Algorithmic Enhancements to Polynomial Matrix Factorisations

Fraser Kenneth Coutts, Stephan Weiss

Material adapted from PhD Thesis of the same name.
Thesis available online via EURASIP's library: https://tinyurl.com/couttsphd.

22nd June 2023

Presentation Overview

1. Polynomial Matrix Background \& Motivation
2. Polynomial Matrix EVD (PEVD)
3. Existing Methods to Compute the PEVD
4. Algorithmic Improvements to Existing Methods
5. Novel Algorithms and Approaches
6. Conclusion

Summary of Background

- Cross-spectral density

$$
\boldsymbol{R}(z)=\sum_{\tau} \mathbf{R}[\tau] z^{-\tau}
$$

is a polynomial matrix.

- Parahermitian:

$$
\boldsymbol{R}^{\mathrm{P}}(z)=\boldsymbol{R}^{\mathrm{H}}\left(1 / z^{*}\right)=\boldsymbol{R}(z)
$$

- Space-time covariance matrix: $\mathbf{R}[\tau]=\mathcal{E}\left\{\mathbf{x}[n] \mathbf{x}^{\mathrm{H}}[n-\tau]\right\}$
- Matrix of auto- \& crosscorrelation sequences
- Symmetry $\mathbf{R}[\tau]=\mathbf{R}^{\mathrm{H}}[-\tau]$

Summary of Background

- $\boldsymbol{R}(z)$ is a matrix with (Laurent) polynomial entries or alternatively a polynomial with matrix-valued coefficients.
- Can be interpreted as a three-dimensional matrix.

$$
\begin{aligned}
\boldsymbol{R}(z) & =\left[\begin{array}{cccc}
R_{11}(z) & R_{12}(z) & \cdots & R_{1 M}(z) \\
R_{21}(z) & R_{22}(z) & & \vdots \\
\vdots & & \ddots & \vdots \\
R_{M 1}(z) & \cdots & \cdots & R_{M M}(z)
\end{array}\right] \\
& =\sum_{\tau} \mathbf{R}[\tau] z^{-\tau}
\end{aligned}
$$

Summary of Background

- Eigenvalue decomposition (EVD) of a Hermitian covariance matrix \mathbf{R} offers optimality for many narrowband problems:

$$
\begin{array}{ll}
\mathbf{R}=\mathbf{Q} \boldsymbol{\Lambda} \mathbf{Q}^{\mathrm{H}} & \mathbf{\Lambda} \text { is diagonal } \\
& \mathbf{Q} \text { is unitary, i.e. } \mathbf{Q Q}^{\mathrm{H}}=\mathbf{I}
\end{array}
$$

- The polynomial matrix EVD (PEVD) is an extension to parahermitian matrices $\boldsymbol{R}(z)$:

$$
\begin{aligned}
& \boldsymbol{R}(z) \approx \boldsymbol{Q}(z) \boldsymbol{\Lambda}(z) \boldsymbol{Q}^{\mathrm{P}}(z) \quad \boldsymbol{\Lambda}(z) \text { is diagonal } \\
& \boldsymbol{Q}(z) \text { is paraunitary, } \boldsymbol{Q}(z) \boldsymbol{Q}^{\mathrm{P}}(z)=\mathbf{I}
\end{aligned}
$$

- Diagonalisation of $\boldsymbol{\Lambda}(z)$ is important for, e.g., decoupling of broadband MIMO systems.
- Polynomial subspace decomposition (i.e. $\boldsymbol{Q}(z)$) used in, e.g., broadband AoA estimation and beamforming.

How to Factorise a Polynomial Matrix?

- Iteratively minimise off-diagonal energy in $\boldsymbol{R}(z)$ and collect 'diagonalising' operations in $\boldsymbol{Q}(z)$.

$$
\boldsymbol{R}(z) \rightarrow \boldsymbol{\Lambda}(z)
$$

Energy in 'flattened' parahermitian matrix. White \Rightarrow high energy.

How to Factorise a Polynomial Matrix?

- Iteratively minimise off-diagonal energy in $\boldsymbol{R}(z)$ and collect 'diagonalising' operations in $\boldsymbol{Q}(z)$.

$$
\boldsymbol{R}(z) \rightarrow \boldsymbol{\Lambda}(z)
$$

Energy in 'flattened' parahermitian matrix. White \Rightarrow high energy.

How to Factorise a Polynomial Matrix?

- Iteratively minimise off-diagonal energy in $\boldsymbol{R}(z)$ and collect 'diagonalising' operations in $\boldsymbol{Q}(z)$.

$$
\boldsymbol{R}(z) \rightarrow \boldsymbol{\Lambda}(z)
$$

Energy in 'flattened' parahermitian matrix. White \Rightarrow high energy.

How to Factorise a Polynomial Matrix?

- Iteratively minimise off-diagonal energy in $\boldsymbol{R}(z)$ and collect 'diagonalising' operations in $\boldsymbol{Q}(z)$.

$$
\boldsymbol{R}(z) \rightarrow \boldsymbol{\Lambda}(z)
$$

Energy in 'flattened' parahermitian matrix. White \Rightarrow high energy.

How to Factorise a Polynomial Matrix?

- Iteratively minimise off-diagonal energy in $\boldsymbol{R}(z)$ and collect 'diagonalising' operations in $\boldsymbol{Q}(z)$.
- Key performance metric: off-diagonal energy vs execution time.

How to Factorise a Polynomial Matrix?

- Several iterative PEVD algorithms successfully minimise off-diagonal energy.
- Most important:
- Second order sequential best rotation (SBR2) [1];
- Sequential matrix diagonalisation (SMD) [2].
- SBR2 cheap to implement but can require many iterations.
- SMD more expensive but can converge in fewer iterations.
[1] J. G. McWhirter et al., An EVD Algorithm for Para-Hermitian Polynomial Matrices. IEEE Trans. on Signal Process., 55(5):2158-2169, May 2007.
[2] S. Redif et al., Sequential Matrix Diagonalisation Algorithms for Polynomial EVD of Parahermitian Matrices. IEEE Trans. on Signal Process., 63(1):81-89, Jan. 2015.

Requirement for Truncation in Iterative PEVD Algorithms

- The 'shift' operations performed in SBR2 and SMD lead to an increase in the order of the paraunitary matrix $\boldsymbol{Q}(z)$ at each iteration.
- If the order of $\boldsymbol{Q}(z)$ is not restricted in some way, memory usage and computational complexity will scale linearly with the order.

State-of-the-Art Truncation

[Ta et al., ICIS\&SP TSP 2007]

- Used to reduce the polynomial order of the paraunitary $\boldsymbol{Q}(z)$.

State-of-the-Art Truncation

[Ta et al., ICIS\&SP TSP 2007]

- Used to reduce the polynomial order of the paraunitary $Q(z)$.
- Successively removes the outermost lag of $\boldsymbol{Q}(z)$ with the lowest energy.

