Overhead Lines: HV and LV underground
cables and overhead lines.

• Service Locations: points where a service is provided
i.e., consumer load points.

• Switching Devices: switchgear e.g., fuses and link
boxes.

The modeling developed in this work is tailored to this GIS
data which is suitable for modeling of LV networks in both
rural and urban population centers. However, the hierarchical
methodology could be applied to any GIS network dataset.

B. DESCRIPTION AND MAPPING OF EXTERNAL DATASETS
As previously mentioned, GIS network data can be inte-
grated with external geospatial datasets. This advances the
network models beyond ‘generic-GIS’ electrical models and
allows for enhanced classification of networks and localized

place-based modeling. The following describes the external
datasets considered in this work and their integration with the
GIS network data.2

1) ANNUAL POSTCODE LEVEL GAS DEMAND
For on-gas networks, the department for business, energy &
industrial strategy (BEIS) records information relating to the
annual postcode level gas consumption [29]. This includes the
mean annual consumption (kWh) for each postcode in 2018
(updated December 2020). This information is first mapped
to the shapefile containing geospatial digital postcode bound-
aries for Scotland and then information availability is mapped
to the GIS service points i.e., each service point would have
a status that indicates if gas consumption demand data is
available for the associated postcode. For visual inspection,
GIS modeling software QGIS [30], can be used to overlay the
gas detailed postcode boundaries with the GIS network. This

2The mapping was carried out in Python and the GeoPandas package [33]
was used to manage the geospatial data stored within each shapefile.
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again allows for targeted modeling, as areas of interest can be
inspected, and GIS data quality assessed before undertaking
further detailed network modeling. The mapping of this data
directly links to the HP modeling approach used in this work.

2) SCOTTISH INDEX OF MULTIPLE DEPRIVATION
The Scottish index of multiple deprivation (SIMD) is the
Scottish Government’s standard approach to identifying areas
of multiple deprivation which is based on seven domains:
income, employment, education, health, access to services,
crime and housing [31]. It is essentially an area-based mea-
sure of relative deprivation across 6,976 small areas known as
data zones that are ranked from most deprived (ranked 1) to
least deprived (ranked 6,976) [31]. The 2020 SIMD geospa-
tial data is obtained from [32] and an SIMD decile of 1-10
used to categorize the 6,976 data zones is mapped to the GIS
service points. This provides a means of conducting detailed
socio-technical modeling [21] that has the ability to inform
government policy and potentially the network operator. For
example, due to the current cost of LCTs, areas of lower social
deprivation are likely to see an initial uptake that requires
network investment and reinforcement [2]. However, areas of
higher social deprivation using carbon intensive technologies
cannot be ignored or ‘left behind’ in the energy transition
as they too will need to decarbonize in order to achieve net
zero in the timescales required. Therefore, the transition to
low carbon alternatives will have to be affordable or policy
through political and regulatory decisions will be necessary
to support those in these areas to realize the legally binding
net zero targets. What exactly those decisions will look like
and how policy makers and local government will address
this unique challenge is an on-going difficulty. Nevertheless,
these decisions will ultimately have an impact on electric-
ity infrastructure though the extent of which still remains
unclear. As a result, there is a growing need for targeted
socio-technical and infrastructure linked modeling which this
mapping can support.

C. GIS TO NETWORK MODEL TRANSFORMATION
METHODOLOGY
The GIS to electrical network transformation methodology
is split into two models; the Search, Find and Reduction
Model, and the GIS to Network Conversion Model, where
the approach used to develop these models is described in
detail within this section. These models have been developed
in Python with use of the GeoPandas package [33]. The
electrical network models are developed in OpenDSS [34]
which allows for unbalanced quasi-static time-series analysis
via the Python COM interface.

1) SEARCH, FIND AND REDUCTION MODEL
In order to model each secondary transformer and associated
LV network independently, the Search, Find and Reduction
model has been developed for this work. Fig. 5 demonstrates
the model functionality for a single secondary transformer.

FIGURE 5. Example of the Search, Find and Reduction model.

From the initial extremely large search space which covers
the entire north of Scotland, a single transformer of interest
is identified (DNOs will have their own specific reasons
for selecting a particular transformer and associated network
to analyze, this could be due to the characteristics of the
transformer, the characteristics of the load supplied by it,
or any other number of reasons including concerns raisedwith
the volume of EV/HP uptake for a specific area as identified
through forecasting. The transformers and networks selected
for this work have been used to demonstrate the methodology
and areas with comparatively different heat demand have
been selected for the analysis) and a suitably ‘large’ radius
applied. From this, the GIS data search space is then reduced
to within this radius. The radius is modeled to be sufficiently
‘large’ that the associated LV network of any given trans-
former would not extend beyond the radius boundary.

