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Abstract: Impulsive underwater discharges have been investigated for many decades, yet the complex
pre-breakdown processes that underpin their development are not fully understood. Higher pre-
breakdown energy losses may lead to significant reduction in the magnitude and intensity of the
pressure waves generated by expanding post-breakdown plasma channels. Thus, it is important to
characterize these losses for different discharge types and to identify approaches to their reduction.
The present paper analyses thermal pre-breakdown processes in the case of free path and wire-guided
discharges in water: fast joule heating of a small volume of water at the high-voltage electrode and
joule heating and the melting of the wire, respectively. The energy required for joule heating of the
water and metallic wire have been obtained from thermal models, analysed and compared with the
experimental pre-breakdown energy losses. Pressure impulses generated by free path and by wire-
guided underwater discharges have also been investigated. It was shown that wire-guided discharges
support the formation of longer plasma channels better than free path underwater discharges for
the same energy available per discharge. This results in stronger pressure impulses developed by
underwater wire-guided discharges. It has been shown that the pressure magnitude in the case of
both discharge types is inversely proportional to the observation distance which is a characteristic of
a spherical acoustic wave.

Keywords: spark breakdown in water; free path discharges; wire-guided discharges; pressure impulses

1. Introduction

It is known that free path and wire-guided underwater spark discharges can generate
strong pressure impulses; such impulses have been studied for examples in [1,2] and
in [3,4]. Pressure impulses generated by underwater spark discharges can be used for
electrohydraulic crushing and fragmentation of solid materials, for waste utilization and
management [5], extraction and liberation of valuable minerals and inclusions in mineral
processing [6] and in other practical applications.

Although the breakdown processes in water have been studied over several decades,
these complex phenomena are not yet fully understood. It is known that the magnitude
of pressure impulses generated by underwater spark discharges depends on the energy
delivered into the spark channel [4]. Thus, in order to achieve stronger pressure impulses
for the same available discharge energy, pre-breakdown energy losses should be minimized
since they reduce the amount of energy available to be delivered into the post-breakdown
plasma channel.

In the case of free path discharges, the inter-electrode gap is filled with water (the
electrodes are submerged in water). Thus, the pre-breakdown process depends upon
the conductivity of the water [7], the electrode topology and the pulse parameters of the
high-voltage impulses, which are defined by the pulse-driving circuit. The initial phase
of a free underwater discharge may include the formation of a gas cavity through joule
heating and the subsequent development of a gas discharge in this cavity (the gas bubble
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theory [8,9]). As discussed in [10], for µs high-voltage impulses, the formation of gas-filled
structures could be the dominant factor that governs the entire pre-breakdown process.
For ms impulses, the joule heating process plays a critical role in the development of the
breakdown of water [11]. However, if the electrodes are stressed with shorter, sub-µs
high-voltage impulses, the breakdown process may progress through transient ionization
of the water without the formation of gas cavities [12], i.e., through the development of fast
ionization fronts (streamers) [13].

To stabilize the breakdown process and to develop longer spark plasma channels, a
thin conductive wire can be placed between the electrodes. In such cases of wire-guided
discharges, the pre-breakdown processes include the fast impulsive heating and melting
of the wire and the subsequent breakdown of the channel filled with gas (vapour) and
liquid metal droplets. Such wire-initiated breakdowns typically result in a significantly
shorter pre-breakdown time and lower pre-breakdown energy losses as compared with free
path discharges in water. For example, in [14], it was shown that the use of a thin 100 µm-
diameter, 5 cm-long copper wire resulted in a ~4 µs delay to the formation of a highly
conductive post-breakdown plasma channel. However, in the case of free path discharges
in a 0.4 cm long gap, the pre-breakdown delay time was ~120 µs with the same energy,
and 675 J was available in discharge and at the same 15 kV charging voltage. Thus, a thin
conductive wire connecting the two electrodes helps to minimize the pre-breakdown energy
loss. Underwater wire-guided discharges can support high density and high temperature
plasma, and the generation of strong shock waves. Such discharges can be used in different
practical applications including oil-well unblocking and electro-hydraulic forming [15,16].