State-of-the-Art Truncation

[Ta et al., ICIS\&SP TSP 2007]

- Used to reduce the polynomial order of the paraunitary $Q(z)$.
- Successively removes the outermost lag of $\boldsymbol{Q}(z)$ with the lowest energy.
- Lags can be removed from either side of $\boldsymbol{Q}(z)$.

State-of-the-Art Truncation

[Ta et al., ICIS\&SP TSP 2007]

- Used to reduce the polynomial order of the paraunitary $Q(z)$.
- Successively removes the outermost lag of $\boldsymbol{Q}(z)$ with the lowest energy.
- Lags can be removed from either side of $\boldsymbol{Q}(z)$.

PEVD Ambiguity

- The paraunitary matrix in the PEVD is not unique.
- The same diagonalised parahermitian matrix, $\boldsymbol{\Lambda}(z)$, can be obtained using different paraunitary $\boldsymbol{F}(z)=\boldsymbol{Q}^{\mathrm{P}}(z)$,

$$
\boldsymbol{R}(z) \approx \boldsymbol{F}^{\mathrm{P}}(z) \boldsymbol{\Lambda}(z) \boldsymbol{F}(z)=\hat{\boldsymbol{F}}^{\mathrm{P}}(z) \boldsymbol{\Lambda}(z) \hat{\boldsymbol{F}}(z)
$$

- Note that polynomial eigenvectors are in the rows of $\boldsymbol{F}(z)$.
- Using a modifying matrix, $\boldsymbol{\Gamma}(z)$, we can go from $\boldsymbol{F}(z)$ to $\hat{\boldsymbol{F}}(z)$,

$$
\hat{\boldsymbol{F}}(z)=\boldsymbol{\Gamma}(z) \boldsymbol{F}(z)
$$

- For the row-shift truncation we simply use,

$$
\boldsymbol{\Gamma}(z)=\operatorname{diag}\left\{z^{-\tau_{1}} z^{-\tau_{2}} \ldots z^{-\tau_{M}}\right\}
$$

which individually delays or advances each of the M rows of $\boldsymbol{F}(z)$.

Row-Shift Truncation

- Used to reduce the polynomial order of the paraunitary $\boldsymbol{F}(z)$.

Row-Shift Truncation

- Used to reduce the polynomial order of the paraunitary $\boldsymbol{F}(z)$.
- Works the same as the state-of-the-art but applied to each row individually.

Row-Shift Truncation

- Used to reduce the polynomial order of the paraunitary $\boldsymbol{F}(z)$.
- Works the same as the state-of-the-art but applied to each row individually.
- Each row can be truncated by a different amount.

Row-Shift Truncation

- Used to reduce the polynomial order of the paraunitary $\boldsymbol{F}(z)$.
- Works the same as the state-of-the-art but applied to each row individually.
- Each row can be truncated by a different amount.

Row-Shift Truncation

- Used to reduce the polynomial order of the paraunitary $\boldsymbol{F}(z)$.
- Works the same as the state-of-the-art but applied to each row individually.
- Each row can be truncated by a different amount.

Row-Shift Truncation

- Used to reduce the polynomial order of the paraunitary $\boldsymbol{F}(z)$.
- Works the same as the state-of-the-art but applied to each row individually.
- Each row can be truncated by a different amount.

Row-Shift Truncation

- Used to reduce the polynomial order of the paraunitary $\boldsymbol{F}(z)$.
- Works the same as the state-of-the-art but applied to each row individually.
- Each row can be truncated by a different amount.
- Final step aligns rows using $\boldsymbol{\Gamma}(z)$.

Requirement for Truncation in Iterative PEVD Algorithms

- The 'shift' operations performed in SBR2 and SMD lead to an increase in the order of the paraunitary matrix $\boldsymbol{Q}(z)$ at each iteration.
- If the order of $\boldsymbol{Q}(z)$ is not restricted in some way, memory usage and computational complexity will scale linearly with the order.

Motivation for my Research

- Existing iterative algorithms are slow to converge and not feasible to implement - worse for large spatial dimension M.
- Truncation reduces complexity but introduces error if excessive.

Motivation for my Research

- Existing iterative algorithms are slow to converge and not feasible to implement - worse for large spatial dimension M.
- Truncation reduces complexity but introduces error if excessive.
- Aims:
- Develop techniques to lower complexity (and memory requirements) of existing methods.
- Design novel, fast algorithms with improved scalability.
- Investigate frequency-based methods to compute PEVD.

Algorithmic Improvements

- First step: code profiling and optimisation.

Before optimisation
After optimisation

Line Number	Code	Calls	Total Time	\% Time	Time Plot
137	$[R, H]=$ DiagZL_slow $(\mathrm{R}, \mathrm{H}) ;$	1000	43.432 s	97.9%	
99	[R,H] - DiagZL_slow $(\mathrm{R}, \mathrm{H}) ;$	10	0.449 s	1.0%	
121	[R,H,stopcrit] - sMDZL_compMea...	1000	0.208 s	0.5%	

Line Number	Code	Calls	Total Time	\% Time	Time Plot
121	$[\mathrm{R}, \mathrm{H}$, stopcrit] $]=$ SMDZL_compMea \ldots.	1000	0.159 s	32.6\%	-
137	[R,H] - DiagZL 1 R, H) ;	1000	0.077 s	15.7\%	-
142		1000	0.066 s	13.5\%	\square

Exploiting Parahermitian Matrix Structure

- Due to symmetry, the energy in a parahermitian matrix $\mathbf{R}[\tau] \circ-\bullet \boldsymbol{R}(z)$ is generally concentrated at its centre.

- With this knowledge, we investigated:
- Methods that exploit matrix symmetry to approximately halve computational complexity and memory requirements.
- Ways to focus our efforts on the most important central lags of the parahermitian matrix.

Reduced Parahermitian Matrix Representation

- By segmenting a parahermitian matrix $\boldsymbol{R}(z)$, we can write

$$
\boldsymbol{R}(z)=\boldsymbol{R}^{(-)}(z)+\mathbf{R}[0]+\boldsymbol{R}^{(+)}(z)
$$

- $\mathbf{R}[0]$ is the zero lag matrix, $\boldsymbol{R}^{(+)}(z)$ contains terms for positive lag elements only, and $\boldsymbol{R}^{(-)}(z)=\boldsymbol{R}^{(+), \mathrm{P}}(z)$.
- It is therefore sufficient to record a 'half-matrix' version of $\boldsymbol{R}(z)$.

Reduced Parahermitian Matrix Representation

- Columns beyond lag zero $(\tau=0)$ have been discarded.
- Modifications have to be made to the search and shift stages.
- Both columns and rows in the reduced matrix are searched.
- A 'cyclic shift' approach is employed.

Reduced Parahermitian Matrix Representation

- An example of the shift operation is depicted for the case of $\boldsymbol{R}(z): \mathbb{C} \rightarrow \mathbb{C}^{5 \times 5}$ with parameters $k^{(i)}=2$ and $\tau^{(i)}=-3$.