For cabling, the GIS stores spatial information in the
form of one or more sequences of coordinates that create a
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FIGURE 6. Demonstration of the Breadth First Search algorithm for cable
and load connectivity.

multi-point line i.e., a series of coordinates form a segment,
and a series of segments form a multi-point line, and a series
of multi-point lines would then in principle form a feeder.
However, this format does not support the connectivity of
lines necessary for conventional power flow modeling (as
multi-point lines are not connected), therefore, to facilitate
this, common points (individual sets of coordinates) must
be identified where one or more multi-point lines start or
end. From this, a breadth first search (BFS) algorithm is
executed within the now significantly reduced search space
and the common points or ‘nodes’ are used to drive the
algorithm (note that multi-point lines containing start or end
points within a multi-point line are also identified). BFS is
a graph-based search algorithm that begins at a given node
known as the root node (in this case the transformer’s coor-
dinates) and then explores all neighboring nodes [35]. For
each of the neighboring nodes, it then explores the available
solution space, and this continues until all connected nodes
are located [35]. BFS algorithms are often computationally
expensive therefore by reducing the search space, modeling
time is significantly improved. The algorithm is executed
to locate all LV cabling connected to the transformer and
then when all cabling is located, the algorithm is executed
based on the network endpoints to locate the associated loads.
An example of this process is demonstrated in Fig. 6.

In [36], a number of GIS data quality related issues were
raised when using BFS algorithms for line connectivity,
particularly in relation to multi-point line start and end coor-
dinates not matching i.e., there is a ‘small’ gap between
the lines which influences the algorithm’s ability to identify
connecting lines. However, it is noted that since [36], the
quality of GIS data has significantly improved, and although
still existing to some degree the issues raised are far less
prominent for cabling in the observed dataset. In an attempt to
account for this in the current modeling a search tolerance has
been used to identify start and end points in close proximity
when no identically matching coordinates are found before
searching for network service points. It is noted that this is

also an issue when there are link boxes in between lines,
therefore all link boxes have been assumed open and essen-
tially operate as a breaking point between feeders supplied
from different transformers.

To validate the generated models an expected number of
feeders and consumers for each feeder is compared with
the final generated network. Should these match, the model
would then be visually inspected by a network planner, over-
laying the geospatial model on different visualization maps.
The judgement of model feasibility and representativeness
therefore lies with this actor. Should the connection points not
match for any particular reason, e.g., lack of data or an error
with the connectivity, the same actor would be required to
investigate the reasoning. In a future scenario with increased
visibility through improvements in monitoring and digitaliza-
tion additional functionality can be built in that would help to
minimize the need for this verification stage and to manage
model uncertainty e.g., use of strategically placed monitoring
and smart meter data at the LV level to support validation.

2) GIS TO ELECTRICAL NETWORK CONVERSION MODEL
Having generated the independent shapefiles for the trans-
former, cabling and loads, these are then converted from GIS
data format to OpenDSS power flow modeling format using
the conversion model presented in Fig. 7. The individual
multi-point lines are first identified, and it can be seen that
multi-point lines do not always start at the end of another but
often at a pair of coordinates within the multi-point line. This
poses a challenge for conventional electrical modeling bus
definition. Therefore, the associated joints based on intersect-
ing vertices (essentially where pairs of coordinates match)
are identified and the multi-point lines are segmented at these
points maintaining raw cable information and adjusting cable
length. Another dataset challenge is the orientation of the
coordinate sequences stored in the multi-point lines. There-
fore, these are re-orientated as necessary to improve model
workability. An optional step is then to further segment the
lines to individual pairs of coordinates for granular repre-
sentation. Finally, the shapefiles are converted to OpenDSS
network format by translating all raw GIS network informa-
tion into the electrical technical parameters necessary for LV
network modeling in OpenDSS e.g., cable length and type,
transformer rating and phasing. No detailed information for
line impedance values and current ratings is provided in the
GIS dataset therefore these are taken from [37], [38], and [39]
and aligned with cable type as applicable. Fundamentally, the
availability and quality of the technical information recorded
in the GIS database is what drives the accuracy and repre-
sentativeness of the developed LV networks. This is varied
across the license area and as expected, is particularly lacking
in areas where the DNO would have historically had limited
visibility e.g., sparsely located remote rural networks with
low consumer populations and an aged infrastructure.

To develop detailed and highly representative LV network
models, areas with higher data availability were focused on.
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FIGURE 7. Process involved in the GIS to Electrical Network Conversion
model.

However, a point of consideration with this approach is the
possibility that higher data availability may indicate that these
areas of network have recently been developed e.g., new
housing estates that have been sized with consideration for
the uptake of LCTs and an energy efficient building stock.

D. DEMAND MODELING
As smart meter data is unavailable for the areas concerned in
this work, the domestic demand baseload is modeled from
smart meter data recorded during the low carbon London
(LCL) project from 2011–2014 [40]. Following a similar
approach as adopted in [19], more than 1800 daily profiles for
each day in a winter period between 01/12/2013 – 27/02/2014
are considered to represent a worst-case demand scenario.

FIGURE 8. Base winter weekday demand profile for each Acorn category
compared with generic Elexon winter weekday profile.

TABLE 1. Summary of sample network characteristics [29].

