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Abstract. In the simplest form of event structure, a prime event structure, an event is
associated with a unique causal history, its prime cause. However, it is quite common for
an event to have disjunctive causes in that it can be enabled by any one of multiple sets
of causes. Sometimes the sets of causes may be mutually exclusive, inconsistent one with
another, and sometimes not, in which case they coexist consistently and constitute parallel
causes of the event. The established model of general event structures can model parallel
causes. On occasion however such a model abstracts too far away from the precise causal
histories of events to be directly useful. For example, sometimes one needs to associate
probabilities with different, possibly coexisting, causal histories of a common event. Ideally,
the causal histories of a general event structure would correspond to the configurations
of its causal unfolding to a prime event structure; and the causal unfolding would arise
as a right adjoint to the embedding of prime in general event structures. But there is no
such adjunction. However, a slight extension of prime event structures remedies this defect
and provides a causal unfolding as a universal construction. Prime event structures are
extended with an equivalence relation in order to dissociate the two roles, that of an event
and its enabling; in effect, prime causes are labelled by a disjunctive event, an equivalence
class of its prime causes. With this enrichment a suitable causal unfolding appears as
a pseudo right adjoint. The adjunction relies critically on the central and subtle notion
of extremal causal realisation as an embodiment of causal history. Finally, we explore
subcategories which support parallel causes as well the key operations needed in developing
probabilistic distributed strategies with parallel causes.

1. Introduction

Work on probabilistic distributed strategies based on event structures brought us face to
face with a limitation in existing models of concurrent computation, and in particular with
the theory of event structures as it had been developed. In order to adequately express
certain intuitively natural, optimal probabilistic strategies, it was necessary to simultaneously
support: probability on event structures with opponent moves, itself rather subtle; parallel
causes, in which an event may be enabled in several distinct but compatible ways; and a
hiding operation crucial in the composition of strategies. The difficulties did not show up in
the less refined development of nondeterministic strategies; there the simplest form of event
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structure, prime event structures, sufficed. The “obvious” remedy, to base strategies on more
general event structures, which do support parallel causes, failed to support probability and
hiding adequately.1 The problems and a solution are documented in the article [dVW17].

That work uncovered a central construction, which we here call the causal unfolding
of a model with parallel causes. It is based on the notion of extremal causal realisation
and attendant prime extremal realisation which plays a role analogous to that of complete
prime in distributive orders. Both concepts deserve to be better known and are expanded
on comprehensively with full proofs here. As will shortly be explained more fully, intuitively,
a prime extremal realisation is a finite partial order expressing a minimal causal history for
an event to occur, even in the presence of several parallel causes for the event. Extremal
realisations provide us with a way to unfold a model supporting parallel causes (general
event structures—Section 2.2, or equivalence families—Section 3) into a structure describing
all its causal histories—its causal unfolding. As is to be hoped, the unfolding will be a
form of right adjoint giving the causal unfolding and extremal realisations a categorical
significance.

To give an idea of prime extremal realisations of events we give a short, necessarily
informal, preview of two examples from the paper. The simplest concerns a general event
structure comprising three events a, b and d where d can occur once a or b have occurred
and where all events can occur together. The events a and b constitute parallel causes of
the event d. We can picture the situation in the diagram:

d

OR

a

* 18

b

�fm

Here there are two minimal causal histories associated with the occurrence of the event d,
viz. d after a, and d after b :

d d

and

a

_LR

b

_LR

These will be the prime extremal realisations associated with the occurrence of d. But
this example is deceptively simple. To add a level of difficulty, consider the general event
structure

d

c

AND

_LR

OR

a

E<G

> 9D

b

yWb

�Ze

1In the context of games, deterministic general event structures do support parallel causes and hiding so
strategies with parallel causes such as that of parallel-or, but of course not the underlying nondeterminism
required for probabilistic strategies [CCW17, Win16].
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which portrays an event d enabled through the occurrence of all of the events a, b and c but
where c is enabled by either a or b. This time the two minimal causal histories associated
with the occurrence of the event d, one after c caused by a, and the other after c caused by
b, give rise to the two prime extremal realisations:

d

c

_LR

a

_LR

b

wWa

and

d

c

_LR

a

G=G

b

_LR

There are also more subtle ‘non-injective’ prime extremal realisations in which the same
event of a general event structure occurs in several different ways—see Example 4.11, though
these have been ruled out in our application to strategies with parallel causes [dVW17].

The new adjunction, with its right adjoint the causal unfolding, supplies a missing
link in the landscape of models for concurrency [WN95]. The adjunction connects models
with parallel causes, such as general event structures, to those based on partial orders
of events. It does this through the introduction of a simple, new model which is based
on prime event structures extended with an equivalence relation on their sets of events.
In its most general form the adjunction relates two new models, prime event structures
with an equivalence relation to families of configurations with a similar equivalence. We
explore how the adjunction restricts and simplifies on subcategories, in particular, between
event structures with disjunctive causes (edc’s) and stable families with equivalence. Via the
simplified adjunction we show that the category of edc’s has the constructions pullback,
pseudo pullback and factorisation needed to develop distributed probabilistic strategies with
parallel causes [dVW17]. We point the reader to the figure of the Conclusion; it summarises
the adjunctions relating the models we encounter and develop in the article.

More broadly, often in systems with parallel causes it is necessary to associate probabili-
ties with causal histories, and the causal unfolding provides a suitable structure on which to
do this systematically [dVW17]. Outside probability, there is a similar need for causal un-
foldings, for example, when reversible computing encounters parallel causes [Cri15, CKV15],
and in extracting biochemical pathways, forms of causal history in biochemical systems
where parallel causes are rife [DFF+12].