The energy and hydrodynamic aspects of free path and wire-guided underwater spark
discharges and the characteristics of pressure impulses generated by these discharges have
been investigated since the late 1950s. For example, in [17], it was found that the pressure
in the plasma channel developed by wire-guided discharges could exceed 20,000 atm. The
total capacitance of the pulsed capacitive system used in this work was 5.8 µF, the charging
voltage was 25 kV and the length of the wire (developed plasma channel) was 1.5 cm.
More recently, in [18], the authors used a capacitive pulsed power system with similar
parameters (5.4 µF total capacitance, charging voltage of 30 kV) to generate underwater
wire-guided discharges stabilized by longer 8.5 cm copper wires. It was estimated that
the maximum pressure in the plasma channel in such conditions was over 6000 atm.
The study of underwater spark discharges continues, e.g., wire-guided discharges and
the characteristics of pressure pulses generated by these discharges have recently been
investigated in [10,19,20]. In [21], characteristics of the pressure impulses generated by
free path discharges in water were studied. In [22], the pressure wave magnitude and
energy efficiency of both types (free path and wire-guided) of underwater discharges were
investigated and analysed.

However, despite the significant number of studies focused on the breakdown pro-
cesses in water under different energization regimes, the complex processes involved in the
formation of underwater discharges still require further investigation in order to provide
reliable models that can be used for the optimization of energy characteristics and pressure
impulses generated by underwater spark discharges.

In particular, it is important to compare the pre-breakdown energy losses for free
path and wire-guided discharges for the same energy available in the discharge in order
to optimize the operational parameters of the pulse-driving circuits and to improve the
efficiency of energy conversion required for the generation of stronger pressure impulses
for the same amount of stored electrical energy. Moreover, postulating the importance of
the role of joule heating in the development of underwater discharges in the case of µs (or
longer) high-voltage impulses, the development of models that can be used in the analysis
of the fast local heating of water in high electric fields is required. Such a thermal model
has been developed in the present paper for free path underwater discharges. The time
of cavity formation and energy required to form the cavity obtained from the model are
compared with the experimentally measured values.



Energies 2023, 16, 4932 3 of 18

The experimental part of the present work focused on the study of pressure impulses
generated by free path and wire-guided discharges using the same energy available in the
discharge, and on the analysis of the pre-breakdown energy losses and energy delivered into
the spark channel. The nominal magnitude of the generated pressure impulses, the energy
delivered into the plasma channel and the pre-breakdown energy losses obtained for free
path and wire-guided discharges were obtained and compared in order to establish the most
efficient method of generation of pressure impulses. The nominal magnitude of the pressure
impulse as a function of distance from the spark discharge was obtained and analysed for
pressure impulses generated by free path and wire-guided underwater discharges.

2. Experimental Setup

The experimental system used in the present work consists of a capacitive pulsed
power system which generates HV impulses, a water tank filled with tap water, an electrode
system used to generate either free path or wire-guided discharges and electrical and pulsed
pressure diagnostic devices. This set-up presented in Figure 1 is similar to the systems
described in [4,23].
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Figure 1. Schematic diagram of the impulsive high-voltage test system.

The capacitor C, used for energy storage in the pulsed power system, is a HV capacitor
manufactured by Maxwell Laboratories Inc., San Diego, California, USA with a nominal
capacitance of 265 nF. It was charged using a DC power supply (Matsusada AU series)
manufactured by Matsusada Precision Inc., Shiga, Japanthrough a charging resistor (1 MΩ).
The charging voltage used in all tests was 35 kV. The output HV pulse was generated
by manually operating mechanical closing switch. The output voltage was measured
using a HV probe (Tektronix P6015A, Tektronix Inc, Beaverton, OR, USA, 1000:1 division
ratio and 75 MHz bandwidth,); the current in the discharge circuit was obtained using a
low-inductance current shunt with a sensitivity of 29.6 V/kA, manufactured by SAMTECH
Ltd. The voltage and current waveforms were recorded using a digitizing oscilloscope,
(Tektronix TBS1102B, Tektronix Inc, Beaverton, OR, USA, 100 MHz bandwidth, 2 GS/s
sampling rate, shown as “Oscilloscope 1” in Figure 1,).