Reduced Parahermitian Matrix Representation

- An example of the shift operation is depicted for the case of $\boldsymbol{R}(z): \mathbb{C} \rightarrow \mathbb{C}^{5 \times 5}$ with parameters $k^{(i)}=2$ and $\tau^{(i)}=-3$.
- Shifting procedure:

1. The row is shifted.

Reduced Parahermitian Matrix Representation

- An example of the shift operation is depicted for the case of $\boldsymbol{R}(z): \mathbb{C} \rightarrow \mathbb{C}^{5 \times 5}$ with parameters $k^{(i)}=2$ and $\tau^{(i)}=-3$.
- Shifting procedure:

1. The row is shifted.
2. Non-diagonal elements in the $k^{(i)}$ th row past lag zero are extracted and parahermitian transposed.

Reduced Parahermitian Matrix Representation

- An example of the shift operation is depicted for the case of $\boldsymbol{R}(z): \mathbb{C} \rightarrow \mathbb{C}^{5 \times 5}$ with parameters $k^{(i)}=2$ and $\tau^{(i)}=-3$.
- Shifting procedure:

1. The row is shifted.
2. Non-diagonal elements in the $k^{(i)}$ th row past lag zero are extracted and parahermitian transposed.
3. These elements are appended to the $k^{(i)}$ th column at lag zero and this column is shifted in the opposite direction.

Reduced Parahermitian Matrix Representation

- Off-diagonal energy versus algorithm execution time for standard SMD algorithm and 'half-matrix' SMD (HSMD) implementation.
- M is spatial dimension of parahermitian matrix, e.g., number of array elements.

Reduced Parahermitian Matrix Representation

- Approximate resource requirements of standard (SMD) and proposed (HSMD) representations of an $M \times M \times\left(2 N^{(i)}+1\right)$ parahermitian matrix at the i th iteration.

Method	Complexity	Storage	Memory Moves
SMD	$4 N^{(i)} M^{3}$	$2 N^{(i)} M^{2}$	$4 N^{(i-1)} M$
HSMD	$2 N^{(i)} M^{3}$	$N^{(i)} M^{2}$	$2 N^{(i-1)} M$

- All resource requirements are approximately halved using the proposed approach.

Restricted Update SMD (RU-SMD)

- Restricting the search space of iterative PEVD algorithms to a subset of lags around lag zero of a parahermitian matrix can bring performance gains. [Corr et al., ISP'15 \& Coutts et al., Asilomar SSC'16]
- The update step of SMD is its most computationally costly operation. [Redif et al., IEEE TSP 2015]
- The restricted update SMD (RU-SMD) algorithm therefore restricts the search and update spaces of the SMD algorithm.
- Aim of RU-SMD is to be less expensive and faster than SMD.

RU-SMD Overview

- The RU-SMD algorithm computes the PEVD of a parahermitian matrix $\boldsymbol{R}(z)$ over $i=0 \ldots I$ iterations.
- RU-SMD has two main steps:

1. Restricted update: iteratively diagonalise parahermitian matrix while monotonically contracting the search and update space.
2. Matrix regeneration: regenerate parahermitian matrix when search and update space has maximally contracted.

- Steps 1 and 2 are repeated for index $\alpha=0 \ldots \beta$.
- The space restriction in 1 limits the number of search operations, and reduces the computations required to update the parahermitian matrix.

Restricted Update Approach

- Matrix $\boldsymbol{S}^{(i-1)}(z)=\boldsymbol{R}_{(\alpha)}(z): \mathbb{C} \rightarrow \mathbb{C}^{5 \times 5}$ with maximum lag $\tau_{\text {max }}^{(i)}=3$ input to restricted update step. Note: $\boldsymbol{R}_{(0)}(z)=\boldsymbol{R}(z)$.
- Treat lags $|\tau|>\tau_{\text {max }}^{(i)}$ as invalid.

Restricted Update Approach

- Shifting of $k^{(i)}$ th row and column energy to lag zero from lags $\pm \tau^{(i)}\left(k^{(i)}=2, \tau^{(i)}=-1\right)$.
- Invalid values from lags $|\tau|>\tau_{\max }^{(i)}$ are shifted towards lag zero.

Restricted Update Approach

- Valid central matrix with maximum lag $\left(\tau_{\max }^{(i)}-\left|\tau^{(i)}\right|\right)=2$, $\boldsymbol{S}^{(i) \prime \prime}(z)$, is extracted.
- Lags $|\tau|>\left(\tau_{\max }^{(i)}-\left|\tau^{(i)}\right|\right)$ are invalid.

Restricted Update Approach

- Update step: $\boldsymbol{S}^{(i)}(z)=\mathbf{Q}^{(i)} \boldsymbol{S}^{(i) \prime \prime}(z) \mathbf{Q}^{(i), \mathrm{H}}$. Matrix $\mathbf{Q}^{(i)}$ is obtained from EVD of lag zero.
- Lags $|\tau|>\left(\tau_{\text {max }}^{(i)}-\left|\tau^{(i)}\right|\right)$ are invalid.

Restricted Update Approach

- Shifting of $k^{(i+1)}$ th row and column energy to lag zero from lags $\pm \tau^{(i+1)}\left(k^{(i+1)}=3, \tau^{(i+1)}=-1\right)$.
- Invalid values from lags $|\tau|>\left(\tau_{\text {max }}^{(i)}-\left|\tau^{(i)}\right|\right)$ are shifted towards lag zero.

Restricted Update Approach

- Valid central matrix with maximum lag $\left(\tau_{\text {max }}^{(i)}-\left|\tau^{(i)}\right|-\left|\tau^{(i+1)}\right|\right)=1, \boldsymbol{S}^{(i+1) \prime \prime}(z)$, is extracted.
- Lags $|\tau|>\left(\tau_{\max }^{(i)}-\left|\tau^{(i)}\right|-\left|\tau^{(i+1)}\right|\right)$ are invalid.

Restricted Update Approach

- Update step: $\boldsymbol{S}^{(i+1)}(z)=\mathbf{Q}^{(i+1)} \boldsymbol{S}^{(i+1) \prime \prime}(z) \mathbf{Q}^{(i+1), \mathrm{H}}$. Matrix $\mathbf{Q}^{(i+1)}$ is obtained from EVD of lag zero.
- Lags $|\tau|>\left(\tau_{\max }^{(i)}-\left|\tau^{(i)}\right|-\left|\tau^{(i+1)}\right|\right)$ are invalid.

Restricted Update Approach

- Shifting of $k^{(i+2)}$ th row and column energy to lag zero from lags $\pm \tau^{(i+2)}\left(k^{(i+2)}=4, \tau^{(i+2)}=-1\right)$.
- Invalid values from lags $|\tau|>\left(\tau_{\max }^{(i)}-\left|\tau^{(i)}\right|-\left|\tau^{(i+1)}\right|\right)$ are shifted towards lag zero.