2. Event structures and their maps

We briefly review two well-established forms of event structure and explain the absence of an
adjunction associated with the embedding of prime into general event structures. It is through
such an adjunction one might otherwise have thought to find a causal unfolding of general
event structures to prime event structures. The absence motivates a new model based on
prime event structures with an equivalence relation. (We refer the reader to [Win80, Win86]
in particular for background and intuitions.)
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2.1. Prime event structures. A prime event structure comprises (E,≤,Con), consisting
of a set E of events which are partially ordered by ≤, the causal dependency relation, and a
non-empty consistency relation Con consisting of finite subsets of E. The relation e′ ≤ e
expresses that event e causally depends on the previous occurrence of event e′. Write [X]
for the ≤-down-closure of a subset of events X. That a finite subset of events is consistent
conveys that its events can occur together by some stage in the evolution of the process.
Together the relations satisfy several axioms:

[e] = {e′ | e′ ≤ e} is finite, for all e ∈ E,
{e} ∈ Con, for all e ∈ E,
X ⊆ Y ∈ Con =⇒ X ∈ Con, and
X ∈ Con & e ≤ e′ ∈ X =⇒ X ∪ {e} ∈ Con.

A configuration is a, possibly infinite, set of events x ⊆ E which is: consistent, X ⊆
x and X is finite implies X ∈ Con ; and down-closed, [x] = x. It is part and parcel of prime
event structures that an event e is associated with a unique causal history [e].

Prime event structures have a long history. They first appeared in describing the patterns
of event occurrences that occurred in the unfolding of a (1-safe) Petri net [NPW81]. As their
configurations, ordered by inclusion, form a Scott domain, prime event structures provided
an early bridge between the semantic theories of Dana Scott and Carl Petri; one early result
being that a confusion-free Petri net unfolded to a prime event structure with configurations
taking the form of a concrete domain, as defined by Kahn and Plotkin. Generally, the
configurations of a countable prime event structure ordered by inclusion coincide with the
dI-domains of Berry—distributed Scott domains which satisfy a finiteness axiom [Win86].
The domains of configuration of a prime event structure had been characterised earlier
in [NPW81] as prime algebraic domains, Scott domains with a subbasis of complete primes.2

2.2. General event structures. A general event structure [Win80, Win86] permits an
event to be caused disjunctively in several ways, possibly coexisting in parallel, as parallel
causes. A general event structure comprises (E,Con,`) where E is a set of events, the
consistency relation Con is a non-empty collection of finite subsets of E, and the enabling
relation ` is a relation in Con× E such that

X ⊆ Y ∈ Con =⇒ X ∈ Con , and
Y ∈ Con & Y ⊇ X & X ` e =⇒ Y ` e .

A configuration is a subset x of E which is: consistent, X ⊆fin x =⇒ X ∈ Con; and secured,
∀e ∈ x∃e1, · · · , en ∈ x. en = e & ∀i ≤ n.{e1, · · · , ei−1} ` ei . We write C∞(E) for the
configurations of E and C(E) for its finite configurations. (For illustrations of small general
event structures see, for instance, Example 2.1 and E0 of Example 4.10. )

An event e being enabled in a configuration has been expressed through the existence of
a securing chain e1, · · · , en, with en = e, within the configuration. The chain represents a
complete enabling of e in the sense that every event in the chain is itself enabled by earlier
members of the chain. Just as mathematical proofs are most usefully viewed not merely as
sequences, so later complete enablings expressed more generally as partial orders —“causal
realisations”—will play a central role.

2A complete prime in an order which supports least upper bounds
⊔

X of compatible subsets X is an
element p such that p v

⊔
X implies p v x for some x ∈ X. In the configurations of a prime event structure

the complete primes are exactly those configurations [e] for an event e.
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A map f : (E,Con,`)→ (E′,Con′,`′) of general event structures is a partial function
f : E ⇀ E′ such that

∀X ∈ Con . fX ∈ Con′ ,
∀X ∈ Con, e1, e2 ∈ X. f(e1) = f(e2) (both defined) =⇒ e1 = e2 , and
∀X ∈ Con, e ∈ E. X ` e & f(e) is defined =⇒ fX `′ f(e) .

Maps compose as partial functions. Write G for the category of general event structures.
W.r.t. a family of sets F , a subset X of F is compatible (in F), if there is y ∈ F such

that x ⊆ y for all x ∈ X; in particular {x, y} is compatible if there is z ∈ F such that
x, y ⊆ z. Say a subset is finitely compatible iff every finite subset is compatible.

We can now characterise those families of configurations arising from a general event
structure [Win86]. A family of configurations comprises a non-empty family F of sets such
that if X ⊆ F is finitely compatible in F then

⋃
X ∈ F ; and if e ∈ x ∈ F there is a securing

chain e1, · · · , en = e in x such that {e1, · · · , ei} ∈ F for all i ≤ n.3 Its events are elements
of the underlying set

⋃
F .

A map between families of configurations from A to B is a partial function f :
⋃
A⇀

⋃
B

between their events such that when x ∈ A then fx ∈ B and any event of fx arises as the
image of a unique event of x, i.e. the following local injectivity is fulfilled:

e1, e2 ∈ x & f(e1) = f(e2) (both defined) =⇒ e1 = e2 .

