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Bulk localized transport states in infinite and finite quasicrystals via magnetic aperiodicity
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Robust edge transport can occur when charged particles in crystalline lattices interact with an applied external
magnetic field. Such systems have a spectrum composed of bands of bulk states and in-gap edge states. For
quasicrystalline systems, we still expect to observe the basic characteristics of bulk states and current-carrying
edge states. We show that, for quasicrystals in magnetic fields, there is an additional third option—bulk localized
transport (BLT) states. BLT states share the in-gap nature of the well-known edge states and can support
transport, but they are fully contained within the bulk of the system, with no support along the edge. Thus,
transport is possible along the edge and within distinct regions of the bulk. We consider both finite-size and
infinite-size systems, using rigorous error controlled computational techniques that are not prone to finite-size
effects. BLT states are preserved for infinite-size systems, in stark contrast to edge states. This allows us to
observe transport in infinite-size systems, without any perturbations, defects, or boundaries being introduced. We
confirm the in-gap topological nature of BLT states for finite- and infinite-size systems by computing the Bott
index and local Chern marker (common topological measures). BLT states form due to magnetic aperiodicity,
arising from the interplay of lengthscales between the magnetic field and the quasiperiodic lattice. BLT could
have interesting applications similar to those of edge states, but now taking advantage of the larger bulk of the
lattice. The infinite-size techniques introduced here, especially the calculation of topological measures, could
also be widely applied to other crystalline, quasicrystalline, and disordered models.

DOI: 10.1103/PhysRevB.106.045149

I. INTRODUCTION

In crystalline materials, e.g., condensed matter or cold
atoms in optical lattices, the standard picture according to
band theory is that a system is either an insulator or metal
[1,2]. During the 1980s, this picture began to change with
the discovery of topological states of matter [3–5]. For exam-
ple, topological edge states (ESs) can occur when a charged
particle in a crystal interacts with an external magnetic field
[6,7]. The physics of charged particles in a two-dimensional
crystalline lattice with an applied strong magnetic field is a
well-studied problem for both the single-particle [8–14] and

*These authors contributed equally to this work.
†dj79@hw.ac.uk
‡m.colbrook@damtp.cam.ac.uk
§callum.duncan@strath.ac.uk

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI. Open
access publication funded by the Max Planck Society.

many-body [15–18] regimes. There have also been numerous
experimental realizations and proposals [7,19–22].

Quasicrystals, on the other hand, have short-range disorder
and long-range order [23–27]. This makes their features dis-
tinct from both periodic and disordered lattices. The general
electronic properties of quasicrystals are little understood, es-
pecially in comparison to their periodic counterparts [26,28].
Two-dimensional quasicrystalline systems have been pro-
posed and now experimentally realized to varying degrees in
ultracold atoms [29–32], graphene bilayers [33], and photon-
ics [34–36].

Recently, there has been renewed interest in adding a
magnetic field to scenarios involving quasicrystalline lattices
[37–43]. In quasicrystals, the concepts of bands and band gaps
are difficult to consistently define since Bloch’s theorem is not
enforceable without approximations to the overall structure.
While recent results have confirmed the presence of ESs in a
magnetic field [38,43] and studied the appearance of higher-
order topological states [44–46] in quasicrystals, there have
been few tangible differences from their study in periodic
systems.

In this paper, we show that the common picture of insu-
lators, metals, and topological insulators with surface states
is not the full story for quasiperiodic systems. When the
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FIG. 1. Illustration of the different types of in-gap states in (a) fi-
nite and (b) infinite quasicrystals when a uniform magnetic field
(blue arrow) is present. In the case of a finite quasicrystal with N sites
(a), the green arrow depicts potential transport across a conventional
ES, which forms at the boundaries of the lattice. The quasicrystal
may also permit the formation of BLT, whose potential transport is
depicted by the red arrow. In the case of a truly infinite quasicrystal
(b), we no longer have boundaries and hence no ES, but we retain the
BLT state and its supported transport.

confining potential is quasicrystalline, there are multiple com-
peting, not necessarily commensurate, lengthscales arising
from the magnetic field and quasiperiodic lattice. This results
in a magnetic aperiodicity, directly leading to the observa-
tion of bulk localized transport (BLT) states. As BLT states
arise from the magnetic aperiodicity, they are significantly
different from previous states found in the internal sections of
fractal lattices [47–49]. Such fractal lattices are almost en-
tirely composed of effective hard edges with no discernible
bulk, meaning these “internal” ESs are conventional ESs on
an unconventional lattice. In contrast, BLT states are not an
artefact of effective edges introduced through an impurity or
set of dislocations [13,50–58]. BLT states also have a different
character from zero-dimensional corner modes found in qua-
sicrystals [44] that are bound to corners on the hard boundary
of a finite system. BLT states do share many of the properties
of ESs, but they are entirely localized within the bulk, as
illustrated in Fig. 1. Importantly, BLT states support transport
(or currents) in the same way as the well-studied ESs, making
them useful for future applications.

A. Overview

Before detailing our methods, we present an overview of
the main results of our work. This section is intended to review
our work, with references to the rest of this paper, where we
discuss the approach and results in detail.

Quasicrystals and magnetic fields. We envisage a system
of charged particles existing on a quasicrystalline lattice under
the influence of a uniform perpendicular magnetic field. This
system is illustrated in Fig. 1. The Hamiltonian of this system
is well described by the Hofstadter vertex model, introduced
in Sec. II, which modifies the standard Hofstadter model to
the vertex model of a quasicrystalline tiling, illustrated in
Fig. 2. Solving for the finite-size spectrum and states of the
Hofstadter vertex model is straightforward. However, defining
bands and in-gap states is difficult due to the breakdown of
Bloch’s theorem. We define the in-gap states, and hence the
bands, via topological measures that are nonzero for in-gap
states and outlined in Sec. III.

Infinite-size quasicrystals. The states we consider are sup-
ported by the bulk of the lattice, and hence we consider if they

FIG. 2. Construction of the Ammann–Beenker (AB) tiling, using
the (a) incommensurate square and rhombus as prototiles. The aperi-
odic tiling is generated from these prototiles, leaving no gaps. Here,
we take a circular cutoff in tiling space to show (b) a finite sample
of AB tiling and preserve rotational symmetry with respect to the
origin (center of the tiling). The corresponding vertex model (c) is
defined by setting bonds as the edges of tiles, and the lattice sites
as the intersection of tile edges. In this example, the total number of
lattice sites is N = 185.

are retained in the spectrum of the infinite Hamiltonian. To
deal with the infinite-size quasicrystalline lattice, we utilize an
infinite-size error controlled algorithm that abandons square
truncation (of infinite matrix representations) to account for
the interaction of sites outside a finite patch of the lattice. The
infinite-size algorithm is described in Sec. II B, and it can be
utilized to calculate the spectrum of other infinite-dimensional
operators [59]. We also detail a new extension of the infinite-
size algorithm to calculate topological measures, as described
in Sec. III A. This allows us to identify states with in-gap
characteristics in the infinite-size quasicrystal (or any crystal
or aperiodic lattice).

BLT states. We first illustrate BLT states in Sec. IV by con-
sidering the Hofstadter vertex model of the quasicrystalline
Ammann-Beenker (AB) tiling. As already stated, BLT states
are peculiar as they are in-gap, yet entirely localized within the
bulk of the lattice, with no component on the edge. Examples
of BLT states are given for the AB tiling in Figs. 4(c) and
7, clearly illustrating the bulk nature of these in-gap states.
BLT states are also shown to be in-gap from their nonzero
topological measures. Interestingly, the proportion of states
that are of BLT-type in a finite system converges to a nonzero
value with increasing system size, as shown in Fig. 6. This
is contrary to regular ESs, which become a vanishingly small
proportion of the states with increasing system size. As ex-
pected from the arguments illustrated in Fig. 1, we find that
BLT states exist in the infinite-size spectrum, and they are of
the same character as those in the finite system; see Fig. 9
for examples. Furthermore, in Sec. IV D we consider offset
tilings, and we find that the BLT states persist in the spectra
even if the rotational symmetry of the quasicrystal is broken,
and that nearly degenerate BLT states exist throughout the
quasicrystal on self-similar sections.
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Supported bulk transport. Key to the future consideration
and application of BLT states is the fact that they support
transport like any other in-gap state. This results in BLT,
which is independent of the existence or form of any edges.
In this way, BLT can be considered to be robust against
perturbations along the edge, much like regular edge states
are robust against perturbations in the bulk. We explicitly
show that transport is supported by the BLT states of the AB
Hofstadter vertex model in both the finite- and infinite-size
cases in Figs. 15 and 16, respectively. We also show that the
location of this transport can be varied due to BLT states being
supported on different parts of the bulk.

B. Terminology

As this work straddles condensed matter, quantum simu-
lators, and spectral computations from mathematical physics,
there are specific terminologies we need to define to avoid
confusion for readers of different fields.