Restricted Update Approach

- Valid central matrix with maximum lag $\left(\tau_{\text {max }}^{(i)}-\left|\tau^{(i)}\right|-\left|\tau^{(i+1)}\right|-\left|\tau^{(i+2)}\right|\right)=0, \boldsymbol{S}^{(i+2) \prime \prime}(z)$, is extracted.
- Lags $|\tau|>\left(\tau_{\text {max }}^{(i)}-\left|\tau^{(i)}\right|-\left|\tau^{(i+1)}\right|-\left|\tau^{(i+2)}\right|\right)$ are invalid.

Restricted Update Approach

- Update step: $\boldsymbol{S}^{(i+2)}(z)=\mathbf{Q}^{(i+2)} \boldsymbol{S}^{(i+2) \prime \prime}(z) \mathbf{Q}^{(i+2), \mathrm{H}}$. Matrix $\mathbf{Q}^{(i+2)}$ is obtained from EVD of lag zero.
- Only zero lag remains: matrix must now be regenerated.

RU-SMD Performance

- The restricted update process reduces the complexity required at each iteration, but requires a matrix regeneration step.
- Fortunately, overall algorithm execution time and complexity requirements are reduced.

Summary of Algorithmic Improvements

- Improvements to algorithm implementation efficiency.
- Half-matrix form for parahermitian matrix.
- Restricted update approach.
- For the interested reader, see my thesis!
- Problem: none of these address increased algorithmic complexity (proportional to M^{3}) as spatial dimension M increases.

‘Divide-and-Conquer' (DaC) Approach to the PEVD

- Traditional PEVD algorithms are tasked with diagonalising an entire $M \times M$ parahermitian matrix via sequential operations.
- DaC method first 'divides' the matrix into a number of smaller, independent parahermitian matrices, before diagonalising - or 'conquering' - each matrix separately.
- DaC scheme can substantially reduce PEVD complexity, which is typically proportional to M^{3}.

‘Divide-and-Conquer' (DaC) Approach to the PEVD

- Iteratively minimising energy in red regions yields a block diagonal parahermitian matrix.
- Remaining $\boldsymbol{B}_{11}(z)$ and $\boldsymbol{B}_{22}(z)$ are independent parahermitian matrices and can be diagonalised separately.

(a)

‘Divide-and-Conquer' (DaC) Approach to the PEVD

- Several block diagonalisation steps yield a block diagonal matrix.

(a)

(b)

(c)

‘Divide-and-Conquer' (DaC) Approach to the PEVD

- SMD (standard) versus DaC SMD (DC-SMD, proposed).

‘Divide-and-Conquer' (DaC) Approach to the PEVD

- Divide-and-conquer strategy becomes increasingly useful as spatial dimension M increases.

$$
C_{\text {ratio }}=\frac{\mathcal{E}\left\{\text { Complexity }_{\mathrm{SMD},-10 \mathrm{~dB}, M\}}\right.}{\mathcal{E}\left\{\text { Complexity }_{\mathrm{DC}-\mathrm{SMD},-10 \mathrm{~dB}, M}\right\}}
$$

'Divide-and-Conquer' (DaC) Approach to the PEVD

- Power spectral densities of the (a, b) first and (c, d) last four eigenvalues obtained from (a, c) SMD and (b,d) DC-SMD.

- Independent parahermitian matrices \Rightarrow parallel processing.
- Task: combine parallelised DaC strategies for the PEVD with developed complexity and memory reduction techniques.
- Parallel-Sequential Matrix Diagonalisation (PSMD).

‘Divide-and-Conquer' (DaC) Approach to the PEVD

- Independent parahermitian matrices \Rightarrow parallel processing.
- Task: combine parallelised DaC strategies for the PEVD with developed complexity and memory reduction techniques.
- Parallel-Sequential Matrix Diagonalisation (PSMD).

Method	E.val. Res.	MSE	Paraun. Err.	L_{Q}
SBR2 [1]	1.1305	1.293×10^{-6}	2.448×10^{-8}	133.8
SMD [2]	0.0773	3.514×10^{-6}	6.579×10^{-8}	165.5
DC-SMD	0.0644	6.785×10^{-6}	1.226×10^{-14}	360.4
PSMD 1	0.0658	6.918×10^{-6}	4.401×10^{-15}	279.3
PSMD 2	0.0661	8.346×10^{-6}	1.303×10^{-8}	156.0
PSMD 3	0.0245	7.618×10^{-7}	1.307×10^{-14}	307.6

[1] J. G. McWhirter et al., An EVD Algorithm for Para-Hermitian Polynomial Matrices. IEEE Trans. on Signal Process., 55(5):2158-2169, May 2007.
[2] S. Redif et al., Sequential Matrix Diagonalisation Algorithms for Polynomial EVD of Parahermitian Matrices. IEEE Trans. on Signal Process., 63(1):81-89, Jan. 2015.
[3] F. K. Coutts et al., Efficient Implementation of Iterative Polynomial Matrix EVD Algorithms Exploiting Structural Redundancy and Parallelisation. IEEE Trans. on Circuits and Systems, 66(12):4753-4766, Dec. 2019.

- Independent parahermitian matrices \Rightarrow parallel processing.
- Task: combine parallelised DaC strategies for the PEVD with developed complexity and memory reduction techniques.
- Parallel-Sequential Matrix Diagonalisation (PSMD).
- MATLAB's Simulink Embedded Coder software used to convert PSMD algorithm to parallelised C-based implementation.
- Efficient implementations on quad-core Intel i7-4700MQ CPU and quad-core Raspberry Pi 3 Model B+.

‘Divide-and-Conquer' (DaC) Approach to the PEVD

- Independent parahermitian matrices \Rightarrow parallel processing.
- Task: combine parallelised DaC strategies for the PEVD with developed complexity and memory reduction techniques.
- Parallel-Sequential Matrix Diagonalisation (PSMD).
- MATLAB's Simulink Embedded Coder software used to convert PSMD algorithm to parallelised C-based implementation.
- Efficient implementations on quad-core Intel i7-4700MQ CPU and quad-core Raspberry Pi 3 Model B+.

- MATLAB's Simulink Embedded Coder software used to convert PSMD algorithm to parallelised C-based implementation.
- Quad-core Intel i7-4700MQ CPU: parallel implementation 16.4% faster than serial implementation.

‘Divide-and-Conquer' (DaC) Approach to the PEVD

- MATLAB's Simulink Embedded Coder software used to convert PSMD algorithm to parallelised C-based implementation.
- Quad-core Intel i7-4700MQ CPU: parallel implementation 16.4% faster than serial implementation.
- Quad-core Raspberry Pi 3 Model B+: parallel implementation 19.6% faster than serial implementation.