Maps compose as partial functions. Write Fam for the category of families of configurations.
In Section 7.2, we shall meet the subcategory SFam of stable families of configurations, with
objects A of Fam that satisfy

∀x, y, z ∈ A. x, y ⊆ z ⇒ x ∩ y ∈ A ,

which plays an important role in constructions on prime event structures [Win82, Win86].
Characterisations of the orders obtained from the configurations of a general event

structure can be found in [Win80].4

2.3. A coreflection and non-coreflection. There is a forgetful functor G → Fam taking
a general event structure to its family of configurations. It has a left adjoint, which constructs
a canonical general event structure from a family: given A, a family of configurations with
underlying events A, construct a general event structure (A,Con,`) with X ∈ Con iff
X ⊆fin y, for some y ∈ A; and with X ` a iff a ∈ A, X ∈ Con and a ∈ y ⊆ X ∪ {a}, for
some y ∈ A. The above yields a coreflection5

Fam > 33 Grr

3The latter condition is equivalent to: (i) if e ∈ x ∈ F there is a finite x0 ∈ F s.t. e ∈ x0 ∈ F and (ii)
(coincident-freeness) for distinct e, e′ ∈ x, there is y ∈ F with y ⊆ x s.t. e ∈ y ⇐⇒ e′ 6∈ y.

4Complete irreducibles are the customary generalisation of complete primes to nondistributive orders such
as those of configurations of general event structures ordered by inclusion [Win80]. A complete irreducible in
an order which supports least upper bounds

⊔
X of compatible subsets X is an element r such that r =

⊔
X

implies r = x for some x ∈ X. In the configurations of a general event structure the complete irreducibles
are exactly those minimal configurations which contain an event e. A forewarning: only in very special
circumstances will prime extremal realisations—the generalisation of complete prime of this paper—coincide
with complete irreducibles—see Example 4.10.

5A coreflection is an adjunction where the left adjoint is full and faithful, or equivalently the unit is iso.
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of families of configurations in general event structures. It cuts down to an equivalence
between families of configurations and replete general event structures. A general event
structure (E,Con,`) is replete iff

∀e ∈ E ∃X ∈ Con. X ` e ,
∀X ∈ Con ∃x ∈ C(E). X ⊆ x and
X ` e =⇒ ∃x ∈ C(E). e ∈ x & x ⊆ X ∪ {e} .

A map of prime event structures is a map of their families of configurations. Write E for
the category of prime event structures. (A map in E need not preserve causal dependency;
when it does and is total it is called rigid.)

There is an obvious “inclusion” functor E → Fam fully and faithfully embedding the
category of prime event structures in the category of families of configurations and so in
general event structures. We might expect the functor E → Fam to be the left adjoint of a
coreflection

E > 22 Fam
?

ss > 33 G ,rr

so yielding a composite right adjoint G → E which unfolds a general event structure to a
prime event structure [Win86, WN95]. However under reasonable assumptions this cannot
exist, as the following example indicates.

Example 2.1. Consider a general event structure comprising three events a, b and d with
all subsets consistent and minimal enablings ∅ ` a, b and {a} ` d and {b} ` d. Imagine
concurrent treatments a and b of two doctors which sadly lead to the death d of the patient.

d

OR

a

* 18

b

�fm

As its unfolding it is hard to avoid a prime event structure with events and causal dependency
a < da and b < db—the event da representing “death by a” and the event db “death by
b”—with the counit of the adjunction collapsing da and db to the common event d. (If we are
to apportion blame to the doctors we shall need the probabilities of da and db given a and
b [Pea13].) In order for the counit to be a map we are forced to make {da, db} inconsistent.
This is one issue: why should death by one doctor’s treatment be in conflict with death
by the other’s—they could be jointly responsible? But even more damningly the tentative
counit fails the universal property required of it! Consider another prime event structure
with three events comprising a < d and b < d (“death due to both doctors’ treatments”).
The obvious map to the family of configurations of the general event structure—the identity
on events—fails to factor uniquely through the putative counit: d can be sent to either da or
db; the event “death by both doctors” can be sent to either “death by a” or “death by b.”
This raises the second issue: if we are to obtain the required universal property we have to
regard these two maps as essentially the same.

The two issues raised in the example suggest a common solution: to enrich prime event
structures with equivalence relations. This will allow a broader class of maps, settling the
first issue, and introduce an equivalence on maps, settling the second. The causal unfolding
of the “doctors example” will be very simple and comprise the prime event structure a < da
and b < db with da and db equivalent events; with all events consistent. In general the
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construction of the unfolding is surprisingly involved; causal histories can be much more
intricate than in the simple example.

3. Events with an equivalence, categories E≡ and Fam≡
We build causal unfoldings in a new model, based on the obvious extension to events with
an equivalence relation. A (prime) event structure with equivalence (an ese) is a structure

(P,≤,Con,≡)

where (P,≤,Con) satisfies the axioms of a prime event structure and ≡ is an equivalence
relation on P . The intention is that the events of P represent prime causes while the
≡-equivalence classes of P represent disjunctive events: p in P is a prime cause of the event
{p}≡. Notice there may be several prime causes of the same event and that these may be
parallel causes in the sense that they are consistent with each other and causally independent.
For the moment we do not impose any extra axioms.6

The extension by an equivalence relation on events is accompanied by an extension
to families of configurations. An equivalence-family (ef) is a family of configurations A
with an equivalence relation ≡A on its underlying set A =def

⋃
A (with no further axioms).

Equivalence-families are the most general model we shall consider; they support parallel
causes and, later, a causal unfolding.

Let (A,≡A) and (B,≡B) be ef’s, with respective underlying sets A and B. A map
f : (A,≡A)→ (B,≡B) is a partial function f : A ⇀ B which preserves ≡, if a1 ≡A a2 then
either both f(a1) and f(a2) are undefined or both defined with f(a1) ≡B f(a2), such that

x ∈ A =⇒ fx ∈ B & ∀a1, a2 ∈ x. f(a1) ≡B f(a2) =⇒ a1 ≡A a2 .

