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Introduction to Spatial Filtering / Array Processing — Overview
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1.1 Intuitive Beamforming

◮ A farfield wavefront arrives at a
linear uniformly spaced sensor
array:

◮ due to the direction of arrival
(DOA) and finite propagation
speed, the wavefront will arrive
at different sensors with a delay
∆τ ;

x(t)

δ(t)

δ(t− 2∆τ )

δ(t−∆τ )

δ(t− 3∆τ )

δ(t− 4∆τ )

◮ with appropriate processing (beamforming), the sensor signals can be aligned to
create constructive interference at the output x(t);

◮ the above is a simple delay-and-sum beamformer [16, 42, 64, 43].

3/52



1.2 Spatial Sampling
◮ For unambiguous spatial sampling, we need to take at least two samples per

wavelength of the highest frequency component in the array signals [42];

◮ analogy from temporal sampling (Nyquist): take at least two samples per period
(relating to the highest frequency component);

◮ Wavelength λ and frequency f are related by the propagation speed c in the medium:
λ = c

f
;

d

ϑ
d sin(ϑ)

◮ maximum sensor distance

d =
λmax

2
=

c

2fmax
.

◮ time delay between sensors

∆τ =
d sin(ϑ)

c
=

sin(ϑ)

2fmax
.
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Spatial and Temporal Sampling
◮ Consider the array signals x0(t) and x1(t) due to a source ej(ωt+ϕ0):

d

x0(t) = ejωt

x1(t) = ejω(t−∆τ)

ej(ωt+ϕ0)

ϑ
d sin(ϑ)

◮ sampling with t = nTs leads to

x0[n] = ejωnTs and x1[n] = ejω(nTs−∆τ)

◮ with fmax = fs
2 = 1

2Ts
and normalised angular frequency Ω = ωTs,

x0[n] = ejΩn and x1[n] = ejΩn · e−jΩ sin(ϑ) .
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1.3 Steering Vector

◮ A narrowband source with normalised angular frequency Ω illuminates an
M -element linear array of equi-spaced sensors:

x[n] =











x0[n]
x1[n]
...

xM−1[n]











= ejΩn ·











1

e−jΩ sin(ϑ)

...

e−j(M−1)Ω sin(ϑ)











= ejΩn · sΩ,ϑ

◮ the vector sΩ,ϑ characterises the phase shifts of waveform with frequency Ω and DOA
ϑ measured at the array sensors;

◮ since a narrowband signal ejΩn only causes phase shifts rather than delays,
constructive interference can be accomplished by a set of complex multipliers rather
than processors δ(t−m∆τ), m = 0, 1, . . . (M − 1);

◮ beamforming problem: how to select the set of complex coefficients?
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1.4 Data Independent Beamformer

.

.

.

y[n]

wM−1

w1

.

.

.

w0

ej(Ωn+ϕ0)

ejΩne−j(M−1)Ω sin(θ)

ejΩne−jΩ sin(θ)

ejΩn

◮ Challenge:
find a set of complex multipliers
wm, m = 0, 1, . . . (M − 1):

◮ to steer the array characteristic towards this source, the output

y[n] = [w0 w1 . . . wM−1]e
jΩn











1

e−jΩ sin(ϑ)

...

e−j(M−1)Ω sin(ϑ)











= ejΩnwHsΩ,ϑ

should satisfy y[n] = ejΩn, leading to wHsΩ,ϑ = 1.
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Coefficient Vector
◮ For later convenience and compatibility, the Hermitian transpose operator

{·}H is used to denote the coefficient vector

wH = [w0 w1 . . . wM−1] ;

◮ as a result, the vector w hold the complex conjugates of the coefficients,

w =











w∗
0

w∗
1
...

w∗
M−1











;

◮ to access the actual unconjugated coefficients, the beamforming vector w∗ has to be
considered

◮ note that
wHsΩ,ϑ = 1 −→ sHΩ,ϑw = 1 .

