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Abstract
Vesta is the second largest celestial object of the main asteroid belt and it was visited and investigated by the

DAWN mission in 2011. The spacecraft used solar-electric propulsion that generates continuous low-thrust. As
the spacecraft slowly descends from high altitude mission orbit (HAMO) to low altitude mission orbit (LAMO),
it crosses the 1:1 ground-track resonance, putting the spacecraft at risk of being permanently trapped into
it. The objective of this paper is to apply the adiabatic invariant theory to estimate the Dawn’s probability of
capture into 1:1 ground-track resonance with Vesta. Firstly, we define the averaged Hamiltonian considering the
irregular gravitational field up to the second order and degree and the thrust constant in magnitude and opposite
to the velocity direction of the spacecraft. Then, we expand the model around the resonance which results the
Hamiltonian to be reduced into the first fundamental resonance model, a time-dependent one-degree of freedom
Hamiltonian. The phase-space topology changes due to the time-dependency causing the area enclosed by the
separatrices to grow. This is the cause of trapping into resonance and, based on the dynamical system’s energy
change, an intuitive definition of probability of captured is presented. Finally, we adapt the probability definition
to be used with the first fundamental model, estimate the Dawn’s probability of capture into 1:1 ground-track
resonance around Vesta and validate it with Monte Carlo simulations.

Keywords: Adiabatic invariant theory, Resonance capture, Astrodynamics, Vesta, Gravitational perturba-
tions, Low-thrust propulsion

1 Introduction

In 2011, the Dawn spacecraft successfully approached the
asteroid Vesta [1]. The DAWN mission was one of the
first missions to use low-thrust propulsion during both
the cruise phase and the approach phase to an asteroid.
It demonstrates the possibility of relying on low-thrust
propulsion for the majority of the mission duration. As
the spacecraft slowly approaches the asteroid, there is a
possibility that it is captured by the 1:1 ground-track res-
onance and being permanently trapped into it. An exam-
ple of 1:1 ground-track resonance is the geostationary or-
bit, in which the period of revolution of the spacecraft
is equal to the period of rotation of the Earth around its
axis. However, the motion around Vesta is more com-
plex, being smaller in size and having a more irregular
gravitational field and the spacecraft at each revolution
encounters the same gravitational configuration, the ef-
fect of which accumulates over the revolutions and change
noticeably the orbit eccentricity and inclination. Small

variations in the initial state of the spacecraft can make a
difference in whether the spacecraft manages to cross the
resonance and reach lower altitudes from if the spacecraft
remains trapped in the resonance despite the continuous
thrusting. Since the application of the low-thrust propul-
sion is the future tendency, the study of the probability of
capture into resonance of a spacecraft around a celestial
body needs to be investigated. Delsate [2] defined the au-
tonomous Hamiltonian which describes the 1:1 resonance
around Vesta for both circular polar orbits and circular
equatorial orbits.

The adiabatic invariant theory is a useful semi-
analytical approach to estimate the probability of cap-
ture into resonance of a dynamical system if the system’s
Hamiltonian is dependent on slowly changing parameters
over time, for example a pendulum which length slowly
changes with time. The theory is based on the fact that
the trajectory of the non autonomous system is close to
the trajectory of the autonomous system, but slowly drift-
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ing from it. The only information required a priori is the
initial state of the system and an assumption on the rate
of change of the parameter. Usually, to estimate the prob-
ability of capture of a dynamical system the first funda-
mental resonance model has been adopted [3] [4]. Hen-
rard [5] [6], in the context of celestial mechanics, Neish-
tadt [7], in the contexts of physical systems in planetary
science and plasma physics, and Kruskal, privately com-
municated to Dobbrot and Greene [8] for the motion of
charged particles in stellarators for fusion power genera-
tion, independently defined the expression of the proba-
bility of capture into resonance based on Liouville’s theo-
rem, which states that time evolution in phase space is an
incompressible flow even if the Hamiltonian is time de-
pendent. A straightforward expression of the probability
of capture can be used if the Hamiltonian system is re-
duced to the first fundamental resonance model. Breiter
[9] reviewed the process of reducing the system’s Hamil-
tonian to the different fundamental resonance models and
Artemyev [10] did a review of the adiabatic invariant the-
ory presenting application of it in different fields. Boc-
caletti and Pucacco [11] dedicated a chapter of their book
to this methodology, applying it to the case of one-degree
of freedom systems and many degree of freedom systems.