In deployment of the smart meters, consumers were classi-
fied into three categories based on CACI Acorn Group [41];
‘Affluent’, ‘Comfortable’ and ‘Adversity’. From the smart
meter daily profiles, an average daily winter load profile for
each Acorn category is obtained. Fig. 8 compares these with
the generic class 1 Elexon profile [42]. The figure shows the
variation in demand between the Acorn categories, indicating
that ‘Affluent’ consumers have the greatest consumption and
‘Adversity’ the lowest. To account for heterogeneity in con-
sumer demographics across a geographic area the baseload
profiles shown are aligned to a simple distribution of the
SIMD for each consumer. This considers consumers baseload
demand for SIMD decile 9-10 to be ‘Affluent’, 4-8 to be
‘Comfortable’ and 1-3 to be ‘Adversity’ where boundaries are
defined based on parallels between the Acorn classification
and SIMD. This alignment ensures the marginal variation in
conventional domestic demand is captured across different
areas of LV network.

E. FINAL DEVELOPED NETWORKS
Fig. 9 presents an area in the north of Scotland highlighting
the location of several developed LV distribution network
models. These networks have been sampled to demonstrate
the scalability of the modeling methodology across a geo-
graphic area. A breakdown of the key individual network
characteristics is presented in Table 1 with the topology of
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FIGURE 9. Location of sample networks across northern Scotland demonstrating methodology scalability.

each provided in the appendix. The allocation of loads to
phases is provided in the raw GIS data, characterized by the
DNO as ‘Surveyed’, ‘Derived’ or ‘Assumed’. Networks with
higher concentration of surveyed loads have been focused on.
However, derivation and assumption of individual load phase
allocation is unavoidably present in certain instances.

The networks are classified based on the Urban Rural 2016
6-fold classification [43] and fall into the categories of either
Large Urban Areas, Other Urban Areas and Accessible Small
Towns. They are connected to the gas network and annual
postcode level gas demand consumption data is available.
In Fig. 11, an example of network 2 and the associated
postcode boundaries (the individual colors represent each
postcode associated with the network) is shown. As previ-
ously described, each postcode has an associated annualmean
gas demand which is used to develop representative localized
HP demand profiles. Individual postcode and the associated
gas demand information are available from public domain
sources in the UK [29]. An average postcodemean annual gas
demand for the related postcodes is provided for each network
in Table 1 to give some insight into the varying gas demand
requirements.

III. LOCALIZED LV NETWORK ASSESSMENT
In this section, a detailed combinational LCT impact assess-
ment methodology is developed and coupled to the method-
ology described in Section II. The corresponding sections
describe this coupling and detail the assessment approach and
LCT modeling techniques used. The metrics used to quantify
the results are also described.

A. LCT IMPACT ASSESSMENT METHODOLOGY
A detailed summary of the developed methodology and cou-
pling is presented in Fig. 10, where the mathematical notation

presented is described as follows: t represents the daily time
interval taken based on the number of half hourly intervals in
a day, n represents the number of load sample iterations and
p represents the percentage penetration of HPs and EVs dis-
tributed in the network (note these can vary independently).
The impact assessment is performed on the electrical model
and the geospatial model is used to support the modeling of
localized HPs.

1) HEAT PUMP MODELING
A household’s electrical heat load is directly proportional to
its heat demand. In turn, household heat demand is a complex
interdependent function of several components combining
building physical parameters as well as occupant behavioral
routines [5]. This complexity is further compounded by the
specific parameters of a household’s HP e.g., rating, heat
source and efficiency [5], as this governs the relationship
between heat output and electrical demand. However, due to
the interdependency of multiple components the full extent
of combined localized influences is currently still largely
unknown [4]. This in part, is due to a lack of high-resolution
datasets that can be used to validate and support the develop-
ment of data-driven and physics-based modeling. Therefore,
sufficiently granular technical information is limited, partic-
ularly in the public domain and as a result, reliance is often
placed on Census type data which has its own limitations.
Nevertheless, the core issue of incorporating localization into
the methodology by translating local building and behavioral
parameters into a direct or electrical heat demand that can be
validated remains.

For this study, in the absence of sufficiently granular
technical information surrounding household physical and
behavioral parameters, two established approaches for mod-
eling heat electrical demand, the Heat Demand Magnitude
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FIGURE 10. Localized LV network development and assessment
methodology coupling.