8/52



Narrowband Beamforming — Single Source

◮ The expression sHΩ,ϑw = 1 forms a system with one equation and M unknowns

w

= 1sHΩ,ϑ

◮ general solution to an underdetermined system Ax = b is the right pseudo-inverse
A† [14],

x = A†b = AH(AAH)−1b ;

◮ here:

w = (sHΩ,ϑ)
† · 1 = sΩ,ϑ · (s

H
Ω,ϑsΩ,ϑ)

−1 · 1 =
sΩ,ϑ

‖sΩ,ϑ‖
2
2

=
1

M
sΩ,ϑ ;

◮ the complex conjugation for w∗ inverts and therefore compensates the phase of the
steering vector, which could have been foreseen

◮ the formulation via the pseudo-inverse will be powerful for more complicated cases.
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Narrowband Beamformer Example
◮ Source parameters: Ω = π

2 and ϑ = 30◦ ; array parameter: M = 5;
◮ steering vector (with Ωsin(ϑ) = 1

4π):

sTΩ,ϑ = [1 e−j 1
4
π . . . e−j 4

4
π]

◮ coefficient vector is given by w = (sHΩ,ϑ)
†;

◮ numerical solution in Matlab;
Omega=1/4; theta = pi/6; M=5;

s = exp(-sqrt(-1)*Omega*sin(theta)*(0:(M-1)’));

w = pinv(s’);

◮ angle([s conj(w)])/pi yields:
-0.00000 0.00000

-0.25000 0.25000

-0.50000 0.50000

-0.75000 0.75000

-1.00000 1.00000
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Beam Pattern I
◮ The beamformer has a unit gain towards a source with frequency Ω and

DoA θ; what is its gain response towards other angles of arrival?
◮ the beam pattern measures the response of a beamformer by sweeping the angle ψ of

a source with frequency Ω
g(Ω, ψ) = wHsΩ,ψ

◮ beam pattern for the previous example:

−80 −60 −40 −20 0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

angle of arrival ψ

g
a
in

 |
g
(Ω

,ψ
)|

11/52



Beam Pattern II
◮ Beam patterns for Ω = π

2 and ϑ = 30◦ with variable M :
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g
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M=5

M=10

M=20

◮ increasing the sensor number M narrows the main beam, and increases the number of
spatial zeros;

◮ analogous characteristic in the time domain: increased temporal support leads to
higher frequency resolution.
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Interference
◮ Many scenarios contain a

source of interest and a
number of interferers:
signal of interest:
{Ω0, ϑ0}
two interferers:
{Ω1, ϑ1}, {Ω2, ϑ2}

y[n]

wM−1

w1

w0

.

.

.

.

.

.

ϑ1

ϑ2

ϑ0

ejΩ0n

ejΩ1n

ejΩ2n

◮ we would like to control the beampattern to place spatial nulls in the directions of the
interfering sources;

◮ Problem formulation and solution :





sHΩ0,ϑ0

sHΩ1,ϑ1

sHΩ2,ϑ2



w =





1
0
0



 −→ w =





sHΩ0,ϑ0

sHΩ1,ϑ1

sHΩ2,ϑ2





† 



1
0
0



 .
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Narrowband BF Example — Multiple Sources
◮ The signal of interest illuminates an M = 5 element array at a frequency

Ω0 =
π
2 with a DoA ϑ0 = 30◦

◮ two interferers at Ω1 = Ω2 = Ω0 are present with DoA ϑ1 = −45◦ and ϑ2 = 60◦

◮ results via right pseudo-inverse of steering vectors

∠sΩ0,ϑ0 ∠sΩ1,ϑ1 ∠sΩ2,ϑ2 ∠w∗ |w|

0.00 0.00 0.00 -42.81 0.3172
45.00 63.64 -77.94 -105.01 0.3004
90.00 127.28 -155.89 -90.00 0.2343
135.00 -169.08 126.17 -74.99 0.3004
180.00 -105.44 48.23 -137.19 0.3172