With this work, we extend the above research and we
advance the knowledge about this phenomenon by devel-
oping a new Hamiltonian model without restrictions on
the inclination and eccentricity of the orbit and process it
in order to be used for the first time in the context of the
adiabatic invariant theory. This paper is structured as fol-
lows. In Section 2, we define the equations of motion de-
scribing the dynamics of the spacecraft’s motion around
Vesta. Section 3 outlines the estimation process of the
adiabatic invariant theory. Section 4 applies the theory
developed in the previous section to estimate the Dawn’s
probability of capture into 1:1 resonance around Vesta.
Finally, Section 5 concludes this study.

2 Numerical model

In this section we define the equations of motion of a
spacecraft moving around a uniformly rotating asteroid.
The model considered is the two-body problem with per-
turbations from the irregular gravitational field of the as-
teroid and the low-thrust to which the spacecraft is subject
to. The gravitational field is represented by the spherical
harmonics model and is truncated to the second order and
degree, the low-thrust is constant in magnitude and it al-

ways directs to the opposite direction of the spacecraft’s
velocity, which maximizes the instantaneous variation of
orbital energy. Following Kaula [12] , the potential of
the gravitational field of an asteroid V in spherical co-
ordinates can be expressed as the sum of the keplerian
component and a spherical harmonic expansion up to the
degree n and order m

V =
µ

r
+

∞∑
n=2

n∑
m=0

µ

r

(
Re

r

)n

Pnm(sinϕ)

(Cnm cosmδ + Snm sinmδ) (1)

where µ is Vesta’s gravitational constant, Re is the refer-
ence radius of the asteroid, Pn,m(sinϕ) are the associated
legendre polynomials, r is the radial distance, ϕ is the lat-
itude, δ is the longitude, Cnm and Snm are the spherical
harmonics coefficients and n and m are integers.

By transforming the potential in cartesian coordinate
and taking the gradient of the potential and adding the low
thrust component to the acceleration, we can define the
equations of motion which describe the absolute space-
craft’s motion in the asteroid centered inertial frame as
Eq.2 where V represents the potential expanded in spher-
ical harmonics as a function of the cartesian coordinates
(x, y, z), T is the thrust, m is the spacecraft’s mass and
v̂ is the spacecraft’s velocity unit vector. To that, we add
the differential equation describing the rate of change of
the spacecraft’s mass over time as Eq.3 where Isp and g0
represent the specific impulse if the engine and standard
free-fall acceleration respectively.

ẍ = ∇V − T

m(t)
v̂ (2)

ṁ = − T

Ispg0
(3)

We consider the initial conditions in Table 1.

Table 1: DAWN spacecraft initial conditions at its arrival
at Vesta.

Mass (m0) 1000 kg
Thrust (T) 20 mN

Specific Impulse (Isp) 3000 s
SMA (a0) 1000 km

eccentricity (e0) 0
Inclination (i0) 90◦

Longitude of the ascending node (Ω0) 0◦
Argument of periapsis (ω0) 0◦
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Figure 1: Spacecraft trajectory in the (σ, L) plane. The red
line represents the capture case starting at θ0 = 30◦ and
the blue line represents the escape case with θ0 = 50◦.

We focus on the 1:1 resonance and we numerically es-
timate the probability of capture considering 1000 differ-
ent values of initial true anomalies (θ0). The 1:1 reso-
nance capture bounds the motion of the spacecraft inside
the resonance region, not allowing it to reach lower alti-
tudes. The outcome of the simulations indicates that if the
descent starts at 1000 km and the low-thrust magnitude is
20 mN, the probability of capture of the spacecraft into
1:1 resonance around Vesta is estimated to be ∼ 8.6%.
The value is coherent with what was previously found by
Delsate [2] and Tricarico [13], thus validating our model.

The capture into resonance is a phenomenon that de-
pends on the initial phase angle of the descent. For the
analysis, we consider two different values of initial true
anomalies to represent the case in which the spacecraft is
capture into resonance and the case in which it escapes:{

θ0 = 30◦, for the capture case

θ0 = 50◦, for the escape case
(4)

It is possible to represent the results of these two cases
in the phase space, in which the x-axis represents the res-
onance angle σ = ψ−ϑ defined as the difference between
the mean longitude and the angle of rotation of the planet,
while the y-axis represents the angular momentum L.