Localization Model and the Electrical Heat Demand Shape
Model developed in [5], are combined in order to construct
locally sensitive half-hourly electrical heat demand profiles.
A summary of the combined modeling approach is outlined
by Fig. 11 and a brief description of each model component
is provided as follows.
Heat Demand Magnitude Localization Model: is used to

transform individual postcode level gas demand data (previ-
ously mapped and described) into a daily demand magnitude
that is proportionally scaled to local physical and behavioral
components that influence heat demand. This postcode level
gas demand serves as a proxy for local building, climate and
behavioral parameters. Firstly, a gas conversion efficiency (η)

is used to transform the raw annual gas demand
(
DannualG

)
into

an equivalent annual direct heat demand
(
DannualH

)
as shown

in (1). For this work, a fixed gas boiler efficiency of 80% has
been used. This has been obtained by taking an average of

over 2000 different mains gas boiler models with efficiencies
ranging from 55% to 90.3%. The recorded efficiencies are
based on the seasonal efficiency of domestic boilers in the UK
(SEDBUK) rating scheme and are stored in a database that is
used to support UK building energy performance assessments
[44]. DannualH is then converted into a daily heat demand(
DdailyH

)
through (2) and (3) by assuming that heat demand

varies sinusoidally throughout the year in accordance with
temperature variation, DannualH provides the area under the
sinusoid which defines the amplitude and offset parameters
and subsequently the daily demand variation throughout the
year and x corresponds to day of year.

DannualH =
DannualG

η
(1)

DannualH =

∫
f (x) dx

=

∫ 365

0
Damp · sin

(
2π
365

x + φ

)
+ Doff dx (2)

DdailyH = f (x) = Damp · sin
(
2π
365

x + φ

)
+ Doff (3)

DdailyE =
DdailyH

COP
(4)

The default amplitude
(
Damp

)
and offset

(
Doff

)
parameters

have been applied. These fit parameters were tested versus
monitored gas meter data collected at 30-minute intervals
for several thousands of customers as part of the energy
demand research project (EDRP) [45] and monitored HP heat
and electrical demand data obtained from the renewable heat
premium payment (RHPP) dataset which features 2-minute
resolution data collected from 418 air and ground source
HPs in the UK from October 2013 to March 2015 [46].
The daily heat demand is transformed into a daily electrical
demand

(
DdailyE

)
via a coefficient of performance (COP)

through (4). From the RHPP dataset HP COP typically ranges
from 2 to 4 [46] which is comparable to the air and ground
source HP COPs presented in [47]. However, as with gas
boiler efficiency this parameter is sensitive to temperature
and is variable depending on specific installation as well as
manufactures model. A fixed COP of 3 is used for this study.
Electrical Heat Demand Shape Model: developed in [5]

is used to transform the daily electrical demand into a set
of half-hourly demand figures sensitive to local temperature
conditions. The modeling approach incorporates monitored
HP data from the RHPP dataset and is validated against
operational demand data collected during the LCL HP tri-
als [48]. Fundamentally, the work in [5] identified common
recurring electrical heat demand profiles that repeat within
the RHPP dataset, despite the disparate geographical and
demographic conditions. These have been normalized for an
ambient temperature of 0◦C which is used to simulate the
worst-case winter cold conditions. The normalized profiles
are then used as the basis for HP daily load shape forming
and are sampled accordingly.
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FIGURE 11. Methodology used to convert annual gas demand to localized electrical heat demand profiles.

2) ELECTRIC VEHICLE MODELING
In addition to traditional power rating and capacity chal-
lenges, a difficult aspect of EV modeling is the uncer-
tainty surrounding consumer behavior. External factors are
expected to influence consumer routines and as a con-
sequence EV charging patterns. In this work, residential
EV charging schedules are adopted in an attempt to cap-
ture elements of this ‘socially-driven’ charging behavior by
employing the use of synthesized ‘travel diaries’ previously
developed in [49] and [50] and used in other works including
[19]. The developed charging schedules are based on UK
national travel survey (NTS) car travel data for between
2002 and 2016 [51].

As in [50], EV modeling considers ‘routine charging
schedules’ to be the primary charging scenario. These charg-
ing schedules consider the principle of least inconvenience
to the consumer, in that charging has become routine and
aligned around social rhythms. Consumers plug their vehicles
in on arrival at their residence regardless of the vehicle’s
state of charge and also seek the maximum state of charge
gain allowed within the parking duration and by the charging
constraints. These charging patterns are essentially uncon-
trolled in that there is no incentivization for scheduling or
optimization that facilitates demand side management. This
is taken into consideration within the analysis and discus-
sion. In addition, this work assumes all households have the
necessary EV charging infrastructure at each residence and
assumes that a maximum of one EV can be charged at each
residence at any given interval. The authors note that due
to the additional demand requirement, multiple residential
EV charging could further exacerbate the presented findings.
A set of 10,000winter weekday charging schedules have been
derived with a fixed 7.4 kW rating (high power ‘fast’ home
charging, typically a single phase 32 A, 230 V connection)
across a range of ‘typical’ vehicle battery sizes: 24, 30, 40,
60 and 75 kWh. Note that an inverter efficiency of 88% [52]
has been used for the heuristic which is further described in
[49] and [50].