◮ the angle of w is no longer intuitive; also note that the coefficients in w no longer
have the same modulus

◮ amongst a manifold of solutions, the right pseudo-inverse provides the minimum norm
solution.
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Multiple Source Example — Beampattern

◮ Beam pattern one source of interest and two interferers:

−80 −60 −40 −20 0 20 40 60 80
0

0.5

1

1.5

angle of arrival ψ

g
a
in

 |
g
(Ω

,ψ
)|

◮ the pseudo-inverse is the minimum norm solution, keeping the general gain response
as low as possible;

◮ the minimum norm property protects against spatially white noise.
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:

-80 -60 -40 -20 0 20 40 60 80
0

0.5

1

1.5

16/52



Beamforming Example — Variable Interferer I
◮ M = 5 sensors, source of interest towards θ0 = 30◦, interferer variable:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Beamforming Example — Variable Interferer II
◮ M = 5 sensors, SOI θ0 = 30◦, one fixed and one variable interferer:
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Data Independent Beamforming

◮ Previous beamformer designs were based on the knowledge of DoA of the signal of
interest and of interfering sources;

◮ remaining degrees of freedom are invested to suppress spatially white noise;

◮ using the analogy between spatial and temporal processing, classical filter design
techniques can be invoked to design arrays with a bandpass-type angular response;

◮ beamformers based on source parameters (frequency, DoA) rather the actual received
waveforms are termed data independent beamformers;

◮ this is in contrast to statistically optimum beamformers, which take the received
signal statistics into account.
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1.5 Statistically Optimum Beamforming

y[n]

wM−1

w1

w0

.

.

.

.

.

.

xM−1[n]

x1[n]

x0[n]
◮ Statistically optimum

beamformer minimise
e.g. the signal power of the
beamformer output, y[n];

◮ to avoid the trivial solution
w = 0, the signal of interest
needs to be protected by
constraints;

◮ this results in e.g. the following constrained optimisation problem

min
w

∗

E
{

|y[n]|2
}

subject to sHΩ,ϑw = 1 ;

◮ the solution to this specific statistically optimum beamformer is known as the
minimum variance distortionless response (MVDR) [43].
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MVDR Beamformer

◮ Solving the MVDR problem: minimise the power of y[n] = wHx subject to
the contraint wHsΩ0,ϑ0 = 1;

◮ Formulation using a Lagrange multiplier λ:

∂

∂w∗

(

wHE
{

xxH
}

w − λ(wHsΩ0,ϑ0 − 1)
)

= Rxxw − λsΩ0,ϑ0 = 0

◮ the solution w = λR−1
xx sΩ0,ϑ0 is inserted into the constraint equation to determine λ:

λsHΩ0,ϑ0
R−1
xx sΩ0,ϑ0 = 1

◮ therefore
wMVDR =

(

sHΩ0,ϑ0
R−1
xx sΩ0,ϑ0

)−1
R−1
xx sΩ0,ϑ0

◮ this statistically optimum beamformer has various other names, e.g. Capon
beamformer [8, 42].
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MVDR Beamformer — Simple Case

◮ In the case of spatially white noise input, such that

Rxx = σ2xxI −→ R−1
xx = σ−2

xx I

the MVDR solution reduces to

wMVDR =
sΩ0,ϑ0

‖sΩ0,ϑ0‖
2
2

=
sΩ0,ϑ0

M
;

◮ this is identical to the data independent beamformer in the absence of interference
(i.e. no spatially structured noise);
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Generalised Sidelobe Canceller (GSC)

◮ The generalised sidelobe canceller is a specific implementation of the MVDR
beamformer; it transforms the constrained MVDR problem into an
unconstrained optimisation problem;

◮ a first guess at the solution is performed by the quiescent beamformer wq, which is
identical to the previously defined data independent beamformer, obtained by
inverting the constraint equation