Notice the different behaviour of the phase space tra-
jectory between the two cases: for the first case in Figure
1, with θ0 = 30◦, the trajectory remains inside the re-
gion between the upper and lower separatrices (lines high-
lighted with the red color), which corresponds to the 1:1

resonance; for the second case, with θ0 = 50◦, the trajec-
tory crosses the upper separatrix and immediately crosses
the lower one, thus escaping from the resonance. The
results from the numerical simulations are characterized
with large oscillations, for this reason we use the MAT-
LAB function movmean with a window length of 200 to
smooth the results and have a better visualization of the
phase space trajectory.

3 Adiabatic invariant theory

Formally [14], a variable I(p, q, λ) is recognized as an
adiabatic invariant if, for every ϵ > 0 there exist a δϵ > 0

so that, for every δ < δϵ and t < 1/δ

|I(p(t), q(t), δt)− I(p0, q0, 0)| < ϵ (5)

which means that for a time variation of almost 1/ϵ, the
adiabatic invariant changes in the order of ϵ.

The adiabatic invariant theory (AIT) was initially intro-
duced in the field of quantum mechanics, to give a more
solid bases to the quantisation rules [11]. Later on, the
theory was found useful also in the field of celestial me-
chanics due to the possibility for many system’s Hamilto-
nian to be transformed to the first fundamental resonance
model, a pendulum-like Hamiltonian [6] [15] defined as

H =
1

2
p2 − b cos q (6)

The Hamiltonian generally has one degree of freedom and
depends on slowly varying parameters. By providing real-
istic assumption on how the parameters change over time,
the AIT can provide precise information regarding the dy-
namical system’s long term evolution. Taking as reference
Figure 1, the separatrices are the red curves that separates
the two circulation zones from the libration one. Dur-
ing the evolution of the dynamical system the separatri-
ces move, expanding the libration region. This area varia-
tion is directly correlated with the probability of capture.
In particular, the first fundamental resonance model was
studied in depth, defining analytically the area variation
of the libration region with respect to the slowly changing
parameter and the probability of capture into resonance.
For this reason, we initially reduce the Hamiltonian in this
model from the complete Hamiltonian model.
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3.1 Hamiltonian model

3.1.1 Natural Hamiltonian

The Hamiltonian of a spacecraft descending towards an
asteroid with irregular gravitational field using low-thrust
includes a gravitational component and a low-thrust one.
The gravitational field previously defined in Eq. 1 can be
expressed as a function of the orbital parameters such as

V =
µ

r
+

∞∑
n=2

n∑
m=0

n∑
p=0

∞∑
q=−∞

µRn
e

an+1
Fnmp(i)

Gnpq(e)Snmpq(ω,M,Ω, θ) (7)

where r is the distance between the spacecraft and the
asteroid, Fnmp(i) is a function of the inclination,Gnpq(e)

is a function of the eccentricity, ω is the argument of pe-
riapsis, M is the mean anomaly, Ω is the longitude of the
ascending node, θ is the sidereal time, n, m, p and q are
all integers and

Snmpq =

{
C cosΨ + S sinΨ if n−m is even

−S cosΨ + C sinΨ if n−m is odd
(8)

where we dropped the indices for C, S and Ψ and Ψnmpq

is the Kaula’s phase angle

Ψnmpq = (n− 2p)ω+ (n− 2p+ q)M +m(Ω− θ) (9)

Resonances arise when the time derivative of Kaula’s
phase angle Ψ̇nmpq is approximately null.

By defining L =
√
µa as the moment conjugated to

the mean longitude ψ, it is possible to define the Hamilto-
nian that describes the motion of the spacecraft around an
asteroid with an irregular gravitational field as

H = − µ2

2L2
+

∞∑
n=2

n∑
m=0

n∑
p=0

∞∑
q=−∞

µ
Rn

e

an+1
Fnmp(i)

Gnpq(e)Snmpq(ω,M,Ω, θ) + θ̇Λ (10)

where θ̇ is the rotation rate of the asteroid and Λ is the
conjugated momentum of θ.