DFT-Based PEVD Algorithms

- Demonstrated one of the two main categories of PEVD algorithm:

1. Iterative time (lag) based methods.

- Directly manipulate polynomial coefficients and seek to iteratively diagonalise parahermitian matrix $\boldsymbol{R}(z)$.
- Encourage spectral majorisation of eigenvalues.
- Established algorithms: SBR2 [1] and SMD [2].
- Recent low-complexity, parallelisable, divide-and-conquer algorithm in [3] for large arrays.
[1] J. G. McWhirter et al., An EVD Algorithm for Para-Hermitian Polynomial Matrices. IEEE Trans. on Signal Process., 55(5):2158-2169, May 2007.
[2] S. Redif et al., Sequential Matrix Diagonalisation Algorithms for Polynomial EVD of Parahermitian Matrices. IEEE Trans. on Signal Process., 63(1):81-89, Jan. 2015.
[3] F. K. Coutts et al., Efficient Implementation of Iterative Polynomial Matrix EVD Algorithms Exploiting Structural Redundancy and Parallelisation. IEEE Trans. on Circuits and Systems, 66(12):4753-4766, Dec. 2019.

DFT-Based PEVD Algorithms

- However, there is an alternative type of PEVD algorithm:

2. Fixed order frequency based methods.

- Transform the problem into a pointwise-in-frequency standard matrix decomposition.
- Able to provide a spectrally majorised decomposition, or attempt to approximate maximally smooth, analytic eigenvalues.
- Formulation in [4] performs well for finite order problems [5], but requires an a priori guess of the polynomial order of $\boldsymbol{Q}(z)$.
[4] M. Tohidian et al., A DFT-based approximate eigenvalue and singular value decomposition of polynomial matrices. EURASIP J. Adv. Signal Process., 2013:93, December 2013.
[5] F. K. Coutts et al., A Comparison of Iterative and DFT-Based Polynomial Matrix Eigenvalue Decompositions. In Proc. IEEE 7th Int. Workshop Comp. Advances in Multi-Sensor Adaptive Process., Dec. 2017.

Fixed Order Frequency Based Methods

- An existing approach obtains an approximate PEVD via K independent EVDs in the discrete frequency domain:

$$
\begin{gathered}
\mathbf{R}[k]=\mathbf{Q}[k] \boldsymbol{\Lambda}[k] \mathbf{Q}^{\mathrm{H}}[k], k=0 \ldots K-1, \\
\mathbf{R}[k]=\left.\boldsymbol{R}(z)\right|_{z=\mathrm{e}^{\mathrm{j} \Omega_{k}}}=\sum_{\tau} \mathbf{R}[\tau] \mathrm{e}^{-\mathrm{j} \Omega_{k} \tau}, \quad \Omega_{k}=2 \pi k / K
\end{gathered}
$$

- Can rearrange the eigenvalues and -vectors at each frequency bin.
- Ambiguity in eigenvector phase leads to discontinuities in phase between eigenvectors in adjacent frequency bins.
- Phase alignment step alters phases to minimise discontinuities.
- Following the permutation (if desired) and phase alignment of $\mathbf{Q}[k], \mathbf{Q}[\tau]$ and $\boldsymbol{\Lambda}[\tau]$ are computed via the inverse DFT.

Fixed Order Frequency Based Methods

- While analytic polynomial eigenvalues and eigenvectors have been shown to exist as absolutely convergent Laurent series in [6] there is currently no way of knowing the length of the series a priori.
- When converting $\boldsymbol{\Lambda}[k]$ and $\mathbf{Q}[k]$ to the lag domain, the order of the IDFT restricts the series' length to K.
- For unsufficiently large K, this can result in energy from ignored high order polynomial coefficients corrupting the fixed set of K coefficients (i.e., time domain aliasing).
[6] S. Weiss et al., On the Existence and Uniqueness of the Eigenvalue Decomposition of a Parahermitian Matrix. IEEE Trans. on Signal Process., 66(10):2659-2672, May 2018.

Proposed Approach Overview

- We propose an iterative frequency-based scheme:

$$
\mathbf{R}[k]=\mathbf{Q}[k] \mathbf{\Lambda}[k] \mathbf{Q}^{\mathrm{H}}[k], k=0 \ldots K_{i}-1
$$

- K_{i} is increased within the set $K_{i} \in\left\{2^{l+i} \mid l, i \in \mathbb{Z}^{+}, 2^{l}>L\right\}$.
- L is the polynomial order of $\boldsymbol{R}(z)$.
- $i=0,1, \ldots, I-1$ records current iteration.
- Use method for reordering the eigenvalues and -vectors from [4].
- Use a phase alignment function from [7], which uses Powell's 'dogleg' algorithm [8] to maximise eigenvector smoothness.
- Iterations continue while decomposition MSE above threshold ϵ.

[^0]
Proposed Approach Overview

- We propose an iterative frequency-based scheme:

$$
\mathbf{R}[k]=\mathbf{Q}[k] \boldsymbol{\Lambda}[k] \mathbf{Q}^{\mathrm{H}}[k], k=0 \ldots K_{i}-1
$$

- K_{i} is increased within the set $K_{i} \in\left\{2^{l+i} \mid l, i \in \mathbb{Z}^{+}, 2^{l}>L\right\}$.
- In iteration $i, \mathbf{Q}[k]$ and $\boldsymbol{\Lambda}[k]$ for $k=0,1, \ldots, K_{i}-1$ are identical for $k=0,2,4, \ldots, K_{i+1}-2$ in the $(i+1)$ th iteration.
- Phase alignment step exploits this to aid optimisation.
- $\mathbf{Q}[\tau]$ and $\boldsymbol{\Lambda}[\tau]$ are computed via the inverse DFT following the permutation (if desired) and phase alignment of $\mathbf{Q}[k]$.
- MSE computed between $\hat{\boldsymbol{R}}(z)=\boldsymbol{Q}(z) \boldsymbol{\Lambda}(z) \boldsymbol{Q}^{\mathrm{P}}(z)$ and $\boldsymbol{R}(z)$.

Smooth Decomposition

- In a smooth (analytic) decomposition, the eigenvalues and -vectors are arranged such that discontinuities between adjacent frequency bins are minimised.

Spectrally majorised

Smooth Decomposition

- In a smooth (analytic) decomposition, the eigenvalues and -vectors are arranged such that discontinuities between adjacent frequency bins are minimised.
- For a smooth decomposition, the eigenvectors in adjacent frequency bins are rearranged using the inner product

$$
\mathbf{c}_{m n}[k]=\mathbf{q}_{m}^{\mathrm{H}}[k-1] \mathbf{q}_{n}[k],
$$

where, $\mathbf{q}_{m}[k]$ is the m th column of $\mathbf{Q}[k]$.

- $\mathbf{c}_{m n}[k] \approx 1$ if $\mathbf{q}_{m}[k-1] \& \mathbf{q}_{n}[k]$ aligned; $\mathrm{c}_{m n}[k] \approx 0$ otherwise.
- Goal: reorder columns of $\mathbf{Q}[k]$ such that $\mathbf{c}_{m m}[k] \approx 1 \forall m$.
- $\boldsymbol{\Lambda}[k]$ rearranged according to the reordering of the eigenvectors.