B. ASSESSMENT METRICS
Three different assessment metrics are used to quantify the
impact of LCT uptake on the concerned LV distribution
networks: network violations, voltage unbalance and hosting

capacity. These metrics demonstrate the methodology out-
lined in this paper and are summarized as follows:

1) NETWORK VIOLATIONS
Thermal overload and over/under voltage are network
issues that can occur as a result of LCT uptake [53].
Over/undervoltage relates to when the upper and lower statu-
tory voltage limits (+10%, −6% in GB) [54], are breached.
An overvoltage situation can occur when the current injected
by LCTs such as solar PV or vehicle-to-grid exceeds the cur-
rent absorbed by the local demand, causing the voltage to rise
beyond the upper statutory limit. An undervoltage situation
can occur due to an increase in demand from LCTs such as
HPs and from EV charging that would see additional current
flow to the network, consequently causing the voltage to
drop beyond the lower statutory limit [53]. Thermal overload
relates to when the current exceeds the rated current capacity
of the assets, typically applicable for cables and transformers
[53]. Excess current can cause overheating and subsequent
damage to the assets which can increase network losses,
impact longevity and reduce reliability. As a result, voltage
and thermal violations are considered to be key metrics for
quantifying the impact of LCT uptake and are subsequently
used in this work.

2) PHASE UNBALANCE
In the development of LV distribution networks, network
planners typically try to balance the network with symmetri-
cal distribution of load across the three-phases. This ensures
maximum utilization of available cable capacity, minimiza-
tion of losses and reduced asset degradation. However, this
can be an extremely challenging undertaking and some form
of asymmetrical load distribution across individual phases
exists in most LV networks. As a consequence, LV net-
works in practice are generally considered to be unbalanced
networks where the phase unbalance (or imbalance) primar-
ily stems from asymmetrical load distribution and temporal
variations in load magnitude [55]. This unbalance results
in an unequal distribution of power across the conventional
three-phases and can result in an increase in network losses
and an underutilization of network capacity. A number of
works have raised concern with the potential detrimental
impact LCTs will have on phase unbalance e.g., in [56] the
impact of solar PV was considered. This is of particular
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concern for already heavily unbalanced networks which are
common in practice (particularly in a remote rural setting).
ENA Recommendation P29 [57] provides insight into the
planning limits for voltage unbalance in the UK, indicat-
ing that unbalance should be estimated using the voltage
unbalanced factor (VUF) at any given measurement point,
expressed by (7) which is calculated from (5) and (6) as
described in [58].Where Vab, Vbc, and Vca are the three-phase
unbalanced line voltages, Vp and Vn are the two symmetrical
components of the line voltages, a = 1̸ 120◦ and a2 =

1̸ 240◦.

Vp =
Vab + (a× Vbc) +

(
a2 × Vca

)
3

(5)

Vn =
Vab +

(
a2 × Vbc

)
+ (a× Vca)

3
(6)

VUF =
|Vn|∣∣Vp∣∣ × 100% (7)

As DNOs are expected to conform to this standard, and of
the expressed concerns with voltage unbalance on network
losses and hosting capacity, this work considers the VUF as
a key assessment metric in quantifying LCT impact.

3) HOSTING CAPACITY
The hosting capacity relates to how much LCT penetration
a given LV network can accommodate without breaching
network operating standards or component physical limits
[53]. Providing the DNO with insight into how much LCT
uptake will reduce conventional network headroom and at
what penetration management solutions may be necessary.
From this, credible uptake forecasts can give an indication as
to when these solutions may be necessary. This then allows
for a cost-benefit analysis and technical appraisal of the
potential management solutions necessary to mitigate risk
and maintain network resiliency. Currently, DNOs are taking
a ‘flexibility first’ approach at the direction of theGBnetwork
regulator (Ofgem) [59], [60]. Therefore, the hosting capacity
is considered to be a highly informative assessment metric in
relation to the constrained flexibility potential. In this work
the hosting capacity is measured in terms of headroom based
on the apparent power that instigates a network voltage or
thermal violation on each individual feeder [19]. This can be
expressed as:

Hf ,t = min(STlimf , SVlimf ) − Sf ,t (8)

where Hf ,t is the headroom for each feeder f at time t , Sf ,t is
the apparent power on each feeder, STlimf is the thermal limit
of each feeder head cable obtained from:

STlimf = 3 × I limf × Vmax (9)

I limf is the maximum current rating of the feeder head cable
and Vmax is the maximum allowable voltage which is +10%
of the nominal in this instance. SVlimf is obtained by using a
similar linear regression method as adopted in [19]. Fig. 12
provides an example of this for network 1 feeder 5 where

FIGURE 12. Minimum endpoint voltage vs apparent power (S) to
determine voltage violation (VV) headroom operating regions.

SVlimf is based on the minimum Sf ,t that results in a voltage
violation. The region to the left of this value (highlighted
in green) is used for the network headroom assessment in
this work and would be considered the standard operating
region for network operators. The yellow region is where
headroom is likely to be more dynamic and dependent on
LCT usage patterns and install location. The distribution
also shown in Fig. 12 indicates that the voltage violation
likelihood increases with Sf ,t in this region.With this, there is
an opportunity to develop active solutions that have the capa-
bility to unlock and efficiently utilize the capacity available
in this operating region which would be the subject of future
research.