First, we refer to a lattice as periodic or crystalline as long
as a unit cell can be defined with an associated Brillouin
zone. Bloch’s theorem can then be used to calculate the band
structure of the lattice. This does not exclude the presence of
edge states, as they are dependent on the boundary. Even in
the case of open boundaries, bands can still be calculated.
Therefore, a periodic lattice is defined independently of the
boundary conditions (which are usually periodic, infinite, or
open). The strict definition of a lattice itself can be considered
to apply only to periodic systems. However, the definition
of a lattice in condensed matter physics is more general and
can be interpreted as defining a group of discrete connected
points. We follow this convention and refer to lattices as
being any group of discrete connected points throughout this
work.

We often refer to bulk states and in-gap states. Accord-
ing to Bloch’s theorem, bulk states are all states that are
allowed in the system with real quasimomentum. In-gap states
are all other solutions to the Schrödinger equation for the
lattice Hamiltonian, which are the complex quasimomentum
solutions [13]. In general, we do not have access to the quasi-
momentum from numerical approaches. As Bloch’s theorem
breaks down in quasicrystals, we must turn to alternative
methods to define if a state of the spectrum is in-gap. For this,
we turn to the topological measures of the Bott index and local
Chern marker, discussed in Sec. III A.

The meaning of an edge state must also be clearly de-
fined. In spectral computational problems of operators on
infinite-dimensional spaces (in our case, corresponding to the
infinite-size lattice), one of the main problems is the removal
of spectral pollution. Spectral pollution refers to a set of states
in the spectrum that are not actually part of the infinite-size
spectrum. These typically manifest in the form of edge states
due to finite-size effects. While the edge states do not exist in
the spectrum of infinite-size operators, they are physical states
of the finite-size system, with distinct observable properties.
Note, the BLT states outlined in this paper are not spectral
pollution—they are part of the spectrum of the infinite-size
operator, as shown in Sec. IV B. This means that not all in-gap
states are spectral pollution, as is usually thought.

II. MODELS OF QUASICRYSTALS IN MAGNETIC FIELDS

A. Hofstadter vertex model

We consider lattices generated from the vertex model of
aperiodic tilings. A 2D tiling is a countable family of closed
sets (prototiles) which covers the entire 2D plane without any
gaps or overlaps [26,60,61]. Aperiodic tilings are a subclass
of tilings that exhibit long-range order, but no short-range
translational invariance. Finding tiles that enforce quasiperi-
odicity is not a simple task, and the initial aperiodic tiling
patterns contained thousands of distinct tiles [26]. Penrose
discovered an aperiodic tiling requiring only a few rhombic
tiles [62]. Since then, a multitude of aperiodic tilings have
been discovered with a variety of noncrystalline rotational
symmetries [26,63]. We focus on an AB vertex model as an
example, which may be generated from an incommensurate
rotation and projection of the 4D hypercubic lattice [64–66].
We illustrate the quasicrystalline AB vertex model and its
construction from an aperiodic tiling in Fig. 2. However,
our results are not specific to this 8-fold tiling, and we will
show that BLT can occur in other quasicrystalline lattices in
Appendix B.

The vertex model considers a lattice site at each vertex of
the aperiodic tiling and bonds along the edges of tiles [67–70],
as shown in Figs. 2(b) and 2(c). We consider the vertex model
of the AB tiling with a perpendicular constant magnetic field,
as depicted in Fig. 1. The single-particle Hamiltonian is then

H = −J
N∑

〈 j,k〉
eiθ jk | j〉〈k|, (1)

where θ jk is the Peierls phase [71] due to the magnetic
field between sites j and k, 〈 j, k〉 is the sum over all N
vertices/sites connected by an edge, and | j〉 is the state of
a particle occupying site j. We consider the Landau gauge
A(r) = Bxŷ = (φ/A)xŷ, with the magnetic field strength B,
flux φ (measured in terms of the flux quantum φ0 = 2π ),
and penetrating area A. We take the area A to be that of the
square tile of the AB tiling (the qualitative results, including
the observation of BLT states, are independent of the choice of
A). Units of h̄ = e = 1 are considered throughout this work,
and we work in units of energy J . The Hamiltonian Eq. (1)
is well-understood when applied to periodic systems [8], and
it can even result in similar physics when applied to some
quasicrystals [38–40,43,72]. It even exhibits noncrystalline
topological properties at high flux [73].

B. Infinite-size algorithm

To rigorously probe the spectral properties of the infinite
tiling directly, as opposed to a finite truncation, we use a set of
new computational techniques for infinite-dimensional spec-
tral problems [74]. We begin with a description of computing
the spectrum, with further details presented in Appendix A.
As an example, the results of the infinite algorithm are shown
for an infinite square lattice with a Hamiltonian of Eq. (1)
in Fig. 3. The algorithm perfectly replicates the fractal Hof-
stadter butterfly usually generated through the consideration
of periodic boundary conditions [8]. The removal of ESs, or
in this case spectral pollution (of the infinite tile), can be seen
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FIG. 3. Obtaining the Hofstadter butterfly for the infinite square
lattice from the infinite-size algorithm discussed in Sec. II B. We
show the effective Chern marker, defined in Sec. III A, for each
state, showing the CE (a) over a full range of energy values E ,
which includes states that are considered to be spectral pollution,
and (b) over the infinite-size square lattice Hofstadter butterfly, with
a restricted range of energy values in the spectrum of the infinite
lattice (up to the specified tolerance 0.01).

by the difference between Figs. 3(a) and 3(b). As discussed
previously, spectral pollution is the terminology used to de-
scribe spurious eigenvalues that form in gaps of the essential
spectrum of the infinite-dimensional operator.

We utilize an algorithm, developed by one of the authors
[59], that allows for the calculation of the spectrum of a
full infinite-dimensional operator with error control. This al-
gorithm is general in its applications and will be of use in
physical scenarios other than that considered here. For exam-
ple, extensions to unbounded operators and partial differential
operators can be found in Ref. [75], and geometric features
of spectra can be found in Ref. [76]. For the present paper,
the algorithm is of particular use since (i) the aperiodic nature
of quasicrystals makes it a considerable challenge to approx-
imate the spectrum of the full infinite-dimensional operator
without finite-size effects, and (ii) the approximation error
can be computed and reaches effectively zero from a physical
standpoint, as detailed below. There has also been an approach
developed to obtain the exact solutions of quasicrystals of
infinite size through the use of a superspace [77]. This method
is specifically constructed to handle quasicrystalline problems
by converting them to higher-dimensional periodic problems,
and it could be applied in the scenarios discussed in this work.
However, we find the algorithm of Ref. [59] to be highly
efficient at handling the problem of a quasicrystal of infinite
size in a uniform magnetic field.

In infinite dimensions, which in our case corresponds to
an infinite tile, the Hamiltonian H can be represented by
an infinite Hermitian matrix, Ĥ = {Ĥi j}i, j∈N , which acts on
l2(N ), the space of square summable sequences. A suitable
ordering of the sites (e.g., by positional radius from an origin)
leads to a matrix Ĥ with finitely many nonzero entries in
each column. In other words, we have access to a function
f : N → N such that Ĥi j = 0 if i > f ( j), thus describing the
sparsity of Ĥ . Sparse Hamiltonians are a subclass of operators
that are dealt with in Ref. [59] by considering the function

Fn(z) := σinf (Pf (n)(Ĥ − z)Pn),

where Pm denotes the orthogonal projection onto the linear
span of the first m basis vectors, and σinf denotes the smallest

singular value of the corresponding rectangular matrix. The
rectangular truncation Pf (n)(Ĥ − z)Pn corresponds to includ-
ing all of the interactions of the first n sites (the first n columns
of Ĥ ) without needing to apply boundary conditions (see, for
example, Fig. 1 of [78] and [79]). This is in sharp contrast
to standard methods that typically take a square truncation
of the matrix Ĥ (corresponding to a truncation of the tile)
with a boundary condition. This difference allows us to prove
convergence, provide error control, and lends itself to adaptive
computations of the full infinite-dimensional operator. Physi-
cally, Fn(z) is the square root of the ground-state energy of the
folded Hamiltonian Pn(Ĥ − z)∗(Ĥ − z)Pn. Fn(z) converges
down to the distance of z to the spectrum of H (uniformly on
compact subsets of C) as n → ∞ [59]. Together with a local
optimization routine, this property leads to the computation
of the spectrum and approximate states with error control as
n → ∞. Algorithmic steps are provided in Appendix A.

The algorithm’s output, �n(H ), converges to the spectrum
Sp(H ) of the full infinite-dimensional operator as n → ∞.
Note that this convergence is free from edge states. The error
bound of the algorithm satisfies

sup
z∈�n (H )

dist(z, Sp(H )) � En

for an output En that converges to zero as n → ∞. For a
desired spectral resolution δ > 0, we simply increase n un-
til En � δ. We stress that this form of error control allows
us to guarantee the accuracy of parts of the spectrum that
we compute. In other words, we know that the spectra we
compute below (e.g., the BLT states) are reliable. However,
the algorithm does not tell us whether we have approximated
the full spectrum yet (such an algorithm cannot exist without
long-range constraints or assumptions on the Hamiltonian),
only that we obtain the full spectrum in the limit n → ∞.