Composition is composition of partial functions. We regard two maps

f1, f2 : (A,≡A)→ (B,≡B)

as equivalent, and write f1 ≡ f2, iff they are equidefined and yield equivalent results, i.e. if
f1(a) is defined then so is f2(a) and f1(a) ≡B f2(a), and if f2(a) is defined then so is f1(a)
and f1(a) ≡B f2(a). Composition respects ≡. This yields a category of equivalence families
Fam≡; it is enriched in the category of sets with equivalence relations (also called setoids).7

Clearly from an ese (P,≡P ) we obtain an ef (C∞(P ),≡P ) and we take a map of ese’s to
be a map between their associated ef’s. Write E≡ for the category of ese’s; it too is enriched
in the category of sets with equivalence relations. When the equivalence relations ≡ of
ese’s are the identity we essentially have prime event structures and their maps. There is
clearly a full-and-faithful embedding

E≡ → Fam≡ ,
which preserves and reflects the equivalence on maps. One virtue of ese’s is that they support
a hiding operation, associated with a factorisation system [dVW17].

We sometimes use an alternative description of their maps:

Proposition 3.1. A map of ese’s from P to Q is a partial function f : P ⇀ Q which
preserves ≡ such that

6Additional axioms will appear later motivated by results—see Section 7.1. For example, although an ese
in general may have two equivalent events which are also causally related, but this cannot hold in unfoldings
based on extremal realisations.

7Appendix A provides background on categories enriched in equivalence relations.
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(i) for all X ∈ ConP the direct image fX ∈ ConQ and
∀p1, p2 ∈ X. f(p1) ≡Q f(p2) =⇒ p1 ≡P p2 , and

(ii) whenever q ≤Q f(p) there is p′ ≤P p such that f(p′) = q .

While an ese determines an ef, the converse, how to construct the causal unfolding of
an ef to an ese, is much less clear. To do so we follow up on the idea of Section 2.2 of basing
minimal complete enablings on partial orders. A minimal complete enabling will correspond
to a prime extremal realisation. Realisations and extremal realisations are our next topic.

4. Causal histories as extremal realisations

Extremal causal realisations formalise the notion of causal history in models with parallel
causes, viz. general event structures and the most general model of equivalence-families.
They will be the central tool in constructing the causal unfoldings of such models.

4.1. Causal realisations. Let A be a family of configurations with underlying set A. A
(causal) realisation of A comprises a partial order (R,≤), its carrier, such that the set
{e′ ∈ R | e′ ≤ e} is finite for all events e ∈ R, together with a function ρ : R→ A for which
the image ρx ∈ A when x is a down-closed subset of R. We say a realisation is injective
when it is injective as a function.

A map between realisations (R,≤), ρ and (R′,≤′), ρ′ is a partial surjective function
f : R ⇀ R′ which preserves down-closed subsets and satisfies ρ(e) = ρ′(f(e)) for all e ∈ R
where f(e) is defined. It is convenient to write such a map as ρ �f ρ′. Occasionally we shall
write ρ � ρ′, or the converse ρ′ � ρ, to mean there is a map of realisations from ρ to ρ′.

A map of realisations ρ �f ρ′ factors into a “projection” followed by a total map

ρ �f11 ρ0 �f22 ρ′ ,

where ρ0 stands for the realisation (R0,≤0), ρ0 where R0 = {e ∈ R | f(e) is defined} is the
domain of definition of f ; ≤0 is the restriction of ≤; f1 is the inverse relation to the inclusion
R0 ⊆ R; and f2 : R0 → R′ is the total part of function f . We are using �1 and �2 to signify
the two kinds of maps. The �1-maps are reverse inclusions. The �2-maps are exactly the

total maps of realisations. Total maps ρ �f2 ρ′ are precisely those functions f from the
carrier of ρ to the carrier of ρ′ which preserve down-closed subsets and satisfy ρ = ρ′f .

4.2. Extremal realisations. Let A be a configuration family with underlying set A. We

shall say a realisation ρ is extremal when ρ �f2 ρ′ implies f is an isomorphism, for any
realisation ρ′; it is called prime extremal when it in addition has a top element, i.e. its
carrier contains an element which dominates all other elements in the carrier. Intuitively,
an extremal realisation is a most economic causal history associated with its image, a
configuration of A —it need not be unique; it is extremal in being a realisation with minimal
causal dependencies.

Any realisation in A can be coarsened to an extremal realisation.

Lemma 4.1. For any realisation ρ there is an extremal realisation ρ′ with ρ �f2 ρ′.
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Proof. The case when (R,≤), ρ is finite is straightforward. Assume there exists ρ′ such that

ρ �f2 ρ′. The cardinality of {(a, b) | a ≤ b} for ρ is necessarily greater or equal to that of
{(a, b) | a ≤′ b} for ρ′; it is equal if and only if ρ and ρ′ are isomorphic. So if we consider
a sequence of non-isomorphic ρ �2 ρ1 �2 . . . , this sequence is necessarily finite, of size at
most the cardinality of {(a, b) | a ≤ b}. This ensures the existence of an extremal realisation
in the finite case. The infinite case is more subtle, and relies on colimits and Zorn’s lemma.

The category of realisations with total maps has colimits of total-order diagrams. A
diagram d from a total order (I,≤) to realisations, comprises a collection of total maps of
realisations di,j : d(i) → d(j) when i ≤ j s.t. di,i is always the identity map and if i ≤ j
and j ≤ k then di,k = dj,k ◦ di,j . We suppose each realisation d(i) has carrier (Ri,≤i) with
d(i) : Ri → A. We construct the colimit realisation of the diagram as follows.