IV. RESULTS AND DISCUSSIONS
The coupled methodology described in the previous sections
is formalized through the assessment of two different LV net-
works (network 1 and 2 in Fig. 9) to demonstrate the potential
for scalable localized LV network modeling and the necessity
for combinational LCT impact assessments. Such quantifica-
tion provides modeling justification and supports place-based
network investment decision making and emphasizes the
potential for area specific flexible network management. The
assessment of each network considers three scenarios for each
metric; scenarios 1 and 2 consider the uptake of EVs and
HPs in isolation and scenario 3 considers a combination of
both HPs and EVs. Scenarios 1 and 2 allow for distinction
of individual technology impact which supports analysis of
scenario 3. The results and discussion section are catego-
rized against the key assessment metrics defined previously
in Section III-B. Note that the two networks have radically
different heating requirements with network 1 having an
average postcode gas demand of 18,937 kWh compared with
network 2 which has 9,368 kWh.

A. NETWORK VIOLATIONS
Figs 13-15 and Figs. 16-18 summarize the results for
the statistical impact assessment of voltage violations for
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FIGURE 13. Minimum endpoint voltage vs LCT penetration for network 1. (a) EV scenario (b) HP scenario and (c) Combined scenario.

FIGURE 14. Average minimum endpoint voltage vs time vs penetration for network 1. (a) EV scenario (b) HP scenario and (c) Combined scenario.

FIGURE 15. Concentration of network buses with voltage violations for network 1. (a) EV scenario (b) HP scenario and (c) Combined scenario.

networks 1 and 2 respectively. Fig. 13(a) – (c) and
Fig. 16(a) – (c) consider the range of minimum network end-
point voltages against a range of technology penetrations. For
the EV scenario in both instances a broad range of minimum
endpoint voltage is identified for each penetration quantity
across the sample. Such variation is reflective of EV location
and the variation in charging patterns. It can be seen that the

lower statutory limit of 216 V is breached in certain cases
with as little as 20% penetration. The impact from EVs is
similar on both networks though network 1 is marginally
worse. In terms of voltage violations from HP penetration,
network 1 is significantly worse than network 2. This is to
be somewhat expected due to the influence of heat demand
localization in the modeling. Where analysis suggests that
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FIGURE 16. Minimum endpoint voltage vs LCT penetration for network 2. (a) EV scenario (b) HP scenario and (c) Combined scenario.

FIGURE 17. Average minimum endpoint voltage vs time vs penetration for network 2. (a) EV scenario (b) HP scenario and (c) Combined scenario.

FIGURE 18. Concentration of network buses with voltage violations for network 2. (a) EV scenario (b) HP scenario and (c) Combined scenario.

the associated housing stock for network 2 has been built
within the last decade therefore is likely to have increased
building efficiency compared with an aged building stock for
network 1. Other factors such as average uilding floor area
size and consumer affluence may be influencing the recorded
gas demand. In the case of the combined scenario, the number
of violations are significantly increased. This emphasizes the
scale of the combined impact of both EVs and HPs on both
networks.

In Fig. 14(a) – (c) and Fig. 17(a) – (c), the average mini-
mum endpoint voltage across all samples for each penetration
and associated time interval is presented for network 1 and
2 respectively. The three-dimensional aspect allows for time
series analysis of individual technology impact. For the EV
scenario on both networks, voltage violations primarily occur
around the traditional evening peak as penetrations increase.
This is a direct consequence of the modeled routine charging
schedules, in that consumers would typically plug-in on their
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return home fromwork. The combined effect of all consumers
having similar evening charging patterns results in a signif-
icant increase in demand and a large drop in the minimum
endpoint voltage. For the HP scenario, voltage violations
occur around the same time in the evening at higher pene-
trations though with less of a drop. However, unlike with the
EVs an early-morning dip in the minimum endpoint voltage
is noticeable and can be attributed to morning space heating
demand requirements. This is particularly prominent on net-
work 1 at higher penetrations and less evident for network 2.
The combined scenario for both networks, results in a much
larger drop at the evening peak with increased early-morning
violations at higher penetrations, specifically for network
1. This combined impact is highly significant, particularly
when considering demand side management applications.
In isolation the EV scenario indicates peak shaving through
scheduled EV charging could be deployed to reduce the
evening peak demand with minimal impact during other peri-
ods of the day. However, the combined scenario identifies
that with the mixture of EVs and HPs in the network, uncon-
strained peak shaving or scheduled charging may coincide
heat demand requirements. This is exacerbated for network 1
which has greater early morning violations at increased pen-
etrations than in network 2, indicating that network 2 may
have more scope for flexible management than network 1.
Ultimately, this emphasizes the need to consider a combina-
tion of different LCTs in parallel when conducting impact
assessments and in the development of flexible demand side
management techniques that are sensitive to the mixture of
key LV connected LCTs and the inherent heterogeneity of
local conditions.