The total circuit inductance and circuit resistance (with no plasma discharge) are
represented as inductor L and resistor RLoss, Figure 1. The circuit resistance RLoss governs
the fraction of the total available energy that is dissipated in the circuit (excluding the
plasma channel) during the post-breakdown process. The rest of the energy available in
the discharge after establishment of the plasma channel is intended to be delivered into
this channel.
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The electrode systems used to generate free path and wire-guided discharges were
located in a water tank with dimensions of (2 m) × (1 m) × (1 m), which was filled with tap
water with conductivity of ~50 µS/cm at room temperature. The electrode systems were
energized using the pulsed power system shown in Figure 1. The electrical and pressure
pulse parameters of free path and wire-guided underwater discharges were investigated.
Each electrode system was located in the centre of the water tank and connected to the
HV output terminal of the capacitive pulsed power system. The gap between the two
electrodes in the case of free path discharges was set to either 5 mm or 10 mm. The conical
ground electrode had a sharpened tip with a radius of 0.45 mm. The upper HV electrode
had a more complex profile with a short rod structure protruding at its end, the radius of
the rod is 1.25 mm, and the edge radius being 0.18 mm. The smaller edge radius of the HV
electrode (as compared with the conical grounded electrode) leads to a higher electric field,
which helps to promote the development of discharges from this HV electrode, while the
rod structure of the HV electrode helps to reduce the erosion rate of the edge. The radii
were measured using an optical microscope with a 4 × D objective equipped with a CCD
camera (M1000-D, Swift Optical Instruments, Schertz, TX, USA). Photographs of the high
voltage and ground electrodes used to generate free path discharges in water are presented
in Figure 2.
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A schematic diagram of the test-cell assembly used to generate wire-guided dis-
charges is presented in Figure 3. This system consists of two circular stainless-steel flanges 

Figure 2. Schematic of the free path discharge electrode system with radius of high-voltage and
ground electrodes; (a) electrode configuration for free discharges; (b) a photograph of the high-voltage
electrode with a 1.25-mm central rod radius and a 0.18-mm edge radius; (c) an exploded view of the
high-voltage electrode showing its edge with the 0.18-mm radius; (d) a photograph of the ground
electrode, with its 0.45-mm tip radius; (e) an exploded view of the tip of the ground electrode.

A schematic diagram of the test-cell assembly used to generate wire-guided discharges
is presented in Figure 3. This system consists of two circular stainless-steel flanges (plates)
with radii of 50 mm connected by three stainless-steel rods. In the centre of this test-cell
formed by the flanges and rods, two crocodile clips were located at the upper clip, which
was connected to a high-voltage cable, and the lower clip, which was attached to a stainless-
steel rod bolted to the lower grounded flange. In each test, a high-purity copper wire
(99.5% Cu) with 0.025-mm radius was located between and fixed by the crocodile clips. The
distance between the clips was either 30 mm or 50 mm, these being the two lengths of wire
used to generate wire-guided discharges.
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Figure 3. Schematic view of the wire-guided discharge electrode system.

A piezoelectric acoustic sensor (Pinducer VP-1093, Valpey Fisher, now CTS Corpora-
tion, Lisle, IL, USA) was used to detect the pressure impulses generated by spark discharges
in water and to measure their nominal magnitude. The output voltage signal from the
acoustic sensor was monitored by a digitizing oscilloscope (Tektronix DPO2024, 200 MHz
bandwidth and 1 GS/s sample rate, Tektronix Inc., Beaverton, OR, USA, “Oscilloscope 2”
in Figure 1). The pressure signals were measured in the interval from 40 cm to 70 cm away
from the spark-discharges source, in 10 cm increments.

3. Electrical Parameters

Voltage and current waveforms were obtained in each underwater discharge test.
Typical waveforms for a free path discharge in water are shown in Figure 4. There are two
main phases that can be distinguished in the free path breakdown process. Initially, the
applied voltage, V0, appears across the electrodes upon closure of the switch in the pulsed
power circuit. The tap water used in this work had a conductivity of ~50 µS/cm, resulting
in a decay of the voltage across the electrodes up to the moment of breakdown. The voltage
value at this moment of breakdown is Vbr. The time interval between application of V0
and the moment of breakdown is defined as the pre-breakdown time interval, T0. After
breakdown and the formation of a conductive plasma channel between the electrodes, a
significant post-breakdown current starts to flow through this breakdown channel. The
post-breakdown circuit can be approximated by a lumped RLC circuit. For the experimental
conditions used in the present work, the post-breakdown current and voltage waveforms
show an underdamped oscillatory behaviour. The envelopes of the post-breakdown os-
cillations of voltage and current are symmetrical relative to the zero axis. This allows the
analysis of the plasma resistance based on Equation (1) to be performed using only the
positive peaks. Thus, for better visualization of the envelopes and to provide better visual
resolution of the positive pre-breakdown behaviour, only positive parts of the waveforms
are shown in Figure 4.
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Figure 4. Typical voltage (a) and current (b) waveforms for a free path discharge: 5-mm inter-
electrode gap, 265 nF energy-storage capacitance and 35 kV charging voltage. Only positive parts of
the waveforms are shown.