The elements of the colimit realisation consist of equivalence classes of elements of the
disjoint union R =def

⊎
i∈I Ri under the equivalence

(i, ei) ∼ (j, ej) ⇐⇒ ∃k ∈ I. i ≤ k & j ≤ k & di,k(ei) = dj,k(ej)

—we shall write {ei}∼ for the equivalence class of (i, ei). Consequently we may define a
function ρR : R→ A by taking ρR({ei}∼) = ρi(ei). Because every di,j is a surjective function,
every equivalence class in R has a representative in Ri for every i ∈ I. Moreover, for any
e ∈ R there is k ∈ I s.t.

{e′ ∈ R | e′ ≤R e} = {{e′k}∼ | e
′
k ≤k ek} ,

where e = {ek}∼, so is finite—by the argument in the first paragraph of this proof. It follows
that ρR is a realisation. The maps fi : ρi �2 ρR, where i ∈ I, given by fi(ei) = {ei}∼ form a
colimiting cocone.

Suppose ρ is a realisation. Consider all total-order diagrams d from a total order (I,≤)
to realisations starting from ρ with di,j not an isomorphism if i < j. Within them one such
diagram, d′ from (I ′,≤′), extends another, d from (I,≤), if the total order (I,≤) is an initial
segment of the total order (I ′,≤′) with d a restriction of d′. Amongst them, by Zorn’s lemma,
there is a maximal diagram w.r.t. extension. From the maximality of the diagram its colimit
is necessarily extremal. In more detail, by Zorn’s lemma, construct a colimiting cocone
fi : d(i) �2 ρR, i ∈ I —using the same notation as above. By maximality of the diagram
some fk must be an isomorphism; otherwise we could extend the diagram by adding a top
element to the total order and sending it to ρR. If j should satisfy k < j then fj ◦ dk,j = fk
so f−1

k ◦ fj ◦ dk,j = idRk
. It would follow that dk,j is injective, as well as surjective, it being

a total map of realisations, and consequently that dk,j is an isomorphism—a contradiction.
Hence k is the maximum element in (I,≤). If the colimit were not extremal we could again
adjoin a new top element above k thus extending the diagram—a contradiction.

For example, as a corollary, a countable configuration of a family of configurations
always has an injective extremal realisation. By serialising the countable configuration,
a1 ≤ a2 ≤ · · · ≤ an ≤ · · · , where {a1, · · · , an} ∈ A for all n, we obtain an injective realisation

ρ. By Lemma 4.1 we can coarsen ρ to an extremal realisation ρ′ with ρ �f2 ρ′. As ρ = ρ′f the
surjective function f is also injective, so a bijection, ensuring that the extremal realisation
ρ′ is injective.

The following rather technical lemma and corollary are crucial.

Lemma 4.2. Assume (R,≤), ρ, (R0,≤0), ρ0 and (R1,≤1), ρ1 are realisations.
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(i) Suppose f = ρ �f11 ρ0 �f22 ρ1. Then there are maps so that f = ρ �g22 ρ′ �g11 ρ1:

ρ

f1

��

g2 // ρ′

g1

��
ρ0

f2 // ρ1

(ii) Suppose ρ �f11 ρ0 where R0 is not a down-closed subset of R. Then there are maps so
that f1 = ρ �g22 ρ′ �g11 ρ0 with g2 not an isomorphism:

ρ

f1

��

g2 // ρ′

g1
��

ρ0

Proof. (i) Construct the realisation (R′,≤′), ρ′ as follows. Define

R′ = (R \R0) ∪R1

where w.l.o.g. we assume the sets R \R0 and R1 are disjoint. Define g2 : R→ R′ to act as
the identity on elements of R \R0 and as f2 on elements of R0.

When b ∈ R \R0, define

a ≤′ b iff ∃a0 ∈ R. a0 ≤ b & g2(a0) = a .

When b ∈ R1, define

a ≤′ b iff a ∈ R1 & a ≤1 b .

To see ≤′ is a partial order observe that reflexivity and antisymmetry follow directly from
the corresponding properties of ≤ and ≤1. Transitivity requires an argument by cases. For
example, in the most involved case, where

c ≤′ a with a ∈ R1 and a ≤′ b with b ∈ R \R0

we obtain

c ≤1 a and a0 ≤ b
for some a0 ∈ R0 with f2(a0) = a. As f2 is surjective and preserves down-closed subsets,

c0 ≤0 a0 and a0 ≤ b
for some c0 ∈ R0 with f2(c0) = c. Consequently, c0 ≤ b with g2(c0) = c, making c ≤′ b, as
required for transitivity.

Define ρ′ to act as ρ on elements of R \R0 and as ρ1 on elements of R1. Then ρ = ρ′g2

directly. We check ρ′ preserves down-closed subsets, so is a realisation. Let b ∈ R′. We
use, for instance, [b]′ to stand for the down-closure of b according to ≤′. If b ∈ R1 then
ρ′[b]′ = ρ1[b]1 ∈ A. If b ∈ R \R0 then ρ′[b]′ = ρg2[b] is the image under ρ of the down-closed
subset g2[b], so in A. Because f2 preserves down-closed subsets so does g2. We already have
ρ = ρ′g2, making g2 a map of realisations ρ �g22 ρ′. Define g1 : R′ ⇀ R1 to be the reverse of
the inclusion R1 ⊆ R′. Because ρ1 is the restriction of ρ′ to R1, g1 is a map of realisations
ρ′ �g11 ρ1. By construction f = g1g2.
(ii) This follows from the construction of (R′ ≤′), ρ′ used in (i) but in the special case where
f2 is the identity map (with R0 = R1). Then R′ = R but ≤′ 6=≤ as there is e ∈ R0 with
[e]0 ( [e] ensuring that [e]′ = [e]0 6= [e].
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Corollary 4.3. If ρ is extremal and ρ �f ρ′, then ρ′ is extremal and there is ρ0 s.t. f : ρ �1

ρ0
∼= ρ′. Moreover, the carrier R0 of ρ0 is a down-closed subset of the carrier R of ρ, with

order the restriction of that on R.