CHwq = f −→ wq =
(

CH
)†

f

d[n]
xn wq

◮ the quiescent beamformer eliminates interferers captured by C and f , but passes the
signal of interest, any interferers unaccounted for in the constraints, and spatially
distributed noise.
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GSC — Idea

◮ GSE idea: produce array signals that are free of any contribution from the
signal of interest, and use the resulting signal vector u[n] to eliminate remaining
interference from the quiescent output:

d[n]
xn wq e[n]

u[n]
B wa y[n]

◮ the blocking matrix B eliminates the signal of interest and any interferers captured by
the constraints;

◮ the vector wa will be based on the statistics of u[n] and d[n] to minimise the
beamformer output variance E

{

|e[n]|2
}

.
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GSC — Blocking Matrix
◮ In order to project away from the constraints,

B ·C = B ·
[

sΩ0,ϑ0 sΩ1,ϑ1 . . . sΩr−1,ϑr−1

]

= 0

◮ assuming that the r constraints are linearly independent, the singular value
decomposition of the constraint matrix yields

B ·
[

U0 U⊥
0

]











σ0
. . . 0

σr−1

0 0











·VH = 0

◮ the matrix U⊥
0 ∈ C

M×(M−r) spans the nullspace of CH, and

B = (U⊥
0 )

H ∈ C
(M−r)×M

has the required property, as (U⊥
0 )

H ·
[

U0 U⊥
0

]

Σ = [0 I] ·Σ = 0.
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GSC — Unconstrained Optimisation

◮ The beamforming vector wa is adjusted to minimise the output power;

◮ the MMSE or Wiener solution is given by

wa = R−1
uu · p =

BRxx(C
H)†f

BRxxBH

with the covariance matrix

Ruu = E
{

u[n] · uH[n]
}

= B E
{

x[n] · xH[n]
}

BH = BRxxB
H

and the cross-correlation vector

p = E{u[n] · d∗[n]} = BRxxwq

◮ iterative optimisation schemes, such as the least mean squares (LMS)
algorithm [16,64] may be used to approximate the MMSE solution.
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1.6 Beamforming and MIMO Processing

◮ Assume a transmission scenario
with an M -element transmit
(Tx) antenna array and an
N -element receive (Rx) array;

ϑRx

ϑTxx

y

sHTx

sRx

◮ in the absence of scatterers and any attenuation, the farfield transmission from the
transmit antenna is characterised by a steering vector sHTx;

◮ the incoming waveform at the Rx device is described by another steering vector sRx;

◮ the overall MIMO system between a Tx vector x ∈ C
M and an Rx vector y ∈ C

N is
described as

y = sRx · s
H
Tx · x = Hx

◮ the MIMO system matrix H = sRx · s
H
Tx is rank one only.
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MIMO Requirements

◮ The farfield assumption is convenient for beamforming, but leads to a rank one
MIMO system matrix which is incompatible with the desire to extract multiple
independent subchannels or with to achieve diversity;

◮ rich scattering in connection with MIMO usually implies multiple reflections of signals;

◮ together with a sufficiently large antenna spacing means that the farfield assumption
is invalid and the MIMO system matrix is not rank deficient;

◮ some suggestions of “sufficiently large spacing” imply an antenna element distance of
d > 10λ;

◮ recall spatial sampling requires d < 1
2λ !

28/52



Beamforming with Spatial Aliasing

◮ For a flexible spatial sampling with d = αλ, 0 < α ∈ R, the steering vector
for a waveform with normalised angular frequency Ω and DoA ϑ is

y = ejΩn











1

ej2αΩ sin(ϑ)

...

ej2α(M−1)Ω sin(ϑ)











= s2αΩ,ϑ · e
jΩ

◮ inspecting s2αΩ,ϑ the steering vector is aliased to a different frequency 2αΩ;

◮ although the correct frequency can be retrieved unambigiously from temporal
sampling of any array element, at Ω various different angles could provide the same
steering vector s2αΩ,ϑ;