The harmonic contributions that are included in the po-
tential V are those associated with the resonance under
consideration. In general, for a k1:k2 resonance the fol-
lowing constraints must be satisfied

• n, m, p and q must be integer numbers;

• in case the orbit is circular q = 0;

• p has to meet the following relation derived from
Kaula’s phase angle

p =
1

2

(
n− k2

k1
m

)
For an gravity field modelled up to the second degree and
order, the term that contribute to the resonance are the
ones associated with C20 and C22. In particular, the res-
onance is due to the tesseral harmonic C22 and for this
reason, initially, we do not consider the zonal harmonic
C20. In Section 4, we analyze how the results changes
with and without the gravitational term associated to C20.
The Hamiltonian associated to the 1:1 resonance and con-
taining the gravitational term up to the second order is
given as

Hnat = − µ2

2L2
+R2

e

µ

a3(t)
F220G200

C22 cos[2(ψ − θ)] + θ̇Λ (11)

and the inclination and eccentricity functions are defined
as {

F220 = 3
4 (1 + cos i)

2

G200 =
(
1− 5

2e
2 + 13

16e
4
) (12)

Following [2][16], we define the resonance angle σ re-
lated to the 1:1 resonance

σ = ψ − θ (13)

We consider a symplectic transformation which leads to
the new set of canonical variables

σ , L′ = L , θ′ = θ , Λ′ = Λ+ L (14)

and by selecting only the resonant contributions, the new
Hamiltonian is defined as

Hnat = − µ2

2L2
−R2

e

µ

a3(t)
F220G200C22 cos 2σ− θ̇L

(15)

3.1.2 Perturbed Hamiltonian

The work per unit mass done by the low-thrust is ex-
pressed as

HLT = −τLTψ = −|r × aLT |ψ =

= − T

m
rψ sin(−π/2− γ) ∼ T

m
aψ

where aLT is the acceleration vector due to the low-thrust
and always directed opposite to the velocity vector, T is
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the magnitude of the thrust, m is the instantaneous space-
craft’s mass, a is the semi-major axis (SMA), and γ the
flight path angle. Numerically, for the case considered in
this paper in Section 4, the flight path angle does not ex-
ceed 5◦ as in Figure 2.
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Figure 2: Flight path angle (FPA) profile during Dawn’s
descent.

Using the definition of σ

HLT =
T

m
a(σ + θ) ∼ T

m
aσ (16)

in which the term related to the fast angle θ was neglected
to make the Hamiltonian dependent only on σ. So the
complete Hamiltonian is given as

H1:1 = Hnat +HLT = (17)

= − µ2

2L2
−R2

e

µ

a3(t)
F220G200C22

cos 2σ − θ̇L+
T

m

L2

µ
σ

(18)

3.1.3 Slowly changing parameter definition

Starting from the Hamiltonian defined in Eq.15, we focus
on the term related on the gravitational term associated to
the second order and degree H22

H22 = −R2
e

µ4

a3(t)
F220G200C22 cos 2σ (19)

We choose to consider the SMA as slowly varying, so

a(t) = a0 − ȧt = a0(1−
ȧ

a0
t) = (20)

= a0(1− ϵt) = a0(1− λ) (21)

where we define the parameters as ϵ = ȧ
a0

and λ =

ϵt and a0 is the initial value of the SMA. Therefore, we
define H22 as

H22 = −R2
e

µ4

a30(1− λ)3
F220G200C22 cos 2σ (22)

Numerically, the SMA evolves as in Figure 3.
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Figure 3: SMA evolution (blue line) and its approxima-
tion (yellow line). Below are reported the absolute and
relative error between the real and approximated SMA
evolutions.

The yellow line in Figure 3 can be considered a good
approximation on the rate of change of the SMA. In fact,
the maximum relative error between the real and approx-
imated SMA evolution is ∼ 6%. The slope of the linear
approximation, corresponding to the rate of change of the
SMA, is numerically estimated to be

|ȧ| ∼ 10−4km/s (23)

so

ϵ =
|ȧ|
a0

∼ 10−71/s (24)

which satisfies the condition that ϵ ≪ 1. So, defining
q = 2σ and L0 =

√
µa0, the model that we will consider

in Section 4 to estimate the probability of capture is

H1:1 = − µ2

2L2
−R2

e

µ4

L6
0(1− λ)3

F220G200C22 cos q−

ϑ̇L+
1

2

T

m

L2

µ
q (25)

3.2 Hamiltonian model expansion

The second part of the estimation process involves the ex-
pansion of the Hamiltonian around the resonance and its
reduction to the first fundamental resonance problem.
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We search for the equilibria location Leq as solution of

∂H
∂L

= 0 (26)

around which the expansion is performed. The full Hamil-
tonian model in Eq.15 related to the 1:1 resonance is di-
vided in three parts H0, H22 and HLT defined as

H1:1 = H0 +H22 +HLT (27)

The expansion is implemented at two different orders: we
expand H0 up to the second order with respect to Leq ,
while HLT is expanded up to the zero order with respect
to Leq . This procedure leads to the following expressions

H∗
0 =

1

2
H

′′

0 |Leq
(L− Leq)