III. MEASURES AND PROPERTIES

A. Topological measures

Probing topological invariants in quasicrystalline systems
is difficult, due to the ill-defined Brillouin zone and the
breakdown of Bloch’s theorem. For two-dimensional lattices
subject to an external perpendicular magnetic field, the topo-
logical invariant of each respective band is its Chern number
[6,7]. Differences between Chern numbers of the bands above
and below a band gap are then equivalent to the number of ESs
that appear within the band gap via the bulk-boundary corre-
spondence. To obtain such topological invariants, integrals are
normally taken across the first Brillouin zone of the system
[6,80]. This explicitly means that the underlying lattice needs
to be crystalline for these integrals to be generic properties of
the bulk. However, there are measures that are independent
of the boundary and have been shown to be equivalent to
properties of the Chern number. We focus on the specific
examples of the Bott index [81] and the local Chern marker
[82].

1. Finite systems

The Bott index is a spectral quantity defined for each indi-
vidual state, related to the commutativity of matrices [81,83].
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It is defined for the nth eigenstate as

Bn = 1

2π
Im

{
Tr

[
ln

(
V̂ n

x V̂ n
y V̂ n∗

x V̂ n∗
y

)]}
, (2)

with V̂ n
x/y being the projected position operators,

V̂ n
x = Q̂n + P̂nÛxP̂n, V̂ n

y = Q̂n + P̂nÛyP̂n,

for the nth state cumulative projections

P̂n =
n∑

m=1

|m〉〈m|, Q̂n = Î − P̂n, (3)

where |m〉 is the mth eigenstate (we follow the usual conven-
tion of listing states in order of increasing eigenvalues), and
the unitary diagonal position operators are

Ûx = exp(2π ix̂S ), Ûy = exp(2π iŷS ). (4)

The x̂S/ŷS are position operators that must be scaled between
0 and 1.

By calculating the Bott index, one can measure obstruc-
tions to the formation of a maximally localized Wannier basis
spanning occupied states [84,85]. To find localized Wannier
states, it is usually necessary to find continuous and periodic
logarithms of families of unitaries [86]. This is discussed in
detail in Ref. [87], where they also show that such logarithms
cannot be defined when the Chern numbers associated with
the occupied states are nonzero. In essence, the problem boils
down to the definition of the fractional power of a matrix and
issues around the choice of a branch cut in the complex plane
to define the required logarithm [87,88]. Note, this logarithm
is not the same as the one utilized in the definition of the Bott
index. If at a given energy the Bott index is nonzero, then
any state with that energy must be in-gap, as the occupied
band of states below must have a nonzero Chern number
associated with it. The Bott index has proven useful in dis-
ordered and quasicrystalline systems, where bands cannot be
defined through Bloch’s theorem [41–43,85]. However, it is
computationally expensive, as it requires the logarithm of a
matrix whose size scales with the lattice. The Bott index does
not lend itself to the large system sizes of this work and is,
in general, ill-defined in the infinite-size case. Therefore, we
turn to an alternative measure—the local Chern marker.

The topological invariant can be projected onto the real
physical space of the system. For the Chern number, this gives
the local Chern marker [82,89–91]. Unlike the Bott index,
local Chern markers are defined on every single site j of the
lattice for the nth eigenstate as

Cn
j = −4π Im{〈 j|x̂nŷn| j〉}/Ac,

with Ac a reference area of the lattice, and

x̂n = Q̂nx̂P̂n, ŷn = P̂nŷQ̂n,

where x̂/ŷ are the position operators. The local Chern marker
has been used to distinguish topological states in quasicrystals
and disordered systems [38,92]. For large lattice sizes, we
find that the local Chern marker is a more efficient way of
distinguishing in-gap states since we do not need to compute
a matrix logarithm for each state. Moreover, it can be extended
to infinite systems. By taking the integer of maximal counts in
the distribution of Cn

j , we consider an effective Chern marker

Cn for a given state |n〉, which we find to be in agreement with
the Bott index for crystals and quasicrystals.

2. Infinite systems

Associated with the Hamiltonian H is a projection-valued
measure, E , whose existence is guaranteed by the spectral
theorem [93] and whose support is the spectrum Sp(H ). This
diagonalizes H , even when there does not exist a basis of
normalizable eigenfunctions (recall that we are working in an
infinite-dimensional Hilbert space):

H =
∫

Sp(H )
λdE (λ).

In finite dimensions and for compact Hamiltonians, E consists
of a sum of Dirac measures, located at the eigenvalues, whose
values are the corresponding projections onto eigenspaces.
More generally, however, there may be a continuous compo-
nent of the spectrum and spectral measure. Generalizations of
the spectral projectors in Eq. (3) can be given in terms of E as

P̂E =
∫

(−∞,E ]
dE (λ), (5)

where we now label over energy values E , which also covers
the possibility of continuous spectra.

The key ingredient that allows approximations of E to be
computed is the formula for the resolvent,

(H − z)−1 =
∫

Sp(H )

dE (λ)

λ − z
.

In Ref. [94], it is shown how to compute the action of the
resolvent with error control via the rectangular truncations
Pf (n)(Ĥ − z)Pn. Using this, we compute a smoothed approx-
imation of E via convolution with a rational kernel Kε for
smoothing parameter ε > 0. Taking z = x + iε, the classical
example of this is Stone’s formula, which corresponds to
convolution with the Poisson kernel

1

2π i
[(H − z)−1 − (H − z)−1] =

∫
R

επ−1

(x − λ)2 + ε2
dE (λ).

As ε ↓ 0, this approximation converges weakly (in the sense
of measures) to E . However, for a given truncation size, if
ε is too small, the approximation becomes unstable due to
approximating the sum of Dirac measures corresponding to
the spectral measure of the truncation of Ĥ . There is an
increased computational cost for smaller ε, which requires
larger truncation parameters. Since we want to approximate
spectral properties without finite-size effects, it is advanta-
geous to replace the Poisson kernel with higher-order rational
kernels developed in Ref. [95]. This allows a larger ε for
a given accuracy, thus reducing the computational burden.
Through a weighted distribution of resolvents, rational kernels
provide us with a generalized Stone formula

[Kε ∗ E](x) = −1

2π i

m∑
j=1

[α j (H − (x − εa j ))−1 − c.c.],

which converges with mth order of convergence in ε [95,96].
Here, c.c. denotes taking the adjoint, the constants α j and aj

can be found in Appendix A, and ∗ represents convolution.
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With this in hand, and for a given energy value E , we can write
down smoothed generalizations of the spectral projectors in
Eq. (5) as

P̂E
ε =

∫ E

−∞
[Kε ∗ E](λ)dλ, Q̂E

ε = I − P̂E
ε , (6)

where I denotes the identity operator. The convolution [Kε ∗
E] is a bona fide operator-valued function, and so the above
definition makes sense. Finally, we define

x̂E
ε = Q̂E

ε x̂P̂E
ε , ŷE

ε = P̂E
ε ŷQ̂E

ε ,

and the smoothed infinite-dimensional local Chern marker on
a basis site j up to energy value E as

CE
j = −4π Im

{〈 j|x̂E
ε ŷE

ε | j〉}/Ac.

In the following, we use ε = 0.05 and the sixth-order kernel
in Appendix A, where we provide algorithmic details.

As an example, the results for the effective Chern marker
for infinite size are shown for a square crystalline lattice with
a Hamiltonian of Eq. (1) in Fig. 3. The Hofstadter butterfly has
no states with a nonzero effective Chern marker, as expected,
apart from a handful that have a vanishing Chern marker as the
algorithm converges. The algorithm we develop to compute
topological properties for infinite-size systems is widely ap-
plicable. It can be used to study other quasiperiodic, aperiodic,
or even perturbed periodic lattices with complex structure.

B. Locality measures

To characterize the prevalence of a state throughout the en-
tire lattice, it is necessary to use locality measures. One of the
most common locality measures is the inverse participation
ratio of the nth eigenstate,

IPRn =
N∑
j

∣∣ψn
j

∣∣4
, (7)

where ψn
j is the wave function of the nth eigenstate at site

j and 0 � IPRn � 1. For a state that is extended across the
entire lattice, IPRn will be close to zero. Otherwise, if the
state is strictly localized to a single site or a collection of
sites, IPRn will be approximately 1. The use of IPRn alone
will not characterize whether or not we have a BLT state or
ES. While the IPRn of ESs will typically fluctuate around
a fixed value, the IPRn of BLT states will vary, making the
distinction between certain BLT states and ESs difficult. To
make the distinction between ESs and BLT states much more
clear, we will also make use of a radial measure, which we
define as

Ln = Nf
−1

∑
j

ρn
j r j, (8)

where ρn
j = |ψn

j |2/max(|ψn|2) is the rescaled probability den-
sity if this quantity is at least 0.75max(|ψn|2), and ρn

j = 0
otherwise. Here, Nf is the number of elements for which
ρn

j > 0, and r j is the jth site normalized radial coordinate with
0 � r j � 1. Ln is defined such that for every state 0 � Ln �
1, with ESs having Ln ∼ 1 and BLT states Ln < 1. The radial
measure then gives the degree to which the overall density
profile is localized towards the lattice center, whereas IPRn

tells us whether or not the state is strictly localized to a subset
of lattice sites. Note that, for regular bulk states, we also
have Ln < 1. However, we distinguish between bulk states
and in-gap BLT states via the above topological measures.