Phase Alignment

- Phase alignment of eigenvectors in adjacent frequency bins is vital for a compact-order decomposition.
- A matrix $\mathbf{C}^{(P)}$ [7] can be used to calculate the total power in the derivatives of a function up to and including the P th derivative.
- Function 'smoothness' is characterised by a low total power.
- Phase of the m th eigenvector at frequency bin k can be adjusted by an angle θ_{k} according to $\mathbf{q}_{m}[k] \leftarrow e^{\mathrm{j} \theta_{k}} \mathbf{q}_{m}[k]$.
- We compute a vector of phases $\boldsymbol{\theta}=\left[\theta_{0}, \cdots, \theta_{K_{i}-1}\right]^{\mathrm{T}}$ s.t. the m th eigenvector $\mathbf{q}_{m}[k] \forall k$ is maximally smooth.

Phase Alignment

- An objective function has been derived in [7] that measures the smoothness of all elements of $\mathbf{q}_{m}[k]$ and takes the form

$$
f(\boldsymbol{\theta})=\mathbb{R}\left\{\boldsymbol{u}^{\mathrm{H}} \boldsymbol{\Gamma} \boldsymbol{u}\right\}
$$

- $\boldsymbol{u}^{\mathrm{H}}=\left[e^{\mathrm{j} \theta_{0}}, \cdots, e^{\mathrm{j} \theta_{K_{i}-1}}\right], \boldsymbol{\Gamma}=\sum_{n=0}^{M-1} \operatorname{diag}\left\{\mathbf{v}_{n}\right\} \mathbf{C}_{(P)} \operatorname{diag}\left\{\mathbf{v}_{n}^{\mathrm{H}}\right\}$, and $\mathbf{v}_{n}=\left[\mathbf{q}_{m, n}[0], \cdots, \mathbf{q}_{m, n}\left[K_{i}-1\right]\right]$.
- $\mathbf{q}_{m, n}[k]$ denotes the nth element (row) of eigenvector $\mathbf{q}_{m}[k]$.
- We employ relatively low cost Powell's iterative 'dogleg' trust region strategy [8] for the unconstrained minimisation of $f(\boldsymbol{\theta})$.
- For $i>0$, can use previous $\boldsymbol{\theta}$ to give a more informed initial guess.
[7] F. K. Coutts et al., Enforcing Eigenvector Smoothness for a Compact DFT-based Polynomial Eigenvalue Decomposition. In Proc. IEEE Workshop on Sensor Array and Multichannel Sig. Process., July. 2018.
[8] M. J. D. Powell, A new algorithm for unconstrained optimization. Nonlinear programming, 31-65, 1970.

DFT-Based PEVD Performance

- DFT-based PEVD algorithm capable of outperforming existing methods.
- Suitable for scenarios with a high number of sensors.
- Example below has $\boldsymbol{R}(z): \mathbb{C} \rightarrow \mathbb{C}^{5 \times 5}$ of order 38 with ground truth polynomial eigenvalues that are not spectrally majorised.

Method	MSE	Paraun. Err.	$E_{\text {diag }}$	Time $/ \mathrm{s}$	L_{Q}	Complexity
proposed	5.750×10^{-29}	2.887×10^{-22}	0	0.08854	64	$\mathcal{O}\left(M L^{3}\right)$
SBR2 [1]	1.815×10^{-6}	3.303×10^{-8}	10^{-6}	37.64	600.0	$\mathcal{O}\left(M^{2} L\right)$
SMD [2]	9.321×10^{-7}	3.847×10^{-8}	10^{-6}	11.34	357.9	$\mathcal{O}\left(M^{3} L\right)$

[1] J. G. McWhirter et al., An EVD Algorithm for Para-Hermitian Polynomial Matrices. IEEE Trans. on Signal Process., 55(5):2158-2169, May 2007.
[2] S. Redif et al., Sequential Matrix Diagonalisation Algorithms for Polynomial EVD of Parahermitian Matrices. IEEE Trans. on Signal Process., 63(1):81-89, Jan. 2015.

DFT-Based PEVD Performance

- Decompose the theoretical parahermitian matrix

$$
\boldsymbol{R}(z)=\left[\begin{array}{cc}
2 & z^{-1}+1 \\
z+1 & 2
\end{array}\right]
$$

- Eigenvectors \& eigenvalues are neither of finite order nor rational.
- To decompose $\boldsymbol{R}(z)$ via an exact PEVD would require polynomial matrices of infinite length.

Method	MSE	Paraun. Err.	$E_{\text {diag }}$	Time $/ \mathrm{s}$	L_{Q}
proposed	7.077×10^{-9}	1.381×10^{-4}	0	0.1196	64
SMD, μ_{1}	4.362×10^{-25}	2.466×10^{-16}	10^{-6}	0.6256	345
SMD, μ_{2}	2.909×10^{-10}	9.546×10^{-8}	10^{-6}	0.1995	83
SBR2	2.909×10^{-10}	9.546×10^{-8}	10^{-6}	0.1724	83

Approximating a minimum-order solution to the PEVD

$$
\begin{gathered}
\boldsymbol{R}(z)=\boldsymbol{V}(z) \boldsymbol{\Lambda}(z) \boldsymbol{V}^{\mathrm{P}}(z) \approx \boldsymbol{Q}(z) \boldsymbol{D}(z) \boldsymbol{Q}^{\mathrm{P}}(z) \\
\boldsymbol{Q}(z)=\boldsymbol{H}(z) \boldsymbol{U}(z)
\end{gathered}
$$

- Task: find all-pass filter bank $\boldsymbol{U}(z)=\operatorname{diag}\left\{u_{1}(z), \ldots, u_{M}(z)\right\}$.
- $u_{m}(z)$ defined by the greatest common divisor [9] of $\boldsymbol{q}_{m}(z)$.

[9] F. C. Chang, Polynomial GCD derived through monic polynomial subtractions. ISRN Applied Mathematics, 2011.

Angle of Arrival Estimation (AoA)

- Polynomial MUSIC algorithm requires an accurate estimate of the noise-only subspace.
- Accuracy strongly depends on PEVD quality.
- Each PEVD algorithm will produce a different level of AoA estimation performance.
- More PEVD iterations and a longer algorithm runtime will generally increase performance at the cost of decreased flexibility.
- Divide-and-conquer strategies offer very fast diagonalisation performance, and are able to resolve weaker polynomial eigenvalues.
- Does this translate to better AoA estimation performance if simulation time is fixed?

Angle of Arrival Estimation Results

- 'Divide-and-conquer' (DaC) approach to the PEVD:
- 6 sources sharing frequency range $\Omega \in[0.1 \pi, 0.9 \pi], 20 \mathrm{~dB}$ SNR.

[1] J. G. McWhirter et al., An EVD Algorithm for Para-Hermitian Polynomial Matrices.
IEEE Trans. on Signal Process., 55(5):2158-2169, May 2007.
[2] S. Redif et al., Sequential Matrix Diagonalisation Algorithms for Polynomial EVD of Parahermitian Matrices. IEEE Trans. on Signal Process., 63(1):81-89, Jan. 2015.

