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Abstract—Turbulence is a common phenomenon in the atmo-
sphere and can generate a variety of distortions in an image.
This can cause further image processing tasks to struggle due to
lack of detail in the resulting turbulence affected imagery. It is
therefore useful to attempt to remove such distortions as a post
processing step. However, the development of such algorithms is
difficult due to the complex nature of turbulence data acquisition.
To alleviate these issues, this paper presents the development of
a turbulence simulator that is capable of imparting the effects
of a turbulent atmosphere onto clean images and videos. This
work also provides a large, publicly available dataset that can
be used as a benchmark. The simulator and dataset will be
valuable resources in the field of turbulence mitigation. Indeed,
the simulator allows researchers to simulate specific turbulent
conditions for any application as required; while the dataset
provides the ability to make use of turbulent data without the
expensive time commitment of simulation.

Index Terms—Atmospheric Turbulence, Simulation, Anisopla-
natic, Wave propagation, Dataset

I. INTRODUCTION

Atmospheric turbulence is caused by random perturbations
in the refractive index of air [1], which causes light to divert
from its intended path, resulting in angle of arrival fluctu-
ations and phase alterations. This results in image warping
and blurring. The processing of such a degraded image can
therefore be rather challenging, as the combined warping and
blurring results in a loss of image clarity and high frequency
detail. Therefore, a common post-acquisition step consists
in the attempt to recover such detail [2]–[4]. However, in
order to design such post processing algorithms, example data
is needed. Very often such post processing methods require
not only the turbulence affected images, but also the clean,
turbulent free images as reference. This is especially true
for the case of deep learning approaches, as paired data is
necessary for training purposes. The practical acquisition of
such a dataset however is an extremely difficult task, as the
lack of control over imaging conditions makes the capture of
corresponding ground truth images nearly impossible. Such a
ground truth image would need to be acquired when turbulence
is not present, likely at a different time of day. The challenge
then becomes the spatial alignment of the camera such that
the exact same image is taken.
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Fig. 1: Simulation sample images.

The ability to simulate the effects of turbulence in software
is therefore desirable, as any atmospheric conditions can be
evaluated, simulated, and applied to an image. This paper
presents the development and implementation of such a sim-
ulator for generating anisoplanatic turbulent imagery. Based
on the works Schmidt [5] and Hardie et al. [6], the simulator
models the turbulent atmosphere as a series of phase screens.
A point source is then propagated through the screens to
provide a Point Spread Function (PSF), which describes how
the point source has spread throughout the atmosphere. This
is then applied to a clean image to provide the final turbulent
output, examples of which can be seen in Fig.1. The simulator
presented in this paper is able to produce turbulent images
as well as videos where, for video sequences, the speed and
direction of the turbulence can also be defined. This work
also presents a novel dataset generated through the proposed
simulator. This dataset is available for use by the general
public and will be a useful resource for future research on
turbulence mitigation algorithms 1.

The paper is organised as follows. Section II provides
related works in the field of turbulence simulation. Section
III-A details the underlying theory of turbulence and its
characterisation. Section III-B then goes into the details of
the simulator, describing the generation of the phase screens
(III-B1) and the propagation process (III-B2). Section III-C
describes the dataset presented with this work, with details

1All data underpinning this publication are openly available from the Uni-
versity of Strathclyde KnowledgeBase at https://doi.org/10.15129/1adfbe5c-
68f0-49f1-9bad-e64872f9f582. The code for the simulator is available on
request
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on the simulator settings. Finally, Section IV provides the
conclusion to the paper.

II. RELATED WORKS

When simulating the effects of turbulence, there is a trade-
off between simulation accuracy and processing time. To
ensure accurate simulation, a large number of calculations are
needed, therefore increasing simulation time. Other simulation
methods instead make use of prior knowledge regarding tur-
bulent theory that allows an estimation of turbulence. These
implementations are faster, however they have limited accu-
racy. The distortion of an image can be described by

Iout(x, y) = H [Iin(x, y)] + n(x, y) (1)

where Iin and Iout are the clean input and distorted output
images respectively. Here n is additive noise and H[·] is a
function that describes the type of distortion. In the case of
turbulent imagery, the function H[·] can be represented by a
spatially varying warp, as well as a blurring operation [7],
[8]. The simplest method of turbulence simulation can be
achieved by applying (1) as a set of random functions, where
the distortion function can be represented by a random shift
of pixels, and the noise is represented by Gaussian blur [9].
The most common approach to the simulation of turbulence is
that of estimating the PSF caused by a turbulent atmosphere
[7], [10]. This can be done using an optical transfer function
(OTF), which describes how a source of light is affected by
the turbulent atmosphere and camera system [11].