C. Transport properties

The most significant physics of in-gap states are their
transport properties. For ESs, transport is supported along the
edge of the system. The BLT states characterized in this paper
support transport along localized regions within the bulk of
the lattice. For the finite lattice, this requires the evolution of
the current state ψ (t0) under the time evolution such that the
final state is ψ (t1) = e−iH (t1−t0 )ψ (t0). We use a Trotter decom-
position of the evolution unitary into discrete time steps in our
calculations. Our Hamiltonian is always time-independent,
and we do not drive the system in any way.

For the infinite-size lattice, we cannot just apply the time
evolution to a finite truncation, since we want to avoid finite-
size effects. For a holomorphic function g, Cauchy’s integral
formula yields

g(H ) = 1

2π i

∫
γ

g(z)(H − z)−1dz, (9)

where γ is a closed contour looping once around the spec-
trum. Transport properties are computed via the choice g(z) =
exp(−izt ). The contour integral is computed using quadrature
and approximations of the resolvent (H − z)−1 via rectangular
truncations as above. In particular, the rectangular truncation
of the Hamiltonian is chosen adaptively through a posteriori
error bounds. This allows us to perform rigorous computations
with error control that are guaranteed to be free from finite-
size or truncation/discretization effects, directly probing the
transport properties of the infinite lattice. This is difficult to
achieve via other methods such as truncating the tile since it
can be difficult to predict how large the truncation needs to be
a priori [an example for the AB tiling is given in Ref. [97]
(Sec. 6.1)].

IV. BULK LOCALIZED TRANSPORT STATES

For the Hamiltonian Eq. (1) on a crystalline lattice with
open boundary conditions, there are generally two types of
states—ordinary bulk states and in-gap ESs. This is all that
would usually be expected without the presence of perturba-
tions or defects. Perturbations could include, for example, the
introduction of impurities, which can have in-gap states bound
to them [13,50–54], or the presence of internal hard edges, as
in fractal lattices [47–49].

In this section, we show that quasicrystals in the presence
of a magnetic field possess a third kind of state—BLT states.
Examples of all three possible states, i.e., a bulk state, an ES
state, and a BLT state, are shown in Fig. 4 for a finite-size
AB tiling vertex model with 1273 sites, along with their cor-
responding local Chern markers. In the figures throughout this
paper, we saturate the color maps of the local Chern marker
distributions to a range that shows the variation within the
bulk. This is necessary because of large divergences in the
local Chern marker near edges of the system, which occur so
that the sum of all local Chern markers in a given state will be
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FIG. 4. Example states (a)–(c) and their Cn
j distributions (d)–(f), showing (a), (d) a normal bulk eigenstate at n = 300; (b), (e) an ES at

n = 485; and (c), (f) a BLT state at n = 491. For each case, the corresponding Bott indices are (a) B = 0, (b) B = 1, and (c) B = 1. The Cn
i

distributions have the minimum value saturated to 0 for visual clarity.

zero [38,82]. In the bulk of the lattice, these fluctuations are
generally small, allowing the effective Chern marker of a state
to be visualized under a suitable range for the color map.

It is worth mentioning that BLT states have not been ob-
served in quasicrystals composed of single tiles, such as the
Rauzy tiling [38]. The Rauzy tiling is an example of a qua-
sicrystal that would not be expected to host BLT states, due to
the lack of a magnetic aperiodicity.

A. Scaling of the in-gap states

Using the radial measure of Eq. (8), combined with the
effective Chern marker of the state, we split our spectra into
ES, BLT state, and bulk state components. Figure 5 shows
the variation in the number of ESs or BLT states as we
vary the flux for different finite system sizes. There is also
a characteristic dip in the in-gap states at a single flux within
0 � φ/φ0 � 1, as is the case for ESs in a crystalline lattice.

(a) (b)

0 1 0 1
0 0

0.5 0.25

BLT

FIG. 5. Number of in-gap states as a function of flux, showing
(a) the number of BLT states (NBLT) and (b) the number of ESs
(NES). The blue, red, and green curves correspond to N = 1273,
2033, and 3041 lattice sites, respectively. Generally speaking, ESs
usually decrease in presence for the larger system sizes, as we expect.
However, the number of BLT states may actually increase in some
intervals of flux values.

Interestingly, the number of BLT states as a proportion of
the total number of states is increasing with system size. This
contrasts with ESs in the gap, whose proportion decreases
with system size (due to the bulk increasing in size faster than
the edge). By considering larger system sizes for the finite
system in Fig. 6, we show that, as expected, the proportion of
ESs tends towards zero. However, the proportion of BLT states
increases with system size and appears to converge towards
a nonzero number. In fact, the values near convergence are
∼20–40 % of the total states, which is considerable and seen
across a broad range of flux values.

B. A zoo of BLT states

There is a rich and varied zoo of BLT states for the AB
vertex model in a magnetic field, for both finite and infinite

(a) (b)

0 8000 0 8000

0.4

0

0.25

0

BLT

FIG. 6. Number of in-gap states as a function of system size,
showing (a) the number of BLT states (NBLT) and (b) the number
of ESs (NES). The blue squares, red diamonds, and green triangles
correspond to a φ/φ0 of 0.697, 0.394, and 0.152, respectively. For
each flux, there are signs of overall convergence at large N for
the total number of different topological states, but fluctuations can
frequently occur due to the inhomogeneous nature of the lattice.
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FIG. 7. Example BLT states (a)–(d) and their Cn
j distributions (e)–(h) for a larger portion of the AB tiling with 7753 sites. Each state

corresponds to (a), (e) n = 3022; (b), (f) n = 2987; (c), (g) n = 3030; and (d), (h) n = 2219.

systems. The BLT states are also prevalent in a variety of other
quasicrystals—see Appendix B.

We first fix the flux to φ/φ0 = 0.69 and give examples of
the varied structure of BLT states in Fig. 7. To find the large
variety of BLT states realizable at this flux, we simply need
to extend the system size from the previous consideration
in Fig. 4. The examples shown in Fig. 7 are for 7753 sites.
Not only is the original BLT state from Fig. 4(c) retained in
Fig. 7(a), but we also realize BLT states in different regions
of the lattice, both far into the bulk and nearer the boundary
of the system. The form of the states in Fig. 7 further explains
the trend of the proportion of BLT states shown in Fig. 6 as we
increase the system size. As the quasicrystal becomes larger,
there are more regions of the lattice to which the BLT states
can localize. We also show the local Chern markers for each
state in Fig. 7, where it can be seen that the effective Chern
marker of the bulk is nonzero, as the majority of sites in the
bulk have a nonzero local Chern marker.

BLT states are not a peculiarity of a single flux, and we
show a range of example BLT states at different flux in Fig. 8.
All the states shown in Fig. 8 have a nonzero Bott index and
effective Chern marker. It is clear from the examples of Fig. 8
that the BLT states are not an artefact of a single region or a
subset of regions of the lattice. Instead, they appear through-
out the system, with their location dependent on the flux. This
hints that their origins are due to an interplay of the constant
magnetic field with the quasiperiodicity of the lattice, which
we explore further in Appendix C. The appearance of BLT
states is as diverse as the usual bulk states observed for the
quasicrystal, reflecting the quasiperiodic nature of the system.
Figures 8(d) and 8(e) show examples that have localization
to a single site, rotationally symmetric sets of single sites,
or intricate localized structures. A key property of the BLT
states appears to be their ability to appear in many regions of
the quasicrystalline lattice. This ability could prove useful in

future applications, as their position is not restricted and could
be tuned without altering the lattice geometry.

A truly intriguing question for BLT states is whether they
survive in the infinite-size system. We confirm that the BLT
states can indeed exist in the infinite-size quasicrystal by ap-
plying the method of Secs. II B and III A 2. A set of example
states are shown in Fig. 9, all with a nonzero effective Chern
marker. The similarity of these BLT states to the finite-size
results already discussed is striking. Again, the region where
BLT states localize is flux-dependent. The persistence of BLT
states for the infinite-size quasicrystal is an important contrast
with the edge states of Hamiltonian (1). In crystalline systems,
we would expect all states in the infinite size to be in the bulk
bands, with no in-gap states. However, with the BLT states
preserved, a quasicrystal in a magnetic field can have states
with properties that are usually considered to be related to
being in-gap, even for the infinite-size lattice without defects
or boundaries.

C. Prevalence of the BLT states

The periodic fractal nature of the Hofstadter butterfly is not
preserved for quasicrystalline systems. For quasicrystals, the
energy-flux plane still contains a rich structure, which is now,
in general, also aperiodic. The structure of the energy-flux
plane for quasicrystals has been previously studied [37,43],
and will now be utilized to show the prevalence of BLT states
throughout the single-particle “phase diagram” of Hamilto-
nian (1).