Proof. Directly from Lemma 4.2. Assume ρ is extremal and ρ �f ρ′. We can factor f into

ρ �f11 ρ0 �f22 ρ′. From (i), if ρ0 were not extremal nor would ρ be—a contradiction; hence
f2 is an isomorphism. From (ii), the carrier R0 of ρ0 has to be a down-closed subset of the
carrier R of ρ, as otherwise we would contradict the extremality of ρ.

It follows that if ρ is extremal and ρ �f ρ′ then ρ′ is extremal and the inverse relation
g =def f

−1 is an injective function preserving and reflecting down-closed subsets, i.e. g[r′] =
[g(r′)] for all r′ ∈ R′. In other words:

Corollary 4.4. If ρ is extremal and ρ �f ρ′, then ρ′ is extremal and the inverse g =def f
−1

is a rigid embedding from the carrier of ρ′ to the carrier of ρ such that ρ′ = ρg.8

Lemma 4.5. Let (R,≤), ρ be an extremal realisation. Then

(i) if r′ ≤ r and ρ(r) = ρ(r′) then r = r′;
(ii) if [r) = [r′) and ρ(r) = ρ(r′) then r = r′. Here [r) =def [r] \ {r}.
Proof. (i) Suppose r′ ≤ r and ρ(r) = ρ(r′). By Corollary 4.4, we may project to [r] to
obtain an extremal realisation ρ0 : [r]→ A. Suppose r and r′ were unequal. We can define
a realisation as the restriction of ρ0 to [r). The function from [r] to [r) taking r to r′ and
otherwise acting as the identity function is a map of realisations from the realisation ρ0 and
clearly not an isomorphism, showing ρ0 to be non-extremal—a contradiction. Hence r = r′,
as required.
(ii) Suppose [r) = [r′) and ρ(r) = ρ(r′). Projecting to [{r, r′}] we obtain an extremal
realisation. If r and r′ were unequal there would be a non-isomorphism map to the
realisation obtained by projecting to [r], viz. the map from [{r, r′}] to [r] sending r′ to r and
fixing all other elements.

In fact, by modifying condition (i) in the lemma above a little we can obtain a char-
acterisation of extremal realisations—though not strictly necessary for the rest of of the
paper:

Lemma 4.6. Let (R,≤), ρ be a realisation. Then ρ is extremal iff

(i) if X ⊆ [r), with X down-closed and r ∈ R, and ρ(X ∪ {r}) ∈ A then X = [r); and
(ii) if [r) = [r′) and ρ(r) = ρ(r′) then r = r′.

Proof. “Only if”: Assume ρ is extremal. We have already established (ii) in Lemma 4.5. To
show (i), suppose X is down-closed and X ⊆ [r) in R with ρ(X ∪{r}) ∈ A. By Corollary 4.4,
we may project to [r] to obtain an extremal realisation ρ0 : [r]→ A. Modify the restricted
order [r] to one in which r′ ≤ r iff r′ ∈ X ∪ {r}, and is otherwise unchanged. The same
underlying function ρ0 remains a realisation, call it ρ′0, on the modified order. The identity
function gives us a map f : ρ0 �2 ρ′0 which is an isomorphism between realisations iff
X = [r).

“If”: Assume (i) and (ii). Suppose f : ρ �2 ρ
′, where R′, ρ′ is a realisation. We show f is

injective and order-preserving. As f is presumed to be surjective and to preserve down-closed
subsets we can then conclude it is an isomorphism.

8Rigid embeddings first appeared in work of Gilles Kahn and Gordon Plotkin; they are the embeddings
appropriate to stable domain theory—see e.g. Section 1.6 of [Win86].
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To see f is injective suppose the contrary that f(r1) = f(r2) for r1 6= r2. W.l.o.g. we
may suppose r1 and r2 are minimal in the sense that

r′1 6= r′2 & r′1 ≤ r1 & r′2 ≤ r2 & f(r′1) = f(r′2) =⇒ r′1 = r1 & r′2 = r2 .

Define r′ =def f(r1) = f(r2). Then

[r′] ⊆ f [r1] & [r′] ⊆ f [r2] .

Furthermore, as only r′ can be the image of r1 and r2 under the function f ,

[r′) ⊆ f [r1) & [r′) ⊆ f [r2) .

It follows that

[r′) ⊆ f [r1) ∩ f [r2) = f([r1) ∩ [r2))

where the equality is a consequence of the minimality of r1, r2. Taking X =def [r1) ∩ [r2) we
have (fX) ∪ {r′} is down-closed in R′. Therefore

ρ(X ∪ {r1}) = ρ′f(X ∪ {r1}) = ρ′(fX ∪ {r′}) ∈ A .
By condition (i), X = [r1). Similarly, X = [r2), so [r1) = [r2). Obviously ρ(r1) = ρ′f(r1) =
ρ′f(r2) = ρ(r2), so we obtain r1 = r2 by (ii) —a contradiction, so f is injective.

We now check that f preserves the order. Let r ∈ R. Define

X =def [{r1 | r1 ≤ r & f(r1) < f(r)}] ,
where the square brackets signify down-closure in R. Then X is down-closed in R by
definition and X ⊆ [r). We have [f(r)] ⊆ f [r] whence

fX = f [r] ∩ [f(r)) = [f(r)) .

Therefore fX ∪ {f(r)} is down-closed in R′, so

ρ(X ∪ {r}) = ρ′f(X ∪ {r}) = ρ′(fX ∪ {f(r)}) ∈ A .
Hence X = [r), by (i). It follows that

r1 < r =⇒ r1 ∈ X =⇒ f(r1) < f(r) in R′ .