For the development of a free path underwater discharge through the thermal mecha-
nism, it can be assumed that during the pre-breakdown time, T0, a gas cavity is formed at
the surface of the HV electrode, due to intensive joule heating. After the formation of this
cavity and breakdown of the gas/vapour inside it, a fast ionization front(s)/streamer(s)
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bridges the remaining water gap, leading to the development of a post-breakdown plasma
channel in the inter-electrode gap.

In the case of wire-guided discharges, the mechanism of formation of post-breakdown
plasma channels is different. A thin wire provides a conductive path between the HV
and ground electrodes. Thus, upon closure of the switch at t0, a high current starts to
flow through the wire resulting in its intensive heating and disintegration. At the moment
of the wire’s disintegration, which is indicated as time t1 in Figure 5 (which presents an
example of a current waveform measured for a wire-guided discharge), the conductive
path is interrupted and the current drops. For the experimental conditions used herein,
the time interval required for wire evaporation and disintegration was ~0.5 µs. Typically,
such current interruption and the subsequent current re-strike is a characteristic of wire-
guided discharges in gas and vacuum and high energy (kJ range) wire-guided discharges
in water [20]. However, as can be seen from Figure 5, this pattern of current interruption
and current re-strike was also observed for the experimental conditions used herein. The
gas breakdown that takes place in the channel formed following disintegration of the wire
(this channel is filled with gas, vapor and metallic droplets) results in the formation of an
expanding post-breakdown plasma channel, and under-damped current oscillations in
the pulse-driving circuit. As in the case of free discharges (Figure 4), the envelop of the
post-breakdown current oscillations is symmetrical relative to the zero axis. Therefore,
only positive current peaks were used in the analysis of the plasma resistance, Equation (1).
Again, for clarity, only the positive part of the current waveform is shown in Figure 5,
which helps to provides better visual resolution of the current behaviour during the wire
heating and disintegration phase, which is completed at time t1.
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The post-breakdown circuit, including the plasma channel (formed by either a free
path or wire-guided discharges) bridging the electrodes, can be modelled as a lumped
RLC circuit assuming that the resistance of this plasma channel can be represented by a
constant nominal value, Rpl [24,25], and the resistance of other elements of this circuit is
represented by a constant value, Rloss. The underdamped current oscillations in this circuit
are described by Equation (1):

I(t) = I0e−αtsin(ωt)

α = R
2L , ω =

√
1

LC − α2
(1)

where I0 is a constant related to the magnitude of the first current peak, R is the total
resistance of the circuit (R = Rpl + RLoss), L is the total inductance of the circuit and C is the
capacitance. The attenuation coefficient α and angular velocity ω can be obtained from the
experimental current waveforms.

This allows experimental values of R and L to be determined and the nominal constant
plasma channel resistance, Rpl, to be obtained using Equation (2):

Rpl = R − RLoss (2)

The circuit resistances RLoss of the systems (pulse-driving circuit and electrodes) used
to generate the free path and wire-guided discharges in water were obtained by shorting
the electrodes of these systems with a conductor, registering the current oscillation under
these conditions and calculating the circuit resistance using Equation (1) (R = RLoss in this
case). It was found that RLoss for the system used to generate free path discharges in water
is 0.39 ± 0.01 Ω while for the wire-guided discharge system RLoss is 0.37 ± 0.01 Ω. RLoss
values were calculated using 20 individual data points, with the (±) errors representing the
standard deviation.

The nominal plasma resistance, Rpl, could be considered as an equivalent parameter
that defines the portion of energy available in the discharge that is dissipated in the
conductive plasma channel (through joule heating). Typically, the radiation losses in
practical post-breakdown RLC circuits used for the generation of spark discharges (which
can be estimated by the Larmor equation) are significantly lower than the amount of energy
delivered into the plasma channel and dissipated in the circuit. Thus, the approach based
on Kirchhoff’s equation for an RLC circuit, in which only the resistance of the plasma
channel and circuit elements is included, can be used in the analysis of the energy delivered
into the post-breakdown plasma channel. Using this method, the nominal resistance of the
plasma channel can be approximated by a constant value [26] or can be considered as a
time-dependent parameter [27].

Table 1 shows the time delay to breakdown and nominal resistance of the plasma
channel obtained by (2) for free path and wire-guided discharges. The values of Rpl given
in Table 1 were obtained using at least 20 individual data points for each gap length, with
the (±) errors representing the standard deviation. It can be seen that the nominal plasma
resistance increases with an increase in the gap length. Furthermore, Table 1 shows that
for free path discharges, the pre-breakdown time is longer for longer gaps: 18.84 µs for a
5-mm gap, increasing to 28.6 µs for a 10-mm gap. In contrast, for wire-guided discharges,
the time required for wire disintegration and current re-strike is much shorter than the
pre-breakdown time for free path discharges: 0.62 µs for 30-mm wires and 0.67 µs for
50-mm wires. The standard deviation in the wire disintegration time for wire guided
discharges is also much lower than the standard deviation in pre-breakdown time for free
path discharges.
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Table 1. Pre-breakdown time, wire disintegration time and Rpl for free and wire guided discharges.