Whilst the theoretical OTF can provide an indication of
a turbulent volume, the most accurate method of depicting
the path of light is by implementing a propagation simulation
[12]. These methods model the atmosphere using a series of
complex planes called phase screens, which represent how
the light wave changes path as it travels [13], [14]. Although
the propagation of a single light wave can be achieved with
minimal computation, the aggregate time required to perform
a propagation for each pixel in an image can result in a
computationally expensive simulation.

As previously described, the practical acquisition of tur-
bulent data is a challenging task. However, by combining
practical acquisition with computer simulation, real data can
be utilised. A popular method of simulation is the work of
Tunick et al. [15], [16], which was able to extract typical
distortions caused by different levels of turbulence. This allows
their simulation method to draw upon real turbulent experience
when processing an image. This method has also been used
in [17], [18]. Computer simulation is not the only method of
recreating turbulence. Multiple works have made use of real
life phenomena and real time photo capture in order to obtain
turbulent data. This includes imaging through a heating vent
[19], gas hobs [3] and hair dryers [20]. Whilst these methods
introduce a form of control over the underlying turbulent
effects, they are not true simulations of turbulence over a long
propagation path and are therefore only a simplistic imitation
of the real effects of turbulence.

Despite the challenges, attempts have been made to produce
a real turbulence dataset, such as the work of Gilles et al. [21],
which formulates ground truth images via a downsampling
and registration process of the pristine image. Anantrasirichai
et al. [3], [22] have collated real data for the purpose of
turbulence mitigation. To overcome the lack of ground truth,
a no reference image quality metric is used to evaluate the
performance of their methods. Turbulent data can also be
acquired for the purpose of atmosphere analysis. Such as in
[1], [23], where scintillometers are used to provide a reference
value of C2

n for the current atmosphere.

III. TURBULENCE SIMULATION

A. Turbulence Theory

Any viscous fluid can be categorised into one of two states
of motion: laminar or turbulent. In the case of laminar flow,
no mixing of the fluid occurs, resulting in a predictable flow
that has known characteristics. The flow becomes turbulent
when mixing occurs, causing the flow to break into subflows
called turbulent eddies, where any predictable characteristics
are therefore lost [24]. The point at which a fluid can transition
from laminar to turbulent flow can be determined by the
Reynolds number, Re, defined as

Re =
V l

v

where V , l and v are the velocity, length and kinematic vis-
cosity of the fluid respectively. At low values of the Reynolds
number, fluids tend towards laminar flow, whilst high Reynolds
numbers characterise turbulent flow [24]. By considering the
atmosphere as a fluid, the same principles can be applied in
the case of turbulence modelling.

Once a fluid transitions from laminar into turbulent flow,
the resulting turbulent subflows can then be described as an
energy cascade [25]. This begins with large eddies forming
due to an injection of energy; these then proceed to break up
into smaller eddies and continue to reduce until the eddies
dissipate completely as heat. This cascade begins at a size L0

and reduces in size to l0. These two values are known as the
inner and outer scales of turbulence. The eddies that lie within
these two scales form what is known as the ‘inertial subrange’
[24]. Within this inertial subrange, assumptions can be made
with regard to the statistics of the atmospheric field, which
led Kologorov to build his statistical model of turbulence
[26]. By using these assumptions and dimensional analysis,
Kolmogarov derived a power spectral density (PSD) for the
changes in refractive index in air:

ΦK
n (κ) = 0.033C2

nκ
−11/3, 1/L0 ≪ κ ≪ 1/l0 (2)

where κ is the angular spatial frequency in rad/m and C2
n

is the refractive index structure parameter. Typical values of
C2

n range from 1 × 10−16 (weak) to 1 × 10−13 (strong).
Other models for the refractive PSD introduce additional
control parameters to better align the theoretical and analytical
experiments [5]. Such a model is the modified Von Karman

Simulation of anisoplanatic turbulence for images and videos

2



Fig. 2: Illustration of a single propagation. The point source
is propagated through each phase screen until the

observation plane is reached. The lens operation then
converts the complex plane into a Point Spread Function.

PSD, which is the PSD used for this simulator. It is evaluated
as

ΦmvK
ϕi

(f) =
0.023e−f2/f2

m

r
5/3
0i

(f2 + f2
0 )

11/6
(3)

where f is the angular spatial frequency in cycles/m. fm =
5.92/2πl0 and f0 = 1/L0. Unlike (2), this is evaluated with
respect to the Fried parameter of the ith screen, r0i , which is
a measure of optical transmission quality [27].