This shows that f preserves the order on R.

Lemma 4.7. There is at most one map between extremal realisations.

Proof. Let (R,≤), ρ and (R′,≤′), ρ′ be extremal realisations. Let f, f ′ : ρ → ρ′ be maps
with converse relations g and g′ respectively. We show the two functions g and g′ are equal,
and hence so are their converses f and f ′. Suppose otherwise that g 6= g′. Then there is an
≤-minimal r′ ∈ R′ for which g(r′) 6= g′(r′) and g[r′) = g′[r′). Hence [g(r′)) = [g′(r′)) and
ρ(g(r′)) = ρ′(r′) = ρ(g′(r′)). As ρ is extremal, by Lemma 4.5(ii) we obtain g(r′) = g′(r′)—a
contradiction.

Hence, by the lemma above, extremal realisations of A under � form a preorder. We
define the order of extremal realisations to have elements isomorphism classes of extremal
realisations ordered according to the existence of a map between representatives of isomor-
phism classes. Alternatively, and equivalently, we could take a choice of representative from
each isomorphism class and order these according to whether there is a map from one to
the other. Recall a prime extremal realisation is an extremal realisation with a top element,
i.e. when its carrier contains an element which dominates all other elements in the carrier.
The following proposition is a direct corollary of Proposition 5.1 in the next section.
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Proposition 4.8. The order of extremal realisations of a family of configurations A forms
a prime-algebraic domain [NPW81] with complete primes the prime extremal realisations.

The proofs of the following observations are straightforward consequences of the defi-
nitions. They emphasise that prime extremal realisations are a generalisation of complete
primes.

Proposition 4.9. Let (A,≤A,ConA) be a prime event structure. The function which takes
an extremal realisation (R,≤R), ρ to the configuration ρR is an order isomorphism from the
order of extremal realisations of C∞(A) to the order of configurations (C∞(A),⊆); prime
extremal realisations correspond to complete primes of C∞(A). For an individual extremal
realisation (R,≤R), ρ, the function r 7→ ρ(r) is an order isomorphism between (R,≤R) and
(ρR, ≤A�ρR), the order of the event structure restricted to the configuration ρR.

A configuration x ∈ F , of a family of configurations F , is irreducible iff there is a
necessarily unique e ∈ x such that ∀y ∈ F , e ∈ y ⊆ x implies y = x. Irreducibles coincide
with complete (join) irreducibles w.r.t. the order of inclusion. It is tempting to think of
irreducibles as representing minimal complete enablings. But, as sets, irreducibles both (1)
lack sufficient structure: in the formulation we are led to, of minimal complete enablings
as prime extremal realisations, several prime realisations can have the same irreducible as
their underlying set; and (2) are not general enough: there are prime realisations whose
underlying set is not an irreducible. We conclude with examples illustrating the nature of
extremal realisations; it is convenient to describe families of configurations by general event
structures.

Example 4.10. This example shows that prime extremal realisations do not correspond to
irreducible configurations. First, we show a general event structure E0 (all subsets consistent)
with irreducible configuration {a, b, c, d} and two (injective) prime extremals E1 and E2

with tops d1 and d2 which both have the same irreducible configuration {a, b, c, d} as their
image. The lettering indicates the functions associated with the realisations, e.g. events d1

and d2 in the partial orders map to d in the general event structure.

E0 E1 E2 F0 F1

d

c

AND

_LR

OR

a

OCK

E<G

b

oS[

xWa
d1

c1

_LR

a

_LR

b

mSZ
d2

c2

_LR

a

QDL

b

_LR

d

c

AND

_LR

OR

a

OCK

b

oS[

xWa
d1

c1

_LR

a

_LR

b

mSZ

On the other hand there are prime extremal realisations of which the image is not an
irreducible configuration. Consider the general event structure F0. The prime extremal F1

describes a situation where d is enabled by b and c, and c is enabled by a. It has image the
configuration {a, b, c, d} which is not irreducible, being the union of the two incomparable
configurations {a} and {b, c, d}.

Example 4.11. It is possible to have extremal realisations in which an event depends on
an event of the family having been enabled in two distinct ways, as in the following prime
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extremal realisation, on the left; it is clearly not injective.

f f

AND

d

H>H

e

vV`

d

C;F

e

{Xc

c1

_LR

c2

_LR

c

= 9D�Ze

OR

a

_LR

b

_LR

a

B;E

b

|Yc

The extremal describes the event f being enabled by d and e where they are in turn enabled
by different ways of enabling c. We assume all subsets consistent.

5. The causal unfolding: an adjunction from E≡ to Fam≡
Furnished with the concept of extremal realisation, we can now exhibit an adjunction
(precisely, a very simple case of biadjunction or pseudo adjunction) from E≡, the category of
ese’s, to Fam≡, the category of equivalence families. The left adjoint I : E≡ → Fam≡ is the
full and faithful functor which takes an ese to its family of configurations with the original
equivalence.

The right adjoint, the causal unfolding, er : Fam≡ → E≡ is defined on objects as follows.
Let A be an equivalence family with underlying set A. Define er(A) = (P,ConP ,≤P ,≡P )
where

• P consists of a choice from within each isomorphism class of the prime extremals p of A
—we write top(p) for the image of the top element in A;
• Causal dependency ≤P is � on P ;
• X ∈ ConP iff X ⊆fin P and top [X]P ∈ A —the set [X]P is the ≤P -downwards closure of
X, so equal to {p′ ∈ P | ∃p ∈ X. p′ � p}, and top [X]P is its image under top;
• p1 ≡P p2 iff p1, p2 ∈ P and top(p1) ≡A top(p2).