Gap Length (mm) Discharge Type
Pre-Breakdown

Time/Wire
Disintegration Time (µs)

Plasma Channel
Resistance, Rpl (mΩ)

5 Free path 18.84 ± 11.62 106 ± 35
10 Free path 28.60 ± 21.16 223 ± 83
30 Wire guided 0.62 ± 0.04 263 ± 25
50 Wire guided 0.67 ± 0.02 493 ± 52

Based on the results presented in Table 1, it can be stated that the nominal plasma
channel resistance increases with an increase in the inter-electrode gap length for both free
path and wire-guided discharges.

The ratio between the nominal constant plasma channel resistance and the circuit
resistance, Rpl/Rtotal, was also calculated. This ratio presented in Table 2 indicates the
fraction of energy dissipated in the plasma channel during the post-breakdown current
oscillation increases with increasing plasma channel (gap) length.

Table 2. Ratio between the nominal constant plasma resistance and the circuit resistance for different
inter-electrode gaps used in this study.

Gap Length (mm) (Rpl/Rtotal) × 100%

5 ~21%
10 ~36%
30 ~42%
50 ~57%

Based on the results in Table 2, it can be stated that longer inter-electrode distance
leads to higher proportion of the post-breakdown energy being delivered into the plasma
channel, which could be beneficial for the generation of stronger shock waves in water.

4. Pressure Impulses

As discussed in Section 2, the same charging voltage of 35 kV and the same capacitance
of 265 nF were used to produce both free path and wire-guided discharges. This means that
in both discharge types, the energy stored in the capacitor and available to the discharge
was the same, i.e., ~162 J. The pressure signal (i.e., the voltage signal from the Pinducer
sensor) was obtained for each test together with the current and voltage waveforms. The
same sensor was located at distances of 40 cm, 50 cm, 60 cm and 70 cm away from the
discharge electrodes in different tests. The peak magnitude of the voltage signals from
the sensor obtained at each observation distance is presented in Figures 6 and 7 for free
path and wire-guided discharges, respectively. Each symbol (datapoint) shown in these
graphs represent an average value of at least five peak magnitudes obtained in individual
breakdown events. The standard deviation was obtained in each case and the error bars
show the one standard deviation (1-σ) range.

The experimental data in Figures 6 and 7 were fitted with analytical curves using
Equation (3) in the OriginPro 2020 data analysis and graphing software:

P = A·`−B (3)

where P is the peak signal resulting from the pressure pulse (V), ` is the observation distance
(cm) and A and B are empirical constants obtained by the fitting procedure.

The empirical constants for free path and wire-guided discharges are shown in Table 3.
It was found that the value of the constant B which provides the rate of attenuation of the
pressure pulse magnitude with distance was B~1 for both types of discharge, meaning that
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the pressure is inversely proportional to the observation distance. Thus, it can be stated
that the pressure waves in these tests can be defined as spherical waves [28].
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Table 3. Constants A and B used in Equation (3) obtained for different gap lengths.

Gap Length (mm) A B

5 44.08 ± 26.52 1.04 ± 0.15
10 42.73 ± 2.19 0.92 ± 0.01
30 96.11 ± 29.18 0.96 ± 0.08
50 158.41 ± 43.99 1.06 ± 0.07
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Figure 8 shows the peak magnitude of the signal from the Pinducer for different gap
lengths at 40 cm away from the electrode system. It was found that the pulse pressure
increased with an increase in the inter-electrode gap length regardless of the type of
discharge for the conditions used in the present study.
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This tendency correlates with the results presented in Table 2, which shows that the
proportion of the post-breakdown energy delivered into the spark channel increases with
an increase in the inter-electrode gap length. However, for the gap length of 50 cm, the peak
magnitude of the pressure signal started to show a tendency towards saturation, which was
confirmed by additional tests with 70-mm wires. It was shown that the magnitude of the
pressure signals generated by discharges initiated with 70-mm wires was only ~6% higher
that obtained with 50-mm wires: 3.53 ± 0.24 V and 3.31 ± 0.39 V, respectively. Therefore,
in the present experimental conditions (charging voltage, capacitance of the pulsed power
system), it is expected that further increases in the length of wire used to initiate discharge
does not lead to an increase in the pressure pulse magnitude. Therefore, the maximum
length of wires reported in the present work was limited to 50 mm. Moreover, it is expected
that the pressure pulse magnitude will start to decrease with further increase in the gap
length, due to a reduction in the energy delivered per unit length of the plasma channel.