2 (28)

H∗
LT = HLT |Leq

(29)

where ′ indicates the derivative with respect to L. Near
the resonance H′

0 = 0 and the constant term in H∗
0

does not contribute to the dynamics. The reason for this
division is to avoid the dependency of the Hamiltonian
derivatives with respect to the coordinate q. By defining
p = (L − Leq), the reduced 1:1 resonance Hamiltonian
can be written as

H =
1

2
H

′′

0 p
2 − b(λ) cos q + fq (30)

3.2.1 Fundamental resonance model

The last expression in Eq. 30 is the one related to a forced
pendulum. We want to make the quadratic term of the
Hamiltonian parameter free, so we perform a canonical
transformation

(q, p,H, t) −→ (Q,P,K, τ) (31)

with the condition

pdq −Hdt = α(PdQ−Kdτ) (32)

and the new parameters are defined as
P = c2p

τ = c1t

q = Q+ kπ

(33)

So

pdq −Hdt = P

c2
dQ− H

c1
τ (34)

=
1

c2
(PdQ− c2

c1
Hτ) (35)

Therefore, α = 1/c2 and the new Hamiltonian K can be
derived as

K =
c2
c1

H
′′

0H (36)

=
H′′

0

c1c2

1

2
P 2 − c2

c1
b cos kπ cosQ± c2

c1
fQ (37)

Then, we fix

H′′

0

c1c2
= 1 −→ c2 =

H′′

0

c1
(38)

We define t = τ , so c1 = 1 and the Hamiltonian expres-
sion changes as

K =
1

2
P 2 −H

′′

0 b cos kπ cosQ±H
′′

0 fQ (39)

=
1

2
P 2 − ω2 cosQ± f∗Q (40)

where

ω2 = H
′′

0 b cos kπ , f∗ = ±H
′′

0 f (41)

We choose k = 0, 1 to mantain the value of the frequency
ω positive. If k = 0, we will choose the positive sign and
if k = 1 the sign will be negative.
The equation of motion relative to the Hamiltonian in
Eq.40 is

Q̈+ ω2 sinQ = −f∗ (42)

3.3 Area variation with respect to λ

For the estimation of the probability of capture we refer
to [7]. The equation of motion relative to the pendulum
problem considered is

θ̈ + ω2 sin θ = −δβ (43)

where β > 0, dλ/dt = δ and 0 < δ ≪ 1. Comparing
Eq.42 and Eq.43, we define

β =
f∗

δ
(44)

From the previous section we notice that δ = ϵ.
We define Ares as the libration region’s area, Aup

circ as the
upper circulation region’s area and Alow

circ as the lower cir-
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culation region’s area. These are defined as [17]

d

dλ
Aup

circ =
d

dλ

(
−
∫ π

−π

P+dQ

)
(45)

=
d

dλ
(−2πβ − 8ω) (46)

d

dλ
Ares =

d

dλ

(∫ π

−π

(P+ − P−)dQ

)
(47)

=
d

dλ
(16ω) (48)

d

dλ
Alow

circ =
d

dλ

(∫ π

−π

P−dQ

)
(49)

=
d

dλ
(2πβ − 8ω) (50)

in which we dropped the constant terms. The expression
of P+ and P− can be obtained from K in Eq.40 as

P±(Q,λ) = α± 2ω cos
Q

2
(51)

where α =
∫ t

0
< τ > dt [6].

3.4 Probability of capture

Fixing a region of the phase space, which includes the li-
bration region, the probability of capture into resonance
is directly related to the growth of the separatrices’ size.
From Liouville’s Theorem, we deduce the expression of
the probability of capture from the number of trajectories
that cross the separatrix and are captured inside the libra-
tion region Ares as

Pr = −dAres/dλ

dA0/dλ
(52)

whereA0 is the area from which the trajectory crosses the
separatrix. So the explicit expression for the probability
of capture for the first fundamental resonance model, for
dω/dλ > 0, is

Pr =
8dω
dλ

4dω
dλ + πβ

(53)

for dω/dλ < πβ/4; while if dω/dλ ≥ πβ/4 the prob-
ability of capture Pr = 1. Finally, for dω/dλ ≤ 0 the
probability of capture Pr = 0.