In Figs. 10(a)–10(d), we show the finite-size Hofstadter
butterfly for two lattice sizes, with the color map being
the effective Chern marker Cn for each state and the cor-
responding radial measure of Eq. (8) for every in-gap state
(i.e., nonzero Cn). As a reminder, the effective Chern marker
is calculated from the integer of maximal counts in the
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FIG. 8. Example BLT states at different flux. Each state corresponds to (a) n = 290 at φ = 0.141φ0, (b) n = 379 at φ = 0.394φ0, (c) n =
582 at φ = 0.546φ0, (d) n = 90 at φ = 0.909φ0, (e) n = 98 at φ = 0.909φ0, (f) n = 291 at φ = 1.250φ0, (g) n = 135 at φ = 1.579φ0, and
(h) n = 309 at φ = 2.623φ0. For each case, the corresponding Bott indices are (a) B = −2, (b) B = −1, (c) B = −1, (d) B = 1, (e) B = 1,
(f) B = −1, (g) B = 1, and (h) B = 1, meaning each state shown is in-gap.

distribution of local Chern markers for a given state. From
this, we can see that there is a significant number of states that
are in-gap and within the bulk, i.e., with Ln < 1 and Cn 
= 0.
The inverse participation ratio IPRn for BLT states is also plot-
ted in Figs. 10(e) and 10(f), which reveals that the majority of
BLT states are not strictly localized to a small subset of lattice
sites. The locality and extent of BLT states is an interesting
question, and one we consider further in Appendix D. We also

show the energy-flux plane for the infinite-size quasicrystal in
Fig. 11. In this scenario, we compute effective Chern markers
using the algorithm outlined in Appendix A 2 across a full
range of energy values for Fig. 11(a). To retain states that
belong to the infinite size and remove spectral pollution/ESs,
we also use Algorithm 1 to restrict the energy to values within
the infinite size in Fig. 11(b) up to a specified error bound
of 0.01. BLT states are then present for the infinite system

FIG. 9. Density profiles of example BLT states on the infinite tiling for (a), (b) φ = 0.69φ0; (c) φ = 0.2φ0; (d), (e) φ = 0.4φ0; (f)
φ = 0.8φ0; and (g), (h) φ = 0.1φ0. Each state corresponds to an energy value (with shown error bounds) of (a) E = −0.987 30 ± 3 × 10−5 J,
(b) E = −0.974 79 ± 2 × 10−5 J, (c) E = −0.977 43 ± 2 × 10−5 J, (d) E = −1.562 934 ± 8 × 10−6 J, (e) E = −0.788 55 ± 2 × 10−5 J,
(f) E = −0.997 183 ± 5 × 10−6 J, (g) E = −1.604 22 ± 2 × 10−5 J, and (h) E = −1.5002 ± 3 × 10−4 J. All states shown have a nonzero
effective Chern marker, and they are therefore BLT states with in-gap characteristics.
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FIG. 10. Spectra of the quasicrystalline lattice, where each state
is labeled according to either their (a), (b) effective Chern marker Cn;
(c), (d) radial measure Ln, or (e), (f) the inverse participation ratio
IPRn. Each column considers (a), (c), (e) N = 1273 and (b), (d), (f)
N = 3041 sites. In (b), (d), we only plot the Ln of in-gap states, with
other states plotted in light translucent gray. In (e), (f), we only plot
the IPRn of BLT states. In-gap states can be observed throughout the
spectra, and they become more prominent for the larger system size.

through large ranges of flux, with states possessing a nonzero
effective Chern marker, even after ESs are removed from
the system. The regions where BLT states are present in the
infinite-size quasicrystal map well to those present in the finite
size.

FIG. 11. Effective Chern markers for the infinite AB tiling,
showing (a) the effective CE over a range of energy values E and (b) a
restricted range over values in the spectrum of the infinite lattice up
to the specified tolerance 0.01. States in (b) with CE 
= 0 correspond
to BLT states.

FIG. 12. Spectra of the quasicrystalline lattice, where each state
is labeled according to either (a) the effective Chern marker Cn,
(b) the radial measure Ln, or (c) the inverse participation ratio IPRn

across a larger range of φ/φ0 for N = 1273. In (b) and (c), we
again only plot either in-gap states or BLT states, respectively, as per
Fig. 10. As expected, the Hofstadter butterfly is aperiodic and has
a rich internal structure, with many different regions hosting BLT
states.

The aperiodic Hofstadter butterflies in both the finite and
infinite size show that BLT states are not a single set of
peculiar states limited to the examples shown in the previous
section. Instead, BLT states are present in the majority of
parameter space for Hamiltonian Eq. (1), with BLT states even
dominating the spectrum for particular ranges of the flux. We
can go to larger values of the flux, as shown in Fig. 12, and
observe even more BLT states. The prevalence of BLT states
and their variety could make the utilization of their supported
BLT (discussed in Sec. V) particularly interesting.

D. Different finite patches

So far, we have explored the formation of BLT states in
a quasiperiodic tiling with perfect rotational symmetry. We
now explore the infinite-size spectra for AB tilings that no
longer contain the central symmetry point, and we show that
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FIG. 13. Effective Chern markers CE over a restricted en-
ergy range of the infinite lattice for AB tilings with off-
set vectors of (a) �r = [0, 0]l (rotationally symmetric tiling),
(b) �r = [63.82, 43.92]l , (c) �r = [128.35, 71.06]l , and (d) �r =
[400.11, 183.22]l , where l is the quasicrystalline bond length. States
with CE 
= 0 correspond to BLT states.

BLT states still form in the absence of rotational symmetry. To
construct these tilings, we simply set the origin of the tiling
to some generic offset vector �r, and we construct the finite
patch around this point. In Fig. 13, we plot several examples
of the infinite-size spectra for a variety of offset vectors �r,
including the case of �r = [0, 0], which corresponds to the
rotationally symmetric results in Fig. 11(b) as a reference. For
these considered cases, we observe that all of the Hofstadter
butterflies are almost identical in structure, including the do-
mains in which BLT states are stabilized. The most notable
differences are subtle changes in the appearance of gaps in
certain intervals and the presence of additional BLT states
around E/J ≈ ±3.5 and φ/φ0 ≈ 0.5, similar to Figs. 10(c)
and 10(d).

These results clearly demonstrate that the formation of
BLT states is not dependent on the underlying rotational sym-
metry of the quasicrystal. To better illustrate this, we also
plot several examples of BLT states for the offset tilings in
Fig. 14, when φ/φ0 = 0.69. The states in each of the columns
are similar in structure to those within Figs. 9(a) and 9(b), but
now with enhanced localization due to the broken rotational
symmetry. Furthermore, the difference of energies between
the states observed in the offset tilings and the states in
Figs. 9(a) and 9(b) are small, meaning that they are almost
degenerate. Nearly degenerate BLT states should be expected
in quasicrystals due to the self-similar regions that can occur.
Note that the states are nearly degenerate instead of degen-
erate due to the quasicrystalline nature of the system, i.e.,
the tails of the localized BLT states will extend into different
regions of the lattice, and as it is not crystalline this will result
in small offsets in energy. In principle, for an arbitrarily large
quasicrystal it is possible for two nearly degenerate BLT states
to have an arbitrarily small energy difference, but this has yet
to be observed.

FIG. 14. Density profiles of example BLT states on the infinite-
size offset tilings for φ = 0.69φ0, with offset vectors (a), (b) �r =
[63.82, 43.92]l; (c), (d) �r = [128.35, 71.06]l; and (e), (f) �r =
[400.11, 183.22]l , where l is the quasicrystalline bond length. Each
state has an energy of (a) E = −0.9752 ± 4 × 10−4 J, (b) E =
−0.9865 ± 5 × 10−4 J, (c) E = −0.9750 ± 2 × 10−4 J, (d) E =
−0.9873 ± 3 × 10−4 J, (e) E = −0.9750 ± 2 × 10−4 J, and (f) E =
−0.9872 ± 3 × 10−4 J. The states in columns (a), (c), (e) and (b),
(d), (f) are almost degenerate with the two states in Figs. 9(b) and
9(a), respectively.

V. BULK LOCALIZED TRANSPORT

One of the most interesting properties of in-gap topological
states is their support of transport. For crystalline lattices in
constant magnetic fields, this is usually considered by launch-
ing a state (or particle) along the edge of the system, and
observing the robust transport of a component of the state
around the boundaries. If a boundary is instead formed within
the lattice, e.g., between a topological and nontopological re-
gion, then transport can also be supported along such features
due to the presence of in-gap states bound to the interface.

The BLT states found in this work are another type of
in-gap state. Therefore, we expect them to support transport
along their locality. Indeed, we find that a quasicrystal in a
magnetic field can also support long-lived BLT within the
bulk, as depicted in Fig. 1, due to the presence of BLT states.
Several examples of BLT are shown for both the finite and
infinite size in Figs. 15 and 16, respectively, for the AB tiling.
It is clear that a component of the initial state populates the
BLT state, allowing for BLT to be supported. Note, here, that
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FIG. 15. Dynamical transport due to the presence of BLT states, showing the evolution of (a)–(d) state n = 2987 and (e)–(h) state n = 3022
on the larger lattice of 7753 sites. Each column corresponds to a time frame of (a), (e) t = 0 J−1; (b), (f) t = 200 J−1; (c), (g) t = 400 J−1; and
(d), (h) t = 590 J−1. Our Hamiltonian is always time-independent, and we do not drive the system in any way.