5. Thermal Model: Formation of Gas Cavity in the Free Path Discharge Topology

A simulation model was developed to predict the time required for the formation of a
gas cavity in the vicinity of the HV electrode in the case of free path discharges in water.
This model implemented using the QuickField software package (version 6.5) is based
upon the electric field distribution in the inter-electrode gap. This electric field distribution
in water with known conductivity is then used to model the transient joule heating process;
thus, the temperature distribution in the water gap can be obtained. It is assumed that at the
moment, when water temperature reaches its boiling point, a vapour-filled cavity is formed,
and the (liquid) breakdown process is triggered through a gas breakdown mechanism.
Thus, the time to breakdown can be approximated by the time required to heat a thin
water layer (cavity) at the edge of the HV electrode to 100 ◦C. The energy required for the
formation of such a gas cavity was also obtained (Section 6).
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Figure 9 shows the cross-sectional view of the free path discharge system encompass-
ing the high-voltage and ground electrodes. This model is an axisymmetric model which
rotates around the horizontal axis. The high-voltage electrode was a 3-mm-long rod with a
radius of 1.25 mm and an edge radius of 0.18 mm. The ground electrode was a 36-mm-long
needle with a 0.45-mm tip radius. The gap between these two electrodes was 5 mm.
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Figure 9. Cross-sectional view of the electrode system in the model used to obtain the pre-breakdown
current density in water in the free path discharge topology. The applied voltage was 35 kV.

As discussed in [29], the conductivity of water is a linear function of the water temperature:

σ = K·T + C (4)

where σ is the conductivity of water (µS/cm), T is temperature (±), C is a constant (µS/cm)
and K is a constant (1/◦C).

This temperature-dependence of the conductivity of water was incorporated into the
model. Using the values provided in [29], K and C for water with conductivity of 50 µS/cm
were found to be 1.315 1/◦C and 12.449 µS/cm, respectively. Therefore, the temperature
dependent conductivity of water used in this study was as shown in equation (5):

σ = 1.315·T(°C) + 12.449 (µS/cm) (5)

Table 4 shows other parameters which were used in this simulation model.

Table 4. Parameters of materials used in the Quick Field model.

Material
Electrical

Conductivity
(S/m)

Thermal
Conductivity

(W/K·m)

Specific Heat
(J/kg·K)

Density
(kg/m3)

Stainless steel (electrodes) 1.4 × 106 [30] 16.3 [31,32] 5 × 102 [32] 7.9 × 103 [32]
Water 5 × 10−3 (present work) 0.6 [33] 4.2 × 103 [34] 103 [35]

Figure 10 presents an example of the temperature distribution in a 5-mm water gap
(shown in Figure 9) at a time of 18.5 µs after application of high voltage (35 kV). At this
moment in time, the local temperature of the water at the edge of the high-voltage electrode
reaches 100 ◦C. Thus, it can be assumed that the vapour cavity that triggers a breakdown
event is formed at ~18.5 µs after application of high voltage in this case.
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Table 5 shows the experimental and simulation results on time to breakdown for free
path discharges in water. It can be found that the time of cavity formation estimated by joule
heating of a thin layer of water close to the HV electrode is similar to the experimentally
measured pre-breakdown time.

Table 5. Experimental and simulated pre-breakdown times for free path discharges.

Gap Length (mm) Experimental Value (µs) Simulation Value (µs)

5 18.84 ± 11.62 18.5
10 28.6 ± 21.16 23.5

Two types of pre-breakdown streamers—i.e., supersonic and sub-sonic—have been
reported in the literature [36,37]. In the case of slower, sub-sonic pre-breakdown streamers
that develop with velocities of 10’s of m/s, the time to breakdown for 5-mm and 10-mm
gaps would be much longer than the observed experimental values in Table 5. Thus, it
could be postulated that under the present experimental conditions the pre-breakdown
streamer(s) propagate with much higher, potentially super-sonic velocities, i.e., >10 km/s.
The time required for such fast streamers to cross a 5-mm or 10-mm gap would be much
shorter than the observed experimental pre-breakdown times. This implies that most of
the pre-breakdown time could have been spent on the formation of the gas cavity, which
triggers the development of these fast (supersonic) streamers. This analysis is in line
with the times required to heat a small amount of water close to the HV electrode to its
boiling point, obtained using the thermal model described in this section. However, the
development and propagation of streamers is a complex process that requires further
investigation for example through optical visualization of streamers.