◮ the array performs spatial undersampling, resulting in spatial aliasing.
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Spatial Undersampling Example
◮ Beamforming parameters: signal of interest with Ω = π

2 , direction of arrival
ϑ = 30◦, M = 32 array elements;

◮ data independent beamformer design with correct spatial sampling (d = λ/2) and
incorrect spatial sampling (d = 10λ):

−80 −60 −40 −20 0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

angle of arrival ψ

g
a
in

 |
g
(Ω

,ψ
)|

◮ MIMO systems perform beamforming, but may dissipate energy into aliased directions.
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1.7 Narrowband Signals
◮ We have previously assumed that a narrowband signal is a complex

exponential, ejΩn;
◮ this permitted to characterise the signal received at the array by means of a

steering vector that only depends on Ω and the direction of arrival;
◮ we now relax this restriction: in practice, we deal with bandpass signals of finite

bandwidth ωb and centre frequency ωc;
◮ for the lth source:

uℓ(t) = ũl(t) · e
jωct , (1)

where ũℓ(t) is a baseband signal;

F{ũℓ(t)} F{uℓ(t)}

ω

ωc

ωb
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Narrowband Assumption
◮ For a signal to be considered narrowband, the propagation delay across the

array must be small w.r.t. any changes in the baseband signal ũℓ(t) (or of
the envelope of uℓ(t));

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

0 0.5 1 1.5 2 2.5 3 3.5 4
-1

0

1

3 3.05
-1

0

1

3 3.05
-1

0

1
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Received Narrowband Array Signal
◮ An array receives a single modulated bandpass signal uℓ(t):

x(t) =







uℓ(t− τ1)
...

uℓ(t− τM )






=







ũℓ(t− τ1)
...

ũℓ(t− τM )






·







ejωc(t−τ1)

...

ejωcc(t−τM )






≈ ũℓ(t− τ1)e

jωc−τ1sϑℓ,ωc

(2)

◮ after sampling: x[n] = ũℓ[n] · e
jωcτ1 · sϑℓ,Ωc

;
◮ for the narrowband covariance matrix:

R = E
{

x[n]xH[n]
}

= E{ũℓ[n]ũ
∗
ℓ [n]} sϑℓ,Ωc

sHϑℓ,Ωc
= σ2ℓ sϑℓ,Ωc

sHϑℓ,Ωc
(3)

◮ for L independent source signals, E{ũℓ[n]ũ
∗
k[n]} = 0 for ℓ 6= k; therefore in the

noise-free case:

R =
L
∑

ℓ=1

σ2ℓ sϑℓ,Ωc
sHϑℓ,Ωc

. (4)
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Narrowband versus Broadband
How long can a array signal be regarded as narrowband?

◮ Compton [9]: signals at opposite ends of the array must not be decorelated;

◮ some rule of thumb: fractional bandwidth ωb/ωc ≪ 1 (typically smaller than 5%);

◮ these rules are somewhat ‘fuzzy’; recall that

R =
L
∑

ℓ=1

σ2ℓ sϑℓ,Ωc
sHϑℓ,Ωc

;

◮ this matrix possesses rank L as long as the steering vectors are linearly independent;

◮ if the narrowband assumption is no longer satisfied, the approximation in (2) becomes
inaccurate, and the rank of R will increase [65, 66];

◮ this can also be tied to the array performance [10, 44, 38, 37];

◮ when must a signal be considered broadband? John McWhirter’s “If you need a tap
delay line.” captures the ambiguity well!
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1.8 Broadband MVDR Beamformer

◮ Each sensor is followed by a tap delay line of dimension L, giving a total of
ML coefficients in a vector v ∈ C

ML [6]

+ e[n]

z
−1

z
−1

z
−1

× ×××

x1[n]

+ + +

w1,1 w1,2 w1,3 w1,L

x1[n− L+ 1]x1[n− 2]

z
−1

z
−1

z
−1

× ×××

xM [n]

+ + +

wM,1 wM,2 wM,3 wM,L

xM [n− L+ 1]xM [n− 2]

...
...
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Broadband MVDR Beamformer Constraints

◮ A larger input vector xn ∈ C
ML is generated, also including lags;

◮ the general approach is similar to the narrowband system, minimising the power of
e[n] = vHxn;

◮ however, we require several constraint equations to protect the signal of interest, e.g.