Angle of Arrival Estimation Results

- Frequency-Based PEVD Algorithms:
- 3 sources with different frequency ranges, 20 dB SNR.

AoA Comparison for DFT-Based and PSMD Algorithms

- Both algorithms executed for 1.5 seconds
- $M=24$
- 6 sources

AoA Comparison for DFT-Based and PSMD Algorithms

- Both algorithms executed for 1.5 seconds
- $M=24$ sensors
- 6 sources
- Evaluated at $\Omega=\pi / 2$
- Similar levels of performance

Summary

- Summarised existing iterative PEVD algorithms.
- Introduced some methods used to lower the computational cost of these algorithms.
- Gave overview of parallelised 'divide-and-conquer' approach to the PEVD and highlighted implementation benefits.
- Explained DFT-based PEVD approaches and their advantages.
- Demonstrated the effects of PEVD algorithm choice on AoA estimation results.
- fraser.coutts@ed.ac.uk|https://tinyurl.com/couttsphd

Simulation Scenario 3 Zoomed

Future Work

- Impact of divide-and-conquer algorithms on spectral majorisation.
- Investigate scenarios with 'naturally' (up to permutations) block diagonal matrices.
- Alternative permutation/optimisation strategies for the DFT-based PEVD.
- Minimum-order solutions and impulse response estimation.
- Deploying developed algorithms in the real world.

Future Work

- Minimum-order solutions and impulse response estimation:

[9] F. C. Chang, Polynomial GCD derived through monic polynomial subtractions.
ISRN Applied Mathematics, 2011.
[10] S. Weiss et al., Identification of broadband source-array responses from sensor second order statistics. IEEE Sensor Signal Processing for Defence Conference, Dec. 2017

Future Work

- Minimum-order solutions and impulse response estimation:
- Cross-spectral density matrix $\boldsymbol{R}_{i}(z)$ defined by transfer functions, $\boldsymbol{a}_{i}(z)$, and source power spectral density, $\boldsymbol{S}(z)$:

$$
\begin{gathered}
\boldsymbol{R}_{i}(z)=\boldsymbol{a}_{i}(z) S(z) \boldsymbol{a}_{i}^{\mathrm{P}}(z)+\sigma_{n}^{2} \mathbf{I}_{M} \approx \boldsymbol{q}_{i}(z) d_{i}(z) \boldsymbol{q}_{i}^{\mathrm{P}}(z)+\sigma_{n}^{2} \mathbf{I}_{M} \\
\boldsymbol{a}_{i}^{\mathrm{P}}(z) \boldsymbol{a}_{i}(z)=A_{i}(z)=A_{i}^{(+)}(z) A_{i}^{(+), \mathrm{P}}(z), \quad \boldsymbol{a}_{i, \operatorname{norm}}(z)=\frac{\boldsymbol{a}_{i}(z)}{A_{i}^{(+)}(z)}
\end{gathered}
$$

$$
\boldsymbol{R}_{i}(z) \approx \boldsymbol{a}_{i, \mathrm{norm}}(z) A_{i}^{(+)}(z) S(z) A_{i}^{(+), \mathrm{P}}(z) \boldsymbol{a}_{i, \mathrm{norm}}^{\mathrm{P}}(z)+\sigma_{n}^{2} \mathbf{I}_{M}
$$

$$
\boldsymbol{q}_{i}(z)=\frac{\boldsymbol{a}_{i}(z)}{A_{i}^{(+)}}, \quad d_{i}(z)=A_{i}^{(+)}(z) S(z) A_{i}^{(+), \mathrm{P}}(z)
$$

[9] F. C. Chang, Polynomial GCD derived through monic polynomial subtractions. ISRN Applied Mathematics, 2011.
[10] S. Weiss et al., Identification of broadband source-array responses from sensor second order statistics. IEEE Sensor Signal Processing for Defence Conference, Dec. 2017

Future Work

- Minimum-order solutions and impulse response estimation:

$$
\begin{gathered}
\boldsymbol{q}_{i}(z)=\frac{\boldsymbol{a}_{i}(z)}{A_{i}^{(+)}}, \quad d_{i}(z)=A_{i}^{(+)}(z) S(z) A_{i}^{(+) \mathrm{P}}(z) \\
\hat{S}(z)=\operatorname{GCD}\left\{d_{1}(z), \ldots, d_{I}(z)\right\}
\end{gathered}
$$

- Phase ambiguity in $\boldsymbol{q}_{i}(z)=\hat{\boldsymbol{q}}_{i}(z) u_{i}(z)$ can be eliminated through determination of greatest common divisor (GCD) $u_{i}(z)$ [9].

$$
\hat{\boldsymbol{a}}_{i}(z)=\hat{A}_{i}^{(+)}(z) \hat{\boldsymbol{q}}_{i}(z)
$$

- Magnitude and phase of transfer functions recovered.
- Next problem: identifying GCD of noisy eigenvalues.
[9] F. C. Chang, Polynomial GCD derived through monic polynomial subtractions.
ISRN Applied Mathematics, 2011.
[10] S. Weiss et al., Identification of broadband source-array responses from sensor second order statistics. IEEE Sensor Signal Processing for Defence Conference, Dec. 2017

References I

[1] J. G. McWhirter, P. D. Baxter, T. Cooper, S. Redif, and J. Foster. An EVD Algorithm for Para-Hermitian Polynomial Matrices.
IEEE Transactions on Signal Processing, 55(5):2158-2169, May 2007.
[2] S. Redif, S. Weiss, and J. McWhirter.
Sequential matrix diagonalization algorithms for polynomial EVD of parahermitian matrices.
IEEE Transactions on Signal Processing, 63(1):81-89, January 2015.
[3] F. K. Coutts, I. K. Proudler, and S. Weiss.
Efficient implementation of iterative polynomial matrix evd algorithms exploiting structural redundancy and parallelisation.
IEEE Transactions on Circuits and Systems I: Regular Papers, 66(12):4753-4766, Dec. 2019.
[4] M. Tohidian, H. Amindavar, and A. M. Reza.
A DFT-based approximate eigenvalue and singular value decomposition of polynomial matrices.
EURASIP Journal on Advances in Signal Processing, 2013(1):1-16, 2013.
[5] F. Coutts, K. Thompson, S. Weiss, and I. Proudler.
A comparison of iterative and DFT-based polynomial matrix eigenvalue decompositions.
In IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Curacao, December 2017.
[6] S. Weiss, J. Pestana, and I. K. Proudler.
On the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix.
IEEE Transactions on Signal Processing, 66(10):2659-2672, May 2018.
[7] F. K. Coutts, K. Thompson, J. Pestana, I. Proudler, and S. Weiss.
Enforcing eigenvector smoothness for a compact DFT-based polynomial eigenvalue decomposition.
In 10th IEEE Workshop on Sensor Array and Multichannel Signal Processing, pages 1-5, July 2018.
[8] M. Powell.
A new algorithm for unconstrained optimization.
In J. Rosen, O. Mangasarian, and K. Ritter, editors, Nonlinear Programming, pages 31-65. Academic Press, 1970.