FIG. 16. Infinite-size dynamical transport due to the presence of BLT states, at time t = 0 J−1 (first column), t = 200 J−1 (second column),
t = 500 J−1 (third column), and t = 1000 J−1 (fourth column). The first two rows correspond to the BLT states in Fig. 15 (φ = 0.69φ0), but
now computed on the full infinite tiling. The third row corresponds to an excitation of the BLT state at φ = 0.2φ0 in Fig. 9(c). Our Hamiltonian
is always time-independent and we do not drive the system in any way.
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we do not attempt to load into the BLT states, meaning we lose
population into the other states that overlap with the initial
state. For experimental scenarios, it would be prudent instead
to use state preparation methods to load into the BLT states
[98–100].

The transport shown for the infinite-size lattice in Fig. 16
is remarkable. For the infinite size, the usual transport along
the edge is not present due to the lack of said edge. For
the periodic infinite size, we can still have transport carrying
states due to the presence of an interface or impurities. How-
ever, in the quasicrystal, an interplay of the magnetic field
and quasiperiodicity can localize the particle to the bulk in
the infinite size without any alterations to the lattice. These
infinite-size states are then as capable of carrying transport
along them as any edge state in the finite system.

A key property of BLT could be the possibility of using its
varied location throughout the lattice itself. In a crystalline
finite system, the transport is only along the edge, or any
internal edges imposed by the lattice structure and/or defects.
However, with BLT we have shown that it is possible to have
transport supported in multiple locations within the lattice for
any given flux. By varying the flux, we can also tune where
the BLT is supported. BLT can then give a degree of control
for transport to occur within the bulk. By showing that this
can be done in the infinite size, we have shown that BLT is
independent of the size of the lattice, or the exact form of
the boundary. This is in stark contrast to in-gap ESs, whose
presence can in some cases be entirely reliant on the geometry
of the edge [101].

VI. DISCUSSION AND CONCLUSIONS

We have shown that the conventional picture of insulators,
metals, and topological insulators with surface states is not the
full story for quasiperiodic systems. When the quasiperiodic
nature of a quasicrystalline lattice interacts with a magnetic
field, it is possible for states to form that are unique in their
character. These states are localized to the bulk, but are in-gap
and support transport along them in the bulk. The BLT states
are far from a peculiarity and can exist throughout the spectra
of 2D quasicrystals in magnetic fields due to a magnetic ape-
riodicity. Magnetic aperiodicity is not an artificial construct
and is natural in the majority of 2D quasicrystals, due to the
incommensurate nature of the building blocks of the lattice.
For the case of the vertex models studied in this work, this
incommensurate nature arises from the incommensurate areas
of the prototiles. Sometimes, BLT states are even the dominant
in-gap state for large finite system sizes. We confirmed that
BLT states can exist in a variety of regions within the bulk of
the lattice, with their position being dependent on the flux, or
equivalently the magnetic field strength. Through the use of a
new numerical technique, we have also shown that BLT states
are present in the infinite-size lattice. This is quite remarkable
as they are in-gap states, with corresponding nonzero topolog-
ical measures. Through considering different finite patches of
infinite size quasicrystals, we have observed that nearly de-
generate BLT states can occur over large separations in space
due to the self-similarity of the quasicrystals studied. Finally,

by exciting regions within the bulk of the lattice, we have
shown that BLT is supported in both finite- and infinite-size
lattices.

Potential experimental realization: While there are cur-
rent developments of realizing quasicrystalline problems in
cold atoms [29,32], a promising setting for current real-
ization of the BLT states could be photonic lattices [102].
Photonic lattices allow a high degree of controllability in
the lattice geometry and are favorable for realizing the BLT
states due to a large number of sites being possible. The
lattice is usually etched into the two-dimensional plane of
a fused silica crystal, with time being transposed onto the
third dimension of the crystal. Photonic lattices are good
simulators for single-particle physics, and synthetic gauge
fields can be realized via helical waveguides [103], a Floquet
steplike approach [22,104], or a strain across the lattice [105].
Furthermore, there has been a recent proposal to realize a Pen-
rose quasicrystal in a synthetic vector potential using helical
waveguides [35]. As the key to the realization of BLT states is
the magnetic aperiodicity, we expect that any of these current
techniques could potentially be utilized to probe the physics
of BLT states.

Open problems and future research directions: One pos-
sible line of work is to consider the nature of the spectra
for the infinite-size tiling. Usually, we would consider these
states to all be ordinary bulk states, but, as we have shown,
this is not necessarily the case, even without any impuri-
ties or long-range disorder in the system. Another interesting
question is how the BLT states would appear or alter the
physics in the presence of interactions. The study of the
physics of two-dimensional quasicrystals including inter-
actions is an emerging topic [106–108]. With the recent
advances in many-body numerical techniques [109–111],
the physics of BLT states and their ramifications in qua-
sicrystalline lattices in the many-body regime could soon be
probed.

The reliance on magnetic aperiodicity also initiates an in-
teresting set of questions. Magnetic aperiodicity is not a sole
property of quasicrystals and could be incorporated into crys-
tal structures by deformations like that considered briefly in
Appendix C. This approach could be used to design effective
regions in the system where BLT states are desired to local-
ize, through the appearance of magnetic aperiodicity. These
regions could then be tuned to support or not support transport
through changes in the applied magnetic field strength. This
would potentially allow the design and control of specific re-
gions supporting localized transport within a crystalline lattice
bulk by introducing quasicrystalline-like deformations.

Final remarks: The understanding of electronic-like states
in quasicrystals is at an early stage of development, especially
concerning potential applications to quantum technologies.
There is much work to be done to realize the potential of these
fascinating and complex structures. This work has shown one
possible exotic behavior of these systems in magnetic fields—
the existence of BLT states and their supported transport.
Future work to understand the applications of BLT states to
quantum problems, like the applications considered for typical
edge states [3,6,112,113], could be particularly fruitful.
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The data for all results shown in this manuscript is available
in open access at [114]
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APPENDIX A: DETAILS OF THE INFINITE-SIZE
ALGORITHMS

This Appendix provides details of the algorithms used to
tackle infinite-dimensional spectral problems. Dealing with
infinite dimensions is more subtle than finite dimensions, and
not every computational spectral problem can be solved [115].
We split the discussion into three subsections corresponding
to each computed spectral quantity.

1. Computing spectra with error control

We describe the algorithm for infinite, sparse (finitely
many nonzero entries in each column) matrices representing
Hermitian Hamiltonians. For nonsparse matrices and even
non-Hermitian operators, see [59]. Extensions to unbounded
operators and partial differential operators can be found in
[75].

In our setting, the Hamiltonian H can be represented by
an infinite Hermitian matrix, Ĥ = {Ĥi j}i, j∈N . We are given
a function f : N → N such that Ĥi j = 0 if i > f ( j), thus
describing the sparsity of Ĥ . For z ∈ R, the key quantity to
compute is

Fn(z) := σinf (Pf (n)(Ĥ − z)Pn),

where Pm denotes the orthogonal projection onto the linear
span of the first m basis vectors, and σinf denotes the small-
est singular value of the corresponding rectangular matrix.
The function F is an upper bound for the distance of z to
the spectrum Sp(H ), and it converges down to this distance
uniformly on compact sets as n → ∞. There are numerous
ways to compute Fn, such as standard iterative algorithms
or incomplete Cholesky decomposition of the shifts Pn(Ĥ −
z)Pf (n)(Ĥ − z)Pn (see the supplemental material of [59] for
a discussion). The other ingredient is a grid of points Gn =
{z(n)

1 , . . . , z(n)
j(n)} ⊂ R providing the wanted resolution rn over

the spectral region of interest.
The algorithm is sketched in Algorithm 1, where F̃n de-

notes the described suitable approximation of Fn (which can

Algorithm 1. Computation of spectrum and the associated ap-
proximate states with error control.

Input: Ĥ , f , n, and Gn (with resolution rn).

1: For z ∈ Gn, approximate Fn(z) to accuracy (2rn)−1 from above.
Call the approximation F̃n(z) and assume it takes values in (2rn)−1Z.

2: For z ∈ Gn, let vn(z) denote the approximation of the
right-singular vector of Pf (n)(Ĥ − z)Pn corresponding to the smallest

singular value.

3: For z ∈ Gn, if F̃n(z) � 1/2, then set

Iz = {w ∈ Gn : |w − z| � F̃n(z)},
Mz = {

w ∈ Iz : F̃n(w) = min
x∈Iz

F̃n(x)
}
.

Otherwise, set Mz = ∅.