The voltage violation density heatmaps shown in
Fig. 15(a) – (c) and Fig. 18(a) – (c), provide further insight
into the extent the combined LCT impact has across the
two independent networks. The figures show spatially the
concentration of network buses where a voltage violation
has occurred at any time interval across the sample. The
darker end of the color scale indicates a higher density of
violations i.e., voltage violations occur more frequently at
these buses than others. As expected, there are a higher
number of violations in the combined scenarios and in the EV
scenarios compared with the HP scenarios. The concentration
of voltage violations increases with distance in relation to
the secondary transformer and is therefore prominent on
the longest feeders. However, the number of consumers
connected to each feeder, the electrical distance between
consumers, phase allocation and cable impedance are several
other potential contributing factors influencing where these
violations occur in the network. Fundamentally, the heatmaps
presented indicate that a combined uptake of both EVs and
HPs is likely to result in an increase in the number of voltage
violations across different areas of network. The authors
acknowledge that transient voltage excursions are allowed
according to the distribution network code within allowable
limits and that sufficiently granular datamay reveal additional

perturbations which must be borne in mind when assessing
outcomes.

Analysis of cable thermal violations suggests that voltage
is likely to be the more problematic of the two for network
operators. For the EV scenario on network 1, the percentage
of cables in breach of their rating steadily increased from
about 1% of cables at around 40% penetration to around
4% at 100% penetration during the evening peak. The HP
scenario was less prominent only reaching 2% of all cables
at 100% though the early morning demand requirements
introduce a minor spike to 1% of cables at 100% pene-
tration. The combined scenario reached a total of 10% of
cables for 100% penetration. Analysis of network 2 showed
similar behavior around the evening peak for the EV and
combined scenarios although had no thermal violations in
the HP scenario. Ultimately these are relatively low values
in comparison to the scale of voltage violations and anecdo-
tally, under current practice it would not be uncommon for
DNOs to overload cabling and accept the losses and asset
degradation consequences. However, this is likely to be chal-
lenging in future network operation which requires loss min-
imization and improved capacity management for flexible
operation.

B. PHASE UNBALANCE
The phase unbalance results are presented in Fig. 19(a) – (c)
and Fig. 20(a) – (c) for network 1 and 2 respectively, where
the VUFmeasurement is taken at the LV side of the secondary
transformer and at each feeder endpoint. Phase unbalance
is often overlooked at these voltages within the literature as
many studies opt to model loads as 3-phase balanced connec-
tions due to lack of phasing visibility. However, the results
presented indicate that increased consideration regarding HP
and EV impact on phase unbalance may be necessary going
forward. For both networks in the EV scenario, as penetra-
tions increase, as does the spread of the VUF, particularly,
during the evening peak period (this is more prominent on
network 1). For the HP scenario on network 1 the VUF
increases as a result of increasing penetrations around the
early morning and the evening peak though the impact is
less prominent than the EV scenario. The combined scenario
sees a significant increase in the voltage unbalance factor
across the day where the spread increases resulting in an
increase in the number of cases exceeding the recommended
2% threshold. For network 2 the uptake of HPs has far less
of an impact on the VUF and the spread is more contained
across the day. Note that it can be seen from Table 1 that
network 2 has a more evenly distributed phase allocation than
network 1. This emphasizes that phase unbalance is likely
to be exacerbated in areas where high degrees of unbalance
already exist and by the uptake of multiple LCTs which
are diverse in size and use patterns. Also indicating that the
heterogeneity in network topology and localization will have
an influence on the scale of this impact.
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FIGURE 19. Voltage unbalance factor vs time penetration for network 1. (a) EV scenario (b) HP and (c) Combined scenario.

FIGURE 20. Voltage unbalance factor vs time penetration for network 2. (a) EV scenario (b) HP and (c) Combined scenario.

C. HOSTING CAPACITY
Fig. 21(a) – (c) and Fig. 22(a) – (c) present the results for
the hosting capacity assessment where network headroom is
compared with LCT penetration for the feeders in networks 1
and 2 for each of the scenarios. The headroom is negative
when Sf ,t has exceeded either STlimf to result in a thermal
violation of the feeder head cable or SVlimf to move beyond
the green region as previously discussed and demonstrated
in Fig. 12. The results emphasize that network headroom
decreases as the penetrations increase across each scenario.
The rate of this reduction varies between feeders due to a
number of factors including the number of loads connected
to each feeder, phase allocation, cable type/rating and feeder
length. In the EV scenario the distribution for each feeder
remains skewed unlike in the HP scenario as penetrations
increase due to the modeled routine dependent EV charg-
ing profiles. In the combined scenario network headroom
is significantly reduced in comparison with the individual
EV and HP scenarios. The findings also emphasize that to
adopt flexible management solutions at an aggregated level,
the headroom imbalance between feeders would have to be
taken into consideration. LCT management by an aggregator
or third party would require full visibility in this eventuality
to ensure network limits are respected when managing assets

across multiple feeders. The approach used in this work seeks
to demonstrate the impact of increasing penetrations and
uptake of LCTs with different usage patterns on network
headroom. However, to maximize network headroom for
flexible applications a more refined approach that accounts
for all network cabling and individual phases should be
adopted.