References II

[9] F. C. Chang.
Polynomial GCD derived through monic polynomial subtractions.
ISRN Applied Mathematics, 2011(714102), 2011.
[10] S. Weiss, N. J. Goddard, S. Somasundaram, I. K. Proudler, and P. A. Naylor. Identification of broadband source-array responses from sensor second order statistics.
In Sensor Signal Processing for Defence Conference, pages 1-5, London, UK, December 2017.
[11] C. H. Ta and S. Weiss.
Shortening the order of paraunitary matrices in SBR2 algorithm.
In 6th International Conference on Information, Communications \& Signal Processing, pages 1-5, Singapore, Dec. 2007.
[12] S. Redif, S. Weiss, and J. G. McWhirter.
An approximate polynomial matrix eigenvalue decomposition algorithm for para-hermitian matrices.
In 11th IEEE International Symposium on Signal Processing and Information Technology, pages 421-425, Bilbao, Spain, December 2011.
[13] J. Corr, K. Thompson, S. Weiss, I. Proudler, and J. McWhirter.
Reduced search space multiple shift maximum element sequential matrix diagonalisation algorithm.
In IET/EURASIP Intelligent Signal Processing, London, UK, December 2015.
[14] F. K. Coutts, J. Corr, K. Thompson, S. Weiss, I. Proudler, and J. G. McWhirter. Memory and complexity reduction in parahermitian matrix manipulations of PEVD algorithms.
In 24th European Signal Processing Conference, Budapest, Hungary, Aug. 2016.
[15] S. Weiss, J. Pestana, I. K. Proudler, and F. K. Coutts.
Corrections to "on the existence and uniqueness of the eigenvalue decomposition of a parahermitian matrix".
IEEE Transactions on Signal Processing, 66(23):6325-6327, Dec 2018.
[16] S. Weiss, I. K. Proudler, F. K. Coutts, and J. Pestana.
Iterative approximation of analytic eigenvalues of a parahermitian matrix EVD.
In IEEE International Conference on Acoustics, Speech and Signal Processing, Brighton, UK, May 2019.

References III

[17] S. Weiss, I. Proudler, F. Coutts, and J. Deeks.
Extraction of analytic eigenvectors from a parahermitian matrix.
In International Conference on Sensor Signal Processing or Defence, Edinburgh, UK, 2020.
[18] S. Weiss, I. K. Proudler, and F. K. Coutts.
Eigenvalue decomposition of a parahermitian matrix: extraction of analytic eigenvalues.
IEEE Transactions on Signal Processing, 69:722-737, 2021.
[19] S. Weiss, I. K. Proudler, G. Barbarino, J. Pestana, and J. G. McWhirter.
On properties and structure of the analytic singular value decomposition.
IEEE Transactions on Signal Processing, 2023.
to be submitted.
[20] F. Coutts, J. Corr, K. Thompson, S. Weiss, I. Proudler, and J. McWhirter.
Complexity and search space reduction in cyclic-by-row PEVD algorithms.
In 50th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, November 2016.
[21] F. Coutts, K. Thompson, S. Weiss, and I. Proudler.
Impact of fast-converging PEVD algorithms on broadband AoA estimation.
In Sensor Signal Processing for Defence Conference, pages 1-5, London, UK, December 2017.
[22] F. Coutts, J. Corr, K. Thompson, I. Proudler, and S. Weiss.
Divide-and-conquer sequential matrix diagonalisation for parahermitian matrices.
In Sensor Signal Processing for Defence Conference, pages 1-5, London, UK, December 2017.
[23] F. Coutts, J. Corr, K. Thompson, S. Weiss, P. I.K., and J. McWhirter.
Multiple shift QR decomposition for polynomial matrices.
In IMA International Conference on Mathematics in Signal Processing, Birmingham, UK, December 2016.
[24] F. Coutts, K. Thompson, I. Proudler, and S. Weiss.
Restricted update sequential matrix diagonalisation for parahermitian matrices.
In IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Curacao, December 2017.

References IV

[25] F. K. Coutts, K. Thompson, J. Pestana, I. Proudler, and S. Weiss.
Enforcing eigenvector smoothness for a compact DFT-based polynomial eigenvalue decomposition.
In 10th IEEE Workshop on Sensor Array and Multichannel Signal Processing, pages 1-5, July 2018.
[26] F. K. Coutts, K. Thompson, I. K. Proudler, and S. Weiss.
An iterative dft-based approach to the polynomial matrix eigenvalue decomposition.
In 52nd Asilomar Conference on Signals, Systems, and Computers, pages 1011-1015, Oct 2018.
[27] F. K. Coutts, K. Thompson, S. Weiss, and I. K. Proudler.
Analysing the performance of divide-and-conquer sequential matrix diagonalisation for large broadband sensor arrays.
In 2017 IEEE International Workshop on Signal Processing Systems, pages 1-6, Lorient, France, October 2017.
[28] F. Coutts, J. Corr, K. Thompson, I. Proudler, and S. Weiss.
Divide-and-conquer sequential matrix diagonalisation for parahermitian matrices.
In Sensor Signal Processing for Defence Conference, pages 1-5, London, UK, December 2017.
[29] F. Coutts, J. Corr, K. Thompson, S. Weiss, P. I.K., and J. McWhirter.
Multiple shift QR decomposition for polynomial matrices.
In IMA International Conference on Mathematics in Signal Processing, Birmingham, UK, December 2016.
[30] F. Coutts, K. Thompson, I. Proudler, and S. Weiss.
Restricted update sequential matrix diagonalisation for parahermitian matrices.
In IEEE 7th International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, Curacao, December 2017.
[31] F. K. Coutts, K. Thompson, J. Pestana, I. Proudler, and S. Weiss.
Enforcing eigenvector smoothness for a compact DFT-based polynomial eigenvalue decomposition.
In 10th IEEE Workshop on Sensor Array and Multichannel Signal Processing, pages 1-5, July 2018.
[32] F. K. Coutts, K. Thompson, I. K. Proudler, and S. Weiss.
An iterative dft-based approach to the polynomial matrix eigenvalue decomposition.
In 52nd Asilomar Conference on Signals, Systems, and Computers, pages 1011-1015, Oct 2018.

[^0]: [4] M. Tohidian et al., A DFT-based approximate eigenvalue and singular value decomposition of polynomial matrices. EURASIP J. Adv. Signal Process., 2013:93, December 2013.
 [7] F. K. Coutts et al., Enforcing Eigenvector Smoothness for a Compact DFT-based Polynomial Eigenvalue Decomposition. In Proc. IEEE Workshop on Sensor Array and Multichannel Sig. Process., July. 2018.
 [8] M. J. D. Powell, A new algorithm for unconstrained optimization. Nonlinear programming, 31-65, 1970.