C = [s(ϑs,Ω0), s(ϑs,Ω1) . . . s(ϑs,ΩL−1)] (5)

◮ these L constraints pin down the response to unit gain at L separate points in
frequency:

CHv = 1 ; (6)

◮ generally C ∈ C
ML×L, but simplifications can be applied if the look direction is

towards broadside.
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Broadband Generalised Sidelobe Canceller
◮ A quiescent beamformer vq =

(

CH
)†

1 ∈ C
ML picks the

signal of interest;

◮ the quiescent beamformer is optimal for AWGN but generally passes structured
interference;

◮ the output of the blocking matrix B contains interference only, which requires [BC]
to be unitary; hence B ∈ C

ML×(M−1)L;

◮ an adaptive noise canceller va ∈ C
(M−1)L aims to remove the residual interference:

xn

u[n]

d[n]

y[n] e[n]

vq

vaB +

◮ note: all dimensions are determined by {M,L}.
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Broadband Beamformer Example
◮ We assume a signal of interest from ϑ = 30◦;
◮ three interferers with angles ϑi ∈ {−40◦,−10◦, 80◦} active over the frequency

range Ω = 2π · [0.1; 0.45] at signal to interference ratio of -40 dB;

ϑ

Ω

−90◦ 90◦
0

π

0◦−40◦ −10◦ 30◦ 80◦

◮ M = 8 element linear uniform array is also corrupted by spatially and temporally
white additive Gaussian noise at 20 dB SNR;

◮ tap-delay-line length: L = 150;
◮ cost per iteration: approx. 2 MMACs (standard), can be reduced to 10 kMACs when

efficiently implemented.
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Broadband Quiescent Beamformer
◮ Directivity pattern of quiescent standard broadband beamformer:

angle of arrival ϑ /[◦]

2
0
lo
g
1
0
|A

(ϑ
,
e
j
Ω
)|

/
[d
B
]

Ω

2π
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Optimised Broadband Beamformer
◮ Directivity pattern of the broadband beamformer:

angle of arrival ϑ /[◦]

2
0
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g
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,
e
j
Ω
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]

Ω
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1.9 Summary

◮ Spatial sampling by an array of sensors (e.g. antenna elements) has been
explored;

◮ the spatial data window of a narrowband source is characterised by the steering vector;

◮ appropriate data independent beamformers can be designed based on the steering
vectors of desired sources and interferers;

◮ statistically optimum beamformers are based on the signal statistics;

◮ a specific statistically optimum beamformer, the generalised sidelobe canceller, has
been reviewed — it uses signal statistics to improve the performance of a data
independent beamformer derived from the constraint equations;

◮ some similarities and differences between beamforming and MIMO systems have been
highlighted;

◮ broadband beamforming requires the inclusion of tap delay lines.
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1.10 Related Broadband Beamforming Work

◮ General wideband beamforming: [23];

◮ time domain adaptive broadband beamforming: [6, 7, 15, 18, 27, 35, 43];

◮ discrete Fourier transform domain processing: [21, 36, 11, 55]

◮ subband domain beamforming [25, 45, 60, 61, 62, 63, 59, 55];

◮ frequency-invariant broadband beamforming [22, 26, 27, 49];

◮ polynomial matrix-based beamforming related
work [1, 2, 3, 4, 12, 13, 19, 20, 29, 30, 34, 33, 32, 46, 47, 48, 54, 31] based on polynomial
eigenvalued decomposition theory [51, 52, 5] and
algorithms [28, 39, 41, 40, 58, 53, 57, 56]
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