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Ultrasonic inspectior

Structural percentage (mass) of composites in commercial
aircraft [1,2]
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Examples of defects that can occur in Carbon
Fibre Reinforced Polymers (CFRPSs) [3]

Principle of operation of ultrasonic scanning in NDT [4]
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Principle of operation of phased array systems
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Challenge

Manual inspection is a
labour intensive
process and reliability
is influenced by a
human operator

Automatic inspection
needs little to no
labour, and is precise
and repeatable

Data interpretation
presents a bottleneck A very large CFRP can
be scanned in around 2

hours

(6 — 8 hours to process
data and generate a
quality report)
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Every Machine Learning project starts with data,

however:

« Large volumes of real defect responses are not
available

« Stringent protocols for data protection of civil and
military components

Defect detection

Data augmentation

« ML models need to be trained on representative

data

« Oftentimes training datasets consist of thousands of
data points

« Simulation software does not provide representative

data”
» Generative Adversarial Networks (GANSs) can help
with image-to-image processes

Simulated Experimental

Results from McKnight et al. [5]

/ Generated data

* Unsupervised training performed on healthy B-scans

ML model tries to reconstruct the original image that
IS passed through an autoencoding bottleneck

« Defective data is flagged as an anomaly

Examples of anomaly detector performance:

Input Image . Output - Loss: 0.0322 Anomaly detected
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« Supervised training performed on augmented labelled
data
« Potential for real-time performance in detection and
localisation
Amplitude C-scan (left) and
ML defect detection (right) [6]

Machine Learning is a powerful tool that can
accelerate the process of Non-Destructive
Evaluation (NDE)

Both supervised and unsupervised methods can be
applied for defect detection

Generative algorithms can be used for augmentation
and expansion of available datasets

Future work includes the expansion to multi-class
problems (delaminations, porosities, voids...)
Integration of a multi modal approach where B-scans
and C-scans are processed in a single pipeline
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