B. Simulator Model

To simulate the effects of a turbulent atmosphere on images
and videos, the atmosphere must first be modelled in 3D space.
A point source can then be propagated from the source plane,
along a distance L until it reaches the camera sensor (Obser-
vation Plane). To represent a volume of turbulent atmosphere,
it is common to treat the atmosphere as a series of discrete
layers [5], where each layer is represented by a 2 dimensional
phase screen. The result of propagation through these phase
screens is a complex matrix at the observation plane. Using
a lens operation, this complex plane is transformed into a
single PSF [6], which can then be applied to an image
via convolution. This process of propagation is illustrated in
Fig.2. The propagation of a single point source through phase
screens is known as isoplanatic simulation. In such a case,
the resultant PSF is applied to each pixel within the source
image (i.e. spatially invariant). This therefore assumes that
each pixel in the image has passed through the same volume
of turbulence (or that the turbulence is identical in all points
in the 3D space). This however is not the case in real imagery
as each source of light traces a different path through the
atmosphere. The modelling of such an environment is known
as anisoplanatic simulation, in which each pixel has a specific
PSF based on its optical path through the atmosphere. To
achieve this, the phase screens are generated at an extended
size, as seen in Fig.3. Once the trajectory of a pixel (pencil ray)
is traced through 3D space, the intersections with the phase
screens are taken as centre points for a cropping operation.
The cropped screens are then used for propagation, as in
Fig.2. For the simulation of video sequences, the phase screens

Fig. 3: Geometry of 3D space in which phase screens are
situated. For each pixel, a pencil ray is traced towards the

observation plane. The intersections of the pencil rays
correspond to the centre points for the cropped screens used

for propagation.

are again generated to an extended size. The video is then
simulated one frame at a time, where the phase screens are
translated laterally, to simulate turbulence motion, by a number
of samples in a given direction for each new frame, resulting
in frames that are temporally correlated.

In order to sample the planes such that the simulation is
accurate, the actual physical dimensions of the simulation are
used. In the case of this simulator, the size of the planes is
related to the diameter D of the camera aperture. From this,
the width X of the point source and cropped phase screens is
defined as X = sD = ∆xN , where s is a scaling parameter,
∆x is the grid spacing and N is the sample count. ∆x is
calculated such that it is able to accurately represent each
screen without undersampling. To ensure this, the Voel critical
sampling rule is applied [5], as

∆x =

(
λL

N

) 1
2

(4)

allowing the sample count N to be evaluated as

N =
X2

λL
(5)

The scaling parameter s is chosen such that the resulting value
of N is a power of two and the screen width is at least 4 times
that of the aperture diameter. The image at the source plane
is sampled according to Nyquist as δo = λL/(2D) [6].

1) Generation of Phase Screens: Each phase screen imparts
an optical phase change to the incoming wave. Assuming that
this phase is a Fourier transformable function, it can be written
as a Fourier series [5] as

ϕ(x, y) =

∞∑
n=−∞

∞∑
m=−∞

ĉn,mei2π(fxnx+fymy)
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where fxn
and fym

are the spatial frequencies. ĉn,m is the
random realisation of the Fourier series coefficients cn,m,
which are multiplied by a Gaussian random variable with zero
mean and unit variance as

ĉn,m = N (fxn
, fym

| 0, 1) cn,m
where the values of cn,m are generated from the modified von
Karman PSD (3) as

cn,m =
√
Φϕi (fxn , fym)∆f

where the frequency spacing is ∆f = 1/(N∆)x. For the
evaluation of (3), the values of r0i are first calculated using
the optimisation method described in [6]. The limitation of this
method is that of sampling the modified von Karman PSD at
∆f , as most of the power lies at the low spatial frequencies.
To access these frequencies, a larger spatial sampling rate,
∆x, would be required. To overcome this, more phase screens
are generated at subharmonics of ∆f (∆fp = ∆f/3p). These
are then combined with the base screen, resulting in accurate
phase representations of the turbulent atmosphere.

In the case of anisoplanatic simulation, (4) and (5) are
evaluated with respect to a single propagation, resulting in a
cropped screen size of X . The extended screens have a width
of X̃i = ∆xÑi, where Ñi is evaluated based on the position
of the screen along the propagation path. The largest of which
(i.e. closest to the source plane) is sampled such that it is
N samples larger than the source image (sampled at δo) for
the accommodation of the corner pencil rays. Note that the
PSDs for these extended screens are sampled at a frequency
of ∆f = 1/∆xÑ . An example phase screen can be seen in
Fig.4a.

