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Asymmetric-Flow Field Flow Fraction (AF4) is a rapidly growing analytical
technique for the separation and in-line analysis of RNA-loaded lipid nanoparticles
(RNA-LNPs). This high resolution, robust technique will facilitate the clinical
translation of new RNA-LNP formulations by evaluating nanoparticle critical quality
attributes (CQAs) and enhance the knowledge between RNA-LNP design,
manufacture, and associated physical chemical properties [1]. The use of high-
resolution analytical techniques can bridge existing knowledge gaps and accelerate
the successful clinical translation of RNA-LNP therapies.

PolyA DOTAP-LNP elution profile was modelled using NovaAnalysis software using the
AF4-FI channel with the following parameters: amphiphilic regenerated cellulose 10 kDa
membrane, 350 µm spacer, 1 x PBS (pH 7.4) eluent, detector flow 0.5 mL/min, injection
flow 0.2 mL/min, 2 min delay time, linear (Fig.4a) and power 0.2, (Fig. 4b) crossflow decay
profiles, and 0.05 mL/min pump rise for 5 minutes.

Sample DLS Size (nm) DLS PDI ZP (mV) % EE % MB
Specification 60-80 < 0.2 < + 10 > 95 > 70
PolyA DOTAP-LNP 61.5 ± 2.5 0.16 ± 0.004 + 6.2 ± 0.5 98.8 ± 0.4 76.6 ± 4.7

Table 1 – PolyA DOTAP-LNP Critical Quality Attribute specification and evaluation, 
(n=3 ± SD).

The aim of this work was to develop a method for the characterization of RNA-LNPs
using Frit Inlet (FI) AF4-Multi angle light scattering (MALS)-UV to determine LNP
particle size distribution.

Fig. 1 – AF4 The working principle of FFF. Note the height scale is exaggerated as all particles move only
microns away from the membrane covered porous bottom plate. Remade from [1] using BioRender.
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• Initial AF4 method develop for PolyA DOTAP-LNPs.
• Additional method optimization required to understand critical parameters for

FFF analysis and its relevance to other RNA-LNP formulations (SM102, MC3).
• Data processing pipeline to probe particle geometry (MALS/DLS) and colloidal

stability.
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Fig. 3 –PolyA DOTAP-LNPs particle size distribution as 
measured by NTA (n=3, ± SD).

RNA-LNPs were prepared via microfluidics by mixing
DOTAP:CHOL:DSPC:DMG-PEG2000 at a mol% ratio
of 50:38.5:10:1.5. PolyA DOTAP-LNPs were dialysed
against PBS pH 7.4.

Critical quality attributes (CQAs) were measured
using dynamic light scattering (DLS), nanoparticle
tracking analysis (NTA) and RNA Quantification
RiboGreen® Assay for PolyA encapsulation efficiency
(%EE) and mass balance (%MB) prior to AF4 method
development.

Fig. 3 denotes a PolyA DOTAP-LNP
size distribution using nanoparticle
tracking analysis. The averaged LNP
size was 76.6 ± 6.3 nm, a mode of
67.0 ± 4.9 nm, D10 distribution of
57.6 ± 5.9 nm, D50 of 72.6 ± 6.3 nm,
D90 of 100.1 ± 6.5 nm with a span of
0.59.

PolyA DOTAP-LNP concentration was increased to 0.5 mg/mL and injected using the
same method from fig. 6a. Sample signal intensity increased 3-fold with corresponding
elution profiles observed in fig. 7a. Mean radius distribution for injections 5, 6 and 7
plotted in fig. 7b. The elution profiles are like Mildner et al.[1] study. Our results
produced a mean radius of gyration around 20 nm.

From introducing a longer sample hold and decreasing the initial cross-flow decay to
0.75 mL/min, a narrower, more intense elution profile was noted with a PolyA
DOTAP-LNP retention around 17 minutes. With a 3.5x higher signal intensity.

PolyA DOTAP-LNP sample was separated based on the method in fig. 5b as a power
decay method proved to enhance sample recovery from the membrane compared
with linear decay methods. Our sample was injected at 0.25 mg/mL lipid final
concentration. Fig. 5b denotes the elution profile of our PolyA DOTAP-LNP sample.

Fig. 4a – Linear cross-flow decay profile (0.2 decay)
simulation from 1.2 mL/min to 0 mL/min crossflow for 40
minutes with predicted elution profiles for PolyA DOTAP-
LNPs and aggregates.

Fig. 4b – Exponential cross-flow decay profile (0.2 decay)
modelled from 1.2 mL/min to 0 mL/min crossflow for 60
minutes with predicted elution profiles of PolyA DOTAP-
LNPs and aggregates.

Fig. 5a – Exponential cross-flow decay profile (0.2 decay)
modelled from 1.2 mL/min to 0 mL/min crossflow for
60 minutes with predicted elution profiles of PolyA
DOTAP-LNPs and aggregates.

Fig. 5b – Elution profile of 0.25 mg/mL PolyA DOTAP-LNP
sample using the method in fig. 5a. The results show a
broad, shallow peak plotting MALS 90° detector signal
against elution time. Our LNP sample has a retention time
around 30 minutes.

Fig. 6a – Exponential cross-flow decay profile (0.2 decay)
modelled from 0.75 mL/min to 0 mL/min crossflow for
60 minutes with predicted elution profiles of PolyA DOTAP-
LNPs and aggregates.

Fig. 6b – Elution profile of 0.25 mg/mL PolyA DOTAP-LNP
sample using the method in fig. 6a. The results show narrower,
intense peak plotting MALS 90° detector signal against elution
time. The corresponding retention time is ~17 minutes.

Fig. 7a – Elution profile of 0.50 mg/mL PolyA
DOTAP-LNP sample using the method in fig. 6a.
The results show narrower, intense peak plotting
MALS 90° detector signal against elution time.
LNP samples have a retention time around 13
minutes.

Fig. 7b – i) Processed results of MALS-90° intensity and radius of
gyration (Rg) of injections 5-7, plotted against elution time. ii) Data
shows MALS-90° peak maxima at 13-minute retention time
corresponding to an approximately 20 nm particle radius of gyration.Conclusions & Ongoing Work
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Fig. 2 – Flow diagram of RNA-LNP manufacture, purification and characterization. Created in BioRender.