4 Application

In this section we apply the AIT to estimate Dawn’s prob-
ability of capture into resonance during its descent from
HAMO to LAMO. As previously discussed in Section
2, We estimated numerically the probability to be 8.6%

considering the initial conditions in Table 1. Considering
Eq.25 and defining q = 2σ, for a polar and circular orbit
the Hamiltonian reduces to

H1:1 = − µ2

2L2
− 3

4
R2

e

µ4

L6
0(1− λ)3

C22 cos q

− θ̇L+
1

2

T

m

L2

µ
q (54)

The complete Hamiltonian is divided in three terms as fol-
lows

H0 = − µ2

2L2
− ϑ̇L (55)

H22 = −3

4
R2

e

µ4

L6
0(1− λ)3

C22 cos q (56)

HLT =
1

2

T

m

L2

µ
q (57)

and we expand the H0 up to the second order, keeping
only the quadratic term, and we expand HLT to the order
zero, thus considering only the constant term

H∗
0 = −3

2

µ2

L4
eq

, H∗
LT =

1

2

T

m

L2
eq

µ
q (58)

So

H
′′

0 |Leq
= −3

µ2

L4
eq

(59)

b(λ) =
3

4
R2

e

µ4

L6
0(1− λ)3

C22 cos q (60)

f =
1

2

T

m

L2
eq

µ
(61)

We define the frequency and forcing term of the first fun-
damental resonance model considering k = 1, so that
ω > 0

ω2 = −H
′′

0 |Leq
b(λ) =

9C22µ
6R2

e

4L6
0L

4
eq(1− λ)3

(62)

f∗ = −H
′′

0 |Leq
f =

3

2

T

m

µ

L2
eq

(63)

Finally

β =
f∗

ϵ
=

3

2

T

m

µ

L2
eq

a0
|ȧ|

(64)

The derivative of the frequency with respect to λ in
Eq.53 has to be evaluated at the time epoch in which the
system crosses the separatrix. So, we numerically esti-
mate the moment in which Dawn enters into resonance
with Vesta. With the initial conditions defined in Table 1,
the interval of time in which Dawn crosses the separatrix
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is 25.3 days and 27.4 days. Considering the minimum,
mean and maximum values of the interval and using Eq.53
we estimate the probability of capture into resonance in
Table 2.

Table 2: Estimation of the probability of capture into res-
onance of Dawn around Vesta.

Resonance crossing Probability Relative error

t∗min = 25.3 days 7.5% 12.3%
t∗mean = 26.2 days 7.68% 10.7%
t∗max = 27.4 days 7.93% 7.8%

The table shows that considering only the tesseral har-
monic from the spherical harmonic expansion the relative
error between numerical (8.6%) and analytical estimates
is about 8% − 12%. We refine the Hamiltonian model
including also the Hamiltonian term relative to the zonal
harmonic contribution J2 in the circular polar case

H20 = −1
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R2

e

µ4
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In a similar way, we obtain the resonance capture proba-
bility values in Table 3.

Table 3: Estimation of the probability of capture into res-
onance of Dawn around Vesta including zonal harmonic
J2.

Resonance crossing Probability Relative error

t∗min = 25.3 days 7.78% 9.5%
t∗mean = 26.2 days 7.98% 7.2%
t∗max = 27.4 days 8.24% 4.1%

With the complete model the analytical estimates are
closer to the numerical results. Specifically, the rela-
tive error decreases to about 4% − 9% between the two
methodologies. Numerous approximations have been
made in the estimation process that can justify the error
that affects the analytical results: the Hamiltonian term
relative to the low-thrust can be improved, the approxi-
mation of the SMA evolution is characterized by a 6% er-
ror and the Hamiltonian expansions around the resonance
introduced errors due to truncations.

5 Conclusion

In this paper we present a new approach for estimating the
probability of capture into resonance. The methodology
is based on the adiabatic invariant theory, with which it
is possible to estimate the probability of capture into res-
onance by analyzing the energy change of the dynamical
system as it crosses the resonance. The one degree of free-
dom Hamiltonian model is composed by the natural part
and a forced part related to the low-thrust. The estima-
tion process requires to identify a parameter that slowly
changes with time and the semi-major axis was consid-
ered as a good candidate for that role. We assumed a lin-
ear change in the semi-major axis evolution and compared
it with the numerical simulation. We computed the area
change of the resonance region and estimated the proba-
bility of capture into 1:1 resonance. The results show that
by using this one degree of freedom Hamiltonian model
we were able to estimate the probability of capture into
1:1 resonance for the nominal case of circular and polar
orbit. The relative error between the numerical and ana-
lytical estimation is about 4%. In the paper, this method-
ology shows its potential to be used in astrodynamics.
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