2) Propagation and Image Generation: The point source
used for propagation is modelled as a 2D Gaussian windowed
sinc function [5], defined as

Upt (x, y) = λLα2e−i k
2L (x

2+y2)sinc [αx, αy] e−
α2

16 (x
2+y2)

where α = (4D)/(λL). This source is designed such that if
propagated through a turbulent free atmosphere, the result is a
4Dx4D patch of uniform amplitude on the observation plane.

Split-step propagation of the point source is performed using
the Fresnel diffraction equation; for the purposes of this paper,
the derivation of this equation is omitted, and the reader is
redirected to [5]. This equation begins with the point source
and propagates it to the first phase screen, at which point
the phase is altered as defined. This process is then repeated
until the observation plane is reached. This is known as split-
step propagation. An attenuating border is also introduced
to the phase screens, in order to reduce any signal energy
that is tending towards the simulation boundary. The split-
step propagation produces a complex field U0 (x, y) at the
observation plane. This is then focused at the focal length with
the use of a collimation operation and masked with a pupil
function a (x, y), defined by the camera aperture diameter D.

p (x, y) = a (x, y)U0 (x, y) exp

[
−iπ

(
x2 + y2

)
λR

]

(a)
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Fig. 4: (a) Example Modified Von Karman Phase Screen with
subharmonics (b) PSF after propagation and lens functions.

where p (x, y) represents the amplitude distribution behind the
lens. The final PSF can then be found using Fourier optics
principles [28] as

h(x, y) =
(
|FT{p(x, y)}|2

)∣∣
u= x

λl ,v=
y
λl

which is then resampled to Nyquist sample spacing [6], and
normalised to have a sum of 1. An example PSF is shown
in Fig. 4b. PSFs are obtained for each pixel in the image,
allowing the final turbulent image to then be formulated as

y [m,n] =
∑
j

∑
i

x [i, j] · hm,n [m− i, n− j]

where x is the clean input image.
A performance gain for the simulation process is possible

at this stage. In fact, due to the nature of the pencil rays, a
pixel will have a very similar path through the atmosphere as
its immediate neighbours. Therefore, a skip parameter allows
the pencil rays to be traced using a sparser grid of pixels. The
PSFs of the remaining pixels are then estimated using bilinear
interpolation.

C. Dataset Generation

The dataset generated for this work makes use of the
Places dataset [29]. This is a dataset of 1,469,737 scene
images covering 205 separate categories, of which 31 have
been chosen as categories that could be prone to turbulent
interference, such as outdoor scenes. By isolating the data to
these categories, a total of 148,884 images were selected for
the simulation process.

The simulation parameters used for the resultant dataset
are detailed in Table I, where the resulting grid spacing and
sample count of the cropped phase screens were ∆x = 0.0064,
N = 64. To ensure a comprehensive dataset of diverse data,
three variables were used during the simulation process. For
each video, the values of C2

n, turbulence speed and turbulence
direction were randomly selected from a predefined list of
values, shown in Table II. Such values allow for a total of
160 different potential turbulent simulations within the dataset.
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TABLE I: Simulator settings for provided dataset.

Description Dataset Values

Camera aperture diameter D = 0.1m
Propagation distance L = 5km

Number of phase screens nscr = 8
Inner scale l0 = 0.01m
Outer Scale L0 = 300m
Pixel Skip skip = 4

wavelength of light λ = 525× 10−9

Image Size Image Pixels = 257× 257
Video frames frame count = 15

No. of Subharmonics Sub Count = 2
Subharmonic grid size Nsubharm = 4

TABLE II: Dataset variables.

Variable Values

C2
n (0.25, 0.6525, 0.875, 1.1875, 1.5)× 10−15

Turbulence Speed 1, 2, 3, 4
Turbulence Direction �� � � ��� �

The random choice is made such that the final dataset has a
uniform distribution of these 160 different classes. The range
of values for the atmospheric structure parameter C2

n is chosen
such that a range of low to high turbulence is represented, the
two extremes of which are shown in Fig.1. The speed and
direction of the turbulence are given as an integer value and
an angle of movement. Each details the nature of movement
of the enlarged phase screens in between each frame of the
simulation. The speed denotes how many pixels the screens
are to move, whilst the direction provides the angle in which
the screens should translate. This can result in slow to fast
turbulence in all the cardinal directions as well as diagonals.

IV. CONCLUSION

This paper has presented the details of an accurate method
of turbulence simulation for optical images. This simulator
is capable of imparting the realistic effects of turbulence onto
datasets of clean images. Such data can then be further utilised
in the development of turbulence mitigation algorithms. This
paper also presents a dataset that is available for public use,
allowing the slow process of propagation simulation to be
avoided.
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