D. SUMMARY
To summarize, the results demonstrate the developed model-
ing capability through a series of scenarios on two different
LV networks. The findings emphasize that the uptake of both
EVs and HPs in parallel is expected to cause significant
challenges for network operators, particularly as LCT pen-
etrations increase. This is quantified as part of the studies
considered. Similar trends exist across the different scenar-
ios in that as LCT penetration levels increase as does the
frequency of voltage and thermal violations with voltage
violations being the more dominant. The time at which these
violations occur is a critical issue that without regulation is
subject to individual technology usage patterns. An increase
in violations around the traditional evening peak is observed
along with an increase in the early morning for the HP
scenarios and an increase of the VUF is also observed in
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FIGURE 21. Network headroom vs penetration for each feeder in network 1. (a) EV scenario (b) HP scenario and (c) Combined scenario.

FIGURE 22. Network headroom vs penetration for each feeder in network 2. (a) EV scenario (b) HP scenario and (c) Combined scenario.

certain instances around similar times. The overall network
headroom decreases as penetrations increase. However, this
reduction varies non-uniformly across individual feeders.
By adopting a localized approach to HP modeling the results
shown in this work provide the basis for understanding how
variations in local heat demand may influence overall HP
impacts further demonstrating the value of scalable localized
modeling.

V. CONCLUSION AND FUTURE WORK
This work has developed and demonstrated a novel scalable
approach to LV network and LCT impact assessment that
can be used to support place-based infrastructure investment
decision making. The developed localized LV network mod-
eling methodology can be used to support a wide range of LV
network studies from spatial and temporal social-technical
modeling of demand to the development of locally sensi-
tive demand side management techniques through enhanced
flexibility quantification. This methodology is guided by

high-resolution network information supporting the scalabil-
ity necessary for network modeling in different geographic
regions comprised of diverse local characteristics. This work
has evidenced that the method has the capability to reduce
the uncertainty surrounding EVs, HPs and demand diversity.
This can facilitate the development of techniques that bet-
ter capture and characterize the impact of local conditions
on LCT demand profiles and the subsequent impact on the
LV network beyond existing published work in this area.
As the developed methodology utilizes GIS data and geospa-
tial datasets of varying spatial and temporal resolutions it
has limitations that are not uncommon with data-driven
modeling approaches, these include data availability, quality
and quantity. However, this work has shown that in gen-
eral these challenges can be managed to support enhanced
modeling.

The resulting case study network models are analyzed
through a localized LV network assessment methodology that
accounts for the impact of both EVs and HPs with considera-
tion for the diversity in domestic heat demand. The impact
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FIGURE 23. Network 1.

assessment study is used as a means of demonstrating the
suitability of the scalable LV network development method-
ology and the value of place-based LV networks, but also
to probe gaps in the literature that relate to electrified heat
and transport impact assessments and the approaches taken
to model diversity in heat demand at granular resolutions.
Multiple assessment metrics are used to demonstrate the
modeling approach and to quantify the impact on key network
infrastructure.

The findings emphasize that the impact from both EVs
and HPs is significantly exacerbated when they are adopted
in parallel rather than in isolation. The work also identi-
fied potential challenges with unconstrained flexible demand
side management approaches, e.g., the potential for flexible
EV peak shaving techniques to coincide with space heat-
ing demand. This indicates that a mix of LCTs should be
considered in the development of such techniques and that
existing capacity constraints in addition to local conditions
will influence the suitability of flexible network management
applications, emphasizing that different areas of networkmay
require bespoke solutions.

Future work would look to include detailed localized
forecasting of EV and HP uptake to further expand upon
the high-resolution modeling described, this would provide
enhanced insight into the challenges which social diversity
presents for local network infrastructure investment plan-
ning. Additionally, as it is considered that decarbonization of
off-gas networks typically found in a rural setting are of pri-
ority in that many gas connected urban networks may follow
alternative decarbonization pathways. There is an opportunity
to further develop the modeling and understanding from this
work to specifically target off-gas networks in a rural envi-
ronment at the next stage of research investigation.

Future work would also look to overcome the limitations
with using monitored smart meter trial data recorded in
different locations with different demand requirements and

FIGURE 24. Network 2.

FIGURE 25. Network 3.

FIGURE 26. Network 4.

characteristics from the target area. Although as described in
Section II-D a method has been used in this work to align
the monitored data as best as possible to the target area
by considering the demographic of the consumers. This is
ultimately still an approximation and different methods could
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FIGURE 27. Network 5.

FIGURE 28. Network 6.

be applied in absence of monitored data. Additionally, use
of Voronoi polygons could be investigated to explore further
computational reductions and efficiency improvements in the
localized network generation methodology. Functionality to
carry out sensitivity analysis that accounts for the uncertainty
of different network characteristics e.g., cable type and phas-
ing could also be introduced to the methodology.

APPENDIX
SAMPLED NETWORKS
Figs. 23–28.
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