6. Energy Loss during the Pre-Breakdown Process

The pre-breakdown phase of underwater spark discharges is characterized by energy
losses. In the case of free path discharges, these losses are due to the electrical conductivity
of the water, and in the case of wire-guided underwater discharges, the losses are governed
by the energy required for wire heating, melting and disintegration. Thus, before formation
of the post-breakdown spark channel, some energy will be lost, which will result in a
smaller portion of the total energy being available for delivery into the plasma channel
and for the following generation of pressure impulses. The pre-breakdown energy losses
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can be significant, and it is important to evaluate this portion of (lost) energy in order to
analyse the efficiency of the formation of pressure waves in water. The pre-breakdown
energy losses for free path and wire-guided discharges are estimated in this section both
analytically and using the experimental data.

Nominally, the total energy stored in the capacitor, Etotal (J), is given by Equation (6):

Etotal =
CV2

0
2

(6)

where C is the capacitance (F) and V0 is the charging voltage, (V).
Using Equation (6), it can be found that the energy stored in the capacitor in the circuit

shown in Figure 1 is ~162 J (for nominal charging voltage of 35 kV). In the case of free path
discharges in water, the voltage across the electrodes decreases during the pre-breakdown
phase due to the electrical conductivity of the water, and the energy available at the moment
of breakdown is given by Equation (7):

Ebd =
CV2

br
2

(7)

where Vbr is the breakdown voltage, as shown in Figure 3.
Thus, the pre-breakdown energy loss, ∆E, in the case of free path discharges is given

by Equation (8):
∆E = Etotal − Ebd (8)

The thermal conduction model which was developed in Section 5 was used to predict
the time required for heating of a thin water layer at the edge of the HV electrode to
100 ◦C. However, QuickField software model does not allow for the energy required to
heat this volume of water to its boiling temperature to be obtained. Thus, a straightforward
analytical model was developed to estimate these losses from the thermal energy point of
view. In this model, it is assumed that during the pre-breakdown time a thin layer of water
close to the HV electrode is intensively heated by joule heating. In the framework of this
model, breakdown occurs when the water in this region transforms into gas (vapour), i.e.,
when the temperature of the water in this layer reaches ~100 ◦C. The amount of energy
required to transform this water layer into vapour due to intensive joule heating is given
by Equation (9):

EJH = Cm·m·∆T + m·Lm (9)

where Cm is the heat capacity of the water (4182 J/kg·◦C) [38]; m is the mass of water in the
layer (kg); ∆T is the temperature change (◦C); and Lm is the latent heat of vaporization of
water (2260 kJ/kg) [39]. The mass of water in the layer is given by Equation (10):

m = ρ·Vsim (10)

where ρ is the density of water which is 1000 kg/m3 and Vsim is the volume of the cavity
obtained from the simulation, (m3).

The cavity volume, Vsim, can be approximated as the volume of a thin layer at the edge
of the HV electrode where water temperature has reached ~100 ◦C, as shown in Figure 10.
It was found that the energy required to heat this volume of water, EJH-water, is less than 6 mJ
for both free path discharge cases (5-mm and 10-mm gap lengths), which is significantly
lower than the total pre-breakdown energy loss in the case of free path discharges, ∆E
(10’s J). These results are presented in Table 5.

In the case of wire-guided discharges, the estimated total energy required for heating
and evaporation of the wire consists of two components: the energy required for heating
the wire up to its melting temperature, EJH, and the energy required to convert the melted
metal into vapor, Evapor [40], as given in Equation (11):

Ewire = EJH + Evapor (11)
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Therefore, based upon Equation (9), the total energy for wire evaporation is calculated
using Equation (12):

Ewire = Cm−wire·ρwire·Vwire·∆T + ρwire·Vwire·L f (12)

where Cm−wire is the heat capacity of the copper wire (386 J/kg◦C) [41]; ρwire is the density
of the copper wire (8900 kg/m3); Vwire is the volume of the copper wire, which is treated as
a cylinder (m3); ∆T is the temperature change from 20 ◦C to the melting temperature of Cu
(1085 ◦C) [41,42]; and Lf is the latent heat of fusion for Cu (205 kJ/kg) [42].