Output: �n = ∪z∈Gn Mz (approximation of spectrum),
En = maxz∈�n F̃n(z) (error bound), and Vn = ∪z∈�n {vn(z)}
(approximate states).

be computed in parallel). The simple idea of the method is a
local search routine. If F̃n(z) � 1/2, we search within a radius
F̃n(z) around z to minimize the approximated distance to the
spectrum. This gives the set Mz which is our best estimate
of points in the spectrum near z. The output is then the
collection of these local minimizers. The algorithm’s output,
�n(H ), converges to the spectrum Sp(H ) of the full infinite-
dimensional operator as n → ∞ (for suitable rn → ∞). Note
that this convergence is free from edge states. Moreover, the
error bound of the algorithm satisfies

sup
z∈�n (H )

dist(z, Sp(H )) � En

and the output En converges to zero as n → ∞ [59]. For a
desired spectral resolution δ > 0, we simply increase n until
En � δ. Finally, the output Vn consists of the approximate
states corresponding to the output �n.

2. Computing spectral measures and local Chern markers

In this section, we assume access to a routine that approx-
imates the action of the resolvent (H − z)−1 on a vector with
error bounds. In the scenario of the current paper, this can
be done through the rectangular truncations Pf (n)(Ĥ − z)Pn

and solving the resulting overdetermined linear system in the
least-squares sense. The residual converges to zero as n → ∞
and can be used to provide the needed error bounds (Ref. [94],
Theorem 2.1).

We use the high-order kernel machinery developed in
[95] and set Kε (·) = ε−1K (·/ε) for a kernel K ∈ L1(R). Let
{a j}m

j=1 be distinct points in the upper half-plane and suppose
that the constants {α j}m

j=1 satisfy the following (transposed)
Vandermonde system:⎛

⎜⎜⎝
1 · · · 1
a1 · · · am
...

. . .
...

am−1
1 · · · am−1

m

⎞
⎟⎟⎠

⎛
⎜⎜⎝

α1

α2
...

αm

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎠. (A1)

Then the kernel K (x) = 1
2π i

∑m
j=1[ α j

x−a j
− α j

x−a j
] is an mth-

order kernel [95], and we have the following generalization
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Algorithm 2. Computation of local Chern markers.

Input: Ĥ , f , m ∈ N (order of kernel), ε > 0 (smoothing
parameter), �E (energy or spectral spacing), i (site index), Ac

(reference area of the lattice), L [lower bound for Sp(H )] and
M ∈ N (number of energy values).

1: For j = 0, 1, . . . , M, set Ej = L + j × �E and

P̂
E j
ε,�E = �E

j∑
k=0

[Kε ∗ E](Ek−1) + [Kε ∗ E](Ek )

2
,

where K is an mth-order kernel, and the resolvents (H − z)−1 in
Eq. (A2) are computed adaptively through rectangular truncations
corresponding to the function f .
2: Set Q̂

E j
ε,�E = I − P̂

E j
ε,�E , with identity operator I.

3: Define the operators

x̂
E j
ε,�E = Q̂

E j
ε,�E x̂P̂

E j
ε,�E , ŷ

E j
ε,�E = P̂

E j
ε,�E ŷQ̂E

ε,�E .

Output: Local Chern markers

CE j
i = −4π

Ac
Im{〈i|x̂E j

ε,�E ŷ
E j
ε,�E |i〉}

at energy value Ej for j = 1, . . . , M.

of Stone’s formula:

[Kε ∗ E](x) = −1

2π i

m∑
j=1

[α j (H − (x − εa j ))−1 − c.c.]. (A2)

Under suitable conditions, mth-order convergence in ε holds
(i.e., the error scales as εm up to logarithmic factors). As a
natural extension of the Poisson kernel, we consider the choice
a j = 2 j/(m + 1) − 1 + i for j = 1, . . . , m.

With this in hand, and for a given energy value E , we
compute the smoothed spectral projections in Eq. (6) using
the trapezoidal rule. The quantities x̂E

ε and ŷE
ε can be com-

puted via successive applications of the relevant projectors.
This is outlined in Algorithm 2, which computes the local
Chern markers over a grid of energy values of spacing �E . In
practice, the algorithm has two levels of parallelism. We can
compute resolvents in parallel across different energy values
Ej , and we can perform the algorithm in parallel for different
sites indexed by i.

3. Computing transport properties

Finally, we discuss transport properties. For an initial wave
function ψ0, we wish to compute

ψ (t ) = exp(−iHt )ψ0 =
∫

γ

exp(−izt )

2π i
[(H − z)−1ψ0]dz,

where γ is a closed contour looping once around the spec-
trum. Suppose that the spectrum is located in an interval
[a, b] ⊂ R. We take γ to be a rectangular contour split into
four line segments: two parallel to the imaginary axis with
real parts a − 1 and b + 1 and two parallel to the real axis
with imaginary parts ±η (η > 0). Along these line segments,
we apply Gaussian quadrature with enough quadrature nodes
for the desired accuracy (the number of nodes can be found
by bounding the analytic integrand). Suppose that the weights
and nodes for the quadrature rule applied to the whole of γ

FIG. 17. Finite-size patches of aperiodic rhombic tilings with
different rotational symmetries. Here, we consider (a) 5-fold Moore-
Penrose tiling, (b) a 7-fold tiling, (c) a 10-fold tiling, and (d) a 12-fold
tiling. We show ∼600 sites in the corresponding vertex model for
each tiling.

are {w j}N
j=1 and {z j}N

j=1. The approximation of exp(−iHt )ψ0

is

ψ (t ) ≈
N∑

j=1

w j

2π i
exp(−iz jt )[(H − z j )

−1ψ0].

The vectors (H − z j )−1ψ0 are computed using the adaptive
method outlined in Appendix A 2, which can be performed in
parallel across the different quadrature nodes. We also reuse
these computed vectors for different times t . Numerically, this
requires η to be not too large, and a suitable N can be selected
for a finite interval of desired times t .

APPENDIX B: BLT STATES IN OTHER QUASICRYSTALS

We have observed that BLT states are prominent within
the spectra of the AB vertex model, both with and without
a global point of rotational symmetry. We now show that
BLT states can also populate the spectra of different kinds
of quasicrystals, including ones that possess large defects. As
long as a magnetic aperiodicity is retained, BLT states will be
preserved.

First, we show this by considering the BLT states present in
vertex models of 5-fold, 7-fold, 10-fold, and 12-fold rhombic
tilings, which are all deduced from projections of higher-
dimensional cubic lattices. Small patches of the tilings are
plotted in Fig. 17. The 7-fold and 12-fold lattices now have
rhombic tilings with more than two prototiles. As the global
rotational symmetry of the rhombic quasicrystal increases,
the number of prototiles increases to ensure that no gaps
are left in the tiling. The Hamiltonian is still that described
by Eq. (1).

Figure 18 plots several example BLT states for each Hofs-
tadter vertex model in the infinite size. This clearly illustrates
the appearance of similar looking in-gap states to the ones
observed in the eightfold AB tiling. As expected, the structure
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FIG. 18. Density profiles of example BLT states on infinite tilings for the (a), (b) 5-fold tiling at φ = 0.69φ0; (c), (d) 7-fold tiling at
φ = 0.4φ0; (e), (f) 10-fold tiling at φ = 0.69φ0; and (g), (h) 12-fold tiling at φ = 0.4φ0. Each state corresponds to an energy value (shown
error bounds) of (a) E = −3.042 941 5 ± 10−7 J, (b) E = −1.395 230 ± 2 × 10−6 J, (c) E = −1.238 795 796 461 629 ± 5 × 10−15 J, (d) E =
−0.872 060 288 846 29 ± 10−14 J, (e) E = −0.890 609 926 45 ± 6 × 10−11 J, (f) E = −0.1411 ± ×10−4 J, (g) E = −1.053 735 881 521 5 ±
4 × 10−13 J, and (h) E = −0.598 18 ± 2 × 10−5 J. All of the states shown have a nonzero effective Chern marker, and are therefore BLT states
with in-gap characteristics.

of states on other vertex models has the rotational symmetry
consistent with the tiling itself. We also confirm that BLT
states can exist in systems with extreme deformations, as
shown in Fig. 19. All the states shown in Figs. 18 and 19
have nonzero effective Chern markers and, hence, will support
transport in the bulk.

We also plot the infinite-size Hofstadter butterfly for the
fivefold lattice in Fig. 20, labeled according to the effective
Chern marker. This again demonstrates the removal of con-
ventional ESs from the spectra of the fivefold vertex model
and the retention of BLT states across a broad range of flux.
In other words, the appearance of BLT states is not limited to

FIG. 19. Density profiles of example BLT states on infinite tilings for the symmetry broken (a)–(d) 8-fold tiling and (e)–(h) 5-fold tiling. We
consider fluxes of (a), (b) φ = 0.69φ0; (c), (d) φ = 0.20φ0; (e), (f) φ = 0.69φ0; and (g), (h) φ = 0.4φ0. Each state corresponds to an energy
value (with shown error bounds) of (a) E = −1.609 378 ± 3 × 10−6, (b) E = −0.7533 ± 2 × 10−4, (c) E = 1.701 26 ± 4 × 10−5, (d) E =
0.9913 ± 4 × 10−4, (e) E = 0.560 996 ± 11 × 10−6, (f) E = 2.1235 ± 4 × 10−4, (g) E = −1.5209 ± 3 × 10−4, and (h) E = −1.394 57 ±
7 × 10−5. All states shown have a nonzero effective Chern marker, and are therefore BLT states with in-gap characteristics.
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FIG. 20. Effective Chern markers for the infinite 5-fold Moore-
Penrose tiling, showing (a) the effective CE over a range of energy
values E , and (b) a restricted range over values in the spectrum of
the infinite lattice (up to the tolerance 0.01). States in (b) with CE 
= 0
correspond to BLT states.

particular values of the magnetic field or the exact geometry
of the lattice, and BLT states can dominate the spectra of
quasicrystals, as long as the magnetic aperiodicity is retained.
As with their counterparts for the AB vertex model, the BLT
states for other quasicrystals do indeed support transport, as
shown in Fig. 21 for the 5- and 12-fold examples.

APPENDIX C: FORMATION OF BLT STATES IN A TOY
MODEL

In this Appendix, we characterize how these states form
through a toy model. First, we consider a simple but mis-
guided toy model that shows the BLT states are not formed
by effective edges from the varying local coordination num-
ber. These are equivalent to dislocations being present in the
system. We then describe a simple toy model showing that the
BLT states arise due to the interplay of the quasiperiodic lat-

tice, and mainly the irrational areas present, with the constant
magnetic field.

1. Dislocation toy model

At first glance, one might think that BLT states form due
to the quasicrystalline nature of the lattice alone. This would
be through effective edges being formed in the system via
the local aperiodic variation in the coordination number for
each site. In many ways, this would be similar to edge states
being bound to a dislocation or defect in the lattice structure.
Therefore, we consider a toy model on a square lattice with
a central region with lattice constant l2 = 13τ

10 , where τ is the
golden ratio, and an outer region of lattice constant l1 = 1.
The lattice constants l1 and l2 are incommensurate and lead to
a dislocation along the boundary of these two lattices shown
in Fig. 22(a). We couple all sites along this dislocation that
are within 1.5l1 of each other. The dislocation is along the
interface where the coordination number varies.

Some examples of the states along the dislocation are
shown in Fig. 23. The density profiles of these states look sim-
ilar to those of the BLT states but with a crystalline fourfold
rotational symmetry, as expected for this toy model. They also
have a corresponding nonzero Bott index and are, therefore,
in-gap and will support transport. However, the local Chern
marker shows a striking difference from the BLT states in the
quasicrystal. The states along the dislocation are a product of
the change of the local Chern marker across the dislocation.
This in itself is not a surprise and is usually the reason why in-
gap states appear on internal edges in these systems [47–49].
It is clear, however, that this is not how the BLT states form,
as we do not see any change in the local Chern marker across
the interface for quasicrystalline BLT states. Therefore, even
though at first glance the variation in the coordination number

FIG. 21. Infinite-size dynamical transport due to the presence of BLT states for other quasicrystals at time t = 0 J−1 (first column), t =
200 J−1 (second column), t = 500 J−1 (third column), and t = 1000 J−1 (fourth column). The first row corresponds to the 5-fold BLT state in
Fig. 18(b), with φ = 0.69φ0. The second row corresponds to an excitation of the 12-fold BLT state in Fig. 18(g), with φ = 0.4φ0.
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FIG. 22. Zoomed-in portions of the square lattice toy models
used to look at the formation of BLT states. In (a), we show a square
lattice with period l2 = 13τ

10 embedded in a larger square lattice of
period l1 = 1. Connections, colored red, are generated between the
boundaries of both lattices that are less than a threshold of 1.5l1 apart,
resulting in a coordination number dislocation. In (b), we show a
square lattice with lattice spacing l that has a positional disorder
applied to a selection of sites. The sites colored yellow are random-
ized from their original position in a small radius of 0.25l units.
The bottom row of figures (c), (d) shows the bottom right corners
of the same lattices in order to emphasize the incommensurate areas
between different unit cells more clearly.

FIG. 23. Example states from the spectrum of the model in
Fig. 22(a) with φ = 0.84φ0 (a), (b) form across a dislocation and
their (c), (d) Cn

j distributions. For each case, the corresponding Bott
indices are (a) B = 1 and (b) B = 1. The Cn

j distributions are satu-
rated between 1.5 and −2 for visual clarity. Each state also supports a
separate bulk effective Chern marker within the inner square lattice,
which is sign-flipped.

FIG. 24. Example states from the spectrum of the model in
Fig. 22(b) with φ = 0.70φ0 (a), (b) form around disordered fluxes
and their (c), (d) Cn

j distributions. For each case, the corresponding
Bott indices are (a) B = −1 and (b) B = −1. The Cn

j distributions
have the maximum value saturated to 0 for visual clarity.

appears to map well to how the BLT states are formed, it
cannot be their true origin.

2. Magnetic aperiodicity toy model

The formation of BLT states is due to an interplay of the
magnetic field with the aperiodicity of the quasicrystalline
structure. This is to be expected from the results in Sec. IV B,
where the location of the BLT states was shown to be largely
dependent upon the applied magnetic field strength. Through
another toy model on an originally square lattice, we now
show that the magnetic aperiodicity introduced into the sys-
tem is responsible for forming BLT states. In this model, we
take a subset of lattice sites on a square perimeter and vary
their location to a small degree, while retaining the constant
coordination number and connectivity of the square lattice. An
example of this toy model is shown in Fig. 22(b), where we
also enforce a twofold rotational symmetry for comparison.
This toy model has a small region with disorder in the area of
tiles. This then maps to disorder in the flux penetrating tiles in
this region, as we have cells with irrational areas to each other.

Some examples of the states along the magnetically dis-
ordered region are shown in Fig. 24. The states and their
corresponding local Chern markers look very similar to the
BLT states observed throughout this work. As expected, the
states also have a twofold rotational symmetry and show
clearly that the formation of BLT states is due to the interplay
of the constant magnetic field with the aperiodic structure
of the lattice. This also explains why BLT states were not
observed before in quasicrystals composed of a single tile
such as the Rauzy tiling [38,72], as there is then no magnetic
aperiodicity introduced into the system. Note, the Rauzy tiling
does have a local variation in the coordination number, further
supporting the conclusions from the dislocation toy model.
It is also worth noting that if periodic boundary conditions
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FIG. 25. Density profiles of example BLT states on the infinite AB tiling for (a)–(b), (e)–(f) φ = 0.69φ0, (c), (g) φ = 0.2φ0, and (d), (h)
φ = 0.8φ0. The first row of figures plots the real-space density profile, whereas the second row plots the density profile on a log scale. Each
state corresponds to an energy value (with shown error bounds) of (a), (e) E = −0.987 30 ± 3 × 10−5 J equivalent to Fig. 9(a); (b), (f) E =
−0.974 79 ± 2 × 10−5 J equivalent to Fig. 9(b); (c), (g) E = −0.977 43 ± 2 × 10−5 J equivalent to Fig. 9(c); and (d), (h) E = −0.997 183 ±
5 × 10−6 J equivalent to Fig. 9(f). This shows that most BLT states are not strictly localized to a small set of lattice sites.

are applied to the hard edges of these toy models, then the
BLT states remain persistent in the spectra. In other words,
this again demonstrates that the formation of BLT states is not
linked to the presence or geometry of the system’s boundary.

Finally, we also note that we have confirmed the pres-
ence of other kinds of in-gap states for systems with two
incommensurate tiles distributed in a periodic, superlattice
arrangement, such as one of the models considered in Fig. 6
of Ref. [43]. However, these states are of a different character
from that of the BLT states, as they will typically possess
striped and periodic density profiles. This contrasts the usual
characteristics of BLT states, which are instead strongly lo-
calized to specific regions of the lattice, and not extended.
Furthermore, this also confirms that a magnetic aperiodicity is
the crucial ingredient necessary to observe BLT states, rather
than incommensurate tiles alone. The further study of the
possible links between localized in-gap states in periodic, qua-
sicrystalline, and disordered systems could be an interesting
area of future research.

APPENDIX D: LOCALIZATION OF BLT STATES

In this Appendix, we briefly consider the localization prop-
erties of BLT states for the AB quasicrystal. From the inverse

participation ratios IPRn in Figs. 10(e) and 10(f), it is clear
that the vast majority of BLT states are not strictly localized
to a small set of lattice sites. In Fig. 25, we plot several den-
sity profiles of infinite-size BLT states, including the density
profile on a log scale. Here, we can immediately see that,
despite the heavy localization of BLT states, they possess
an interesting, extended structure of fluctuations throughout
a large extent of the lattice. Since there is finite support across
large domains of the lattice, this also explains why the inverse
participation ratio IPRn will fluctuate around small, nonzero
values.

We note that while the log-scale plots give an impression
that the shown BLT states are in fact extended in nature, the
values of the state in this extended component are crucial. For
the most part, the extended regions of the shown BLT states
in Fig. 25, and for all cases we have observed, are below
|ψ |2 ∼ 10−7. This impacts the physics in two crucial ways.
For one, any experiment would need to be repeated over an
unreasonably large amount of time or have the ability to differ-
entiate between such different scales. Secondly, when the state
is initially localized to the main support of the BLT states, it
will only expand into the extended region very slowly, and in
effect the timescales of the dynamics within the localised and
extended components would be decoupled in a similar way to
the Born-Oppenheimer approximation.
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