Table 6 presents the energy losses for free path and wire guided discharges. For free
path discharges, the total pre-breakdown energy losses were obtained using Equation (8)
with V0 and Vbr obtained from the experimental voltage waveforms. Equations (9) and (10)
were used to estimate the amount of energy required for heating of a small volume of water
close to the HV electrode to 100 ◦C and the formation of a vapour cavity. It is shown that
this energy is significantly lower than the total pre-breakdown energy loss.

Table 6. Pre-breakdown energy losses for free path and wire guided discharges.

Gap Length
(mm)

Total Pre-Breakdown Energy
Losses for Free Discharges, ∆E (J)

(Equation (8))

Energy Required for Gas Cavity
Formation for Free Discharges,

EJH-water (J)
(Equation (9))

Energy Required to Melt and
Evaporate the Wire, Ewire (J)

(Equation (12))

5 19.85 <0.006 -
10 25.61 <0.006 -
30 - - 0.32
50 - - 0.54

In the case of wire guided discharges, the energy required for melting and evaporation
of the wire was obtained using Equations (11) and (12). It was found that even for longer
wires (30 mm and 50 mm) the pre-breakdown losses are less than 1 J, while for shorter
(5 mm and 10 mm in the case of free path discharges) water gaps, the energy losses are ~20 J
and ~25 J. However, the energy required for formation of the gas cavity (in the case of free
path discharges) is much lower than the energy required for melting and evaporation of the
copper wires. Thus, it can be stated that the main energy loss during the pre-breakdown
process in the case of free path discharges is joule heating due to conduction through the
mass of water.

Based on the results shown in Table 6, it can be stated = that the energy loss during
the pre-breakdown process for free path discharges, ∆E, is ~15% of the total energy stored
in the capacitor (Etotal = 162 J), while for wire-guided discharges the energy required
for wire melting and evaporation, Ewire, is less than 0.5% of Etotal . The estimated energy
required for formation of a vapour cavity is less than 6 mJ, which is much smaller than the
total pre-breakdown energy loss (i.e., ~(20–26) J) for free path discharges. Thus, almost
all pre-breakdown energy losses in this case are due to conduction through the bulk of
water. In the case of wire-guided discharges, the energy required for wire melting and
evaporation during the pre-breakdown phase is less than 1 J, which is significantly lower
than the pre-breakdown energy losses in free discharges.

7. Conclusions

This paper focuses on an experimental study of the pressure pulses generated by free
path and wire-guided discharges in water and on modelling of the thermal processes, which
lead to the formation of post-breakdown plasma channels. It was shown that wire-guided
discharges can support the formation of longer spark channels with significantly lower
pre-breakdown energy better than free path discharges for the same energy available in
the discharge. The longer post-breakdown plasma channels developed by wire-guided
discharges (with 30-mm and 50-mm long wires) in the present work leads to generation
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of stronger pressure waves, compared to those generated with free path discharges (with
shorter 5-mm and 100-mm inter-electrode gaps) for the same energy available in the
discharge. At the voltage level used in this study, 35 kV, it was not possible to achieve free
path breakdowns for 30-mm and 50-mm gap lengths.

The main contributions of the paper can be summarized in three parts.

1. A simulation model has been developed to estimate the formation time of a gas/vapor
filled cavity to initiate free path discharges in water. It was shown that the simulated
cavity formation time is close to the experimentally-measure pre-breakdown time.
This result supports the hypothesis that if the pre-breakdown process progresses
through the formation of a gas cavity, the time to form the gas cavity dominates the
pre-breakdown time interval leading to the potential conclusion of the development
of supersonic streamer(s), which subsequently cross the inter-electrode gap.

2. The magnitude of the pressure waves radiated by spark discharges is inversely pro-
portional to the distance from the electrode system for both free path and wire-guided
discharges. Thus, it can be stated that the emitted pressure waves behave as spheri-
cal waves, at least at observation distances longer than 40 cm for the experimental
conditions used herein.

3. The pre-breakdown energy losses have been estimated for free path discharges and
for wire-guided discharges. The developed thermal model for free path discharges
provides an estimation of the energy required for the formation of the gas cavity
triggering breakdown. It was shown that the total energy loss before breakdown is
significantly higher for free path discharges, and thus the energy efficiency of wire
guided discharges is superior compared with free path underwater discharges. Com-
bined with the result calculated from the experimental voltage waveform and the
results estimated from simulations, it can be stated that conduction in the water envi-
ronment is the dominant mechanism of energy loss during the pre-breakdown phase.

The obtained experimental and modelling results will help in further understanding
the process of underwater high-voltage breakdown and for optimization of underwater
spark discharge systems for different practical applications.
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