Proposition 5.1. The configurations of P defined above, ordered by inclusion, are order-
isomorphic to the order of extremal realisations: an extremal realisation ρ corresponds, up
to isomorphism, to the configuration {p ∈ P | p � ρ} of P ; conversely, a configuration x of
P corresponds to an extremal realisation top : x→ A with carrier (x,�), the restriction of
the order of P to x.

Proof. It will be helpful to recall, from Corollary 4.4, that if ρ �f ρ′ between extremal
realisations, then the inverse relation f−1 is a rigid embedding of (the carrier of) ρ′ in
(the carrier of) ρ; so ρ′ � ρ stands for a rigid embedding. Suppose x ∈ C∞(P ). Then x
determines an extremal realisation

θ(x) =def top : (x,�)→ A .

The function θ(x) is a realisation because each p in x is, and extremal because, if not, one
of the p in x would fail to be extremal, a contradiction. Clearly ρ′ � ρ implies θ(ρ′) ⊆ θ(ρ).
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Conversely, it is easily checked that any extremal realisation ρ : (R,≤) → A defines a
configuration {p ∈ P | p � ρ}. If x ⊆ y in C∞(P ) then φ(x) � φ(y). It can be checked that
θ and φ are mutual inverses, i.e. φθ(x) = x and θφ(ρ) ∼= ρ for all configurations x of P and
extremal realisations ρ.

From the above proposition we see that the events of er(A) correspond to the order-
theoretic completely-prime extremal realisations [NPW81]. This justifies our use of the term
‘prime extremal’ for extremal with top element.

The component of the counit of the adjunction εA : I(er(A)) → A is given by the
function

εA(p) = top(p) .

It is a routine check to see that εA preserves ≡ and that any configuration x of P images
under top to a configuration in A, moreover in a way that reflects ≡.

Theorem 5.2. Let A ∈ Fam≡. For all f : I(Q) → A in Fam≡, there is a map h : Q →
er(A) in E≡ such that f = εA ◦ I(h), i.e. so the diagram

A I(er(A))
εAoo

I(Q)

f

cc

I(h)

OO

commutes. Moreover, if h′ : Q→ er(A) is a map in E≡ s.t. f ≡ εA ◦ I(h′), i.e. the diagram
above commutes up to ≡, then h′ ≡ h.

Proof. Let Q = (Q,ConQ,≤Q,≡Q) be an ese and f : I(Q) → A a map in Fam≡. We
shall define a map h : Q → er(A) s.t. f = εAh. (As here, in the proof we shall elide the
composition symbol ◦, and I on maps which it leaves unchanged.)

We define the map h : Q → er(A) by induction on the depth of Q. The depth of an
event in an event structure is the length of a longest ≤-chain up to it—so an initial event
has depth 1. We take the depth of an event structure to be the maximum depth of its events.
(Because of our reliance on Lemma 4.1, we use the axiom of choice implicitly.)

Assume inductively that h(n) defines a map from Q(n) to er(A) where Q(n) is the

restriction of Q to depth below or equal to n such that f (n) the restriction of f to Q(n)

satisfies f (n) = εAh
(n). (In particular, Q(0) is the empty ese and h(0) the empty function.)

Then, by Proposition 5.1, any configuration x of Q(n) determines an extremal realisation
ρx : h(n)x→ A with carrier (h(n)x,�).

Suppose q ∈ Q has depth n + 1. If f(q) is undefined take h(n+1)(q) to be undefined.
Otherwise, note there is an extremal realisation ρ[q) with carrier (h[q),�). Extend ρ[q) to

a realisation ρ>[q) with carrier that of ρ[q) with a new top element > adjoined, and make

ρ>[q) extend the function ρ[q) by taking > to f(q). By Lemma 4.1, there is an extremal

realisation ρ such that ρ>[q) �2 ρ. Because ρ[q) is extremal, ρ �1 ρ[q), so ρ only extends the

order of ρ[q) with extra dependencies of >. (For notational simplicity we identify the carrier
of ρ with the set h[q) ∪ {>}.) Project ρ to the extremal with top >. Define this to be the

value of h(n+1)(q). In this way, we extend h(n) to a partial function h(n+1) : Q(n+1) → er(A)

such that f (n+1) = εAh
(n+1). To see that h(n+1) is a map we can use Proposition 3.1. By

construction h(n+1) satisfies property (ii) of Proposition 3.1 and the other properties are
inherited fairly directly from f via the definition of er(A).
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Defining h =
⋃
n∈ω h

(n) we obtain a map h : Q→ er(A) such that f = εAh.
Suppose h′ : Q→ er(A) is a map s.t. f ≡ εAh

′. Then, for any q ∈ Q,

top(h′(q)) = εAh
′(q) ≡A f(q) = εAh(q) = top(h(q)) ,

so h′(q) ≡P h(q) in er(A). Thus h′ ≡ h.

The theorem does not quite exhibit a traditional adjunction, because the usual cofreeness
condition specifying an adjunction is weakened to only having uniqueness up to ≡. However
the condition it describes does specify an exceedingly simple case of a pseudo adjunction (or
biadjunction) between 2-categories—a set together with an equivalence relation (a setoid)
is a very simple example of a category. As a consequence, whereas the usual cofreeness
condition allows us to extend the right adjoint to arrows, so obtaining a functor, in this case
following that same line will only yield a pseudo functor er as right adjoint: thus extended,
er will only preserve composition and identities up to ≡.

The map (P,≡) → er(C∞(P ),≡) which takes p ∈ P to the realisation with carrier
([p],≤), the restriction of the causal dependency of P , with the inclusion function [p] ↪→ P
is an isomorphism; recall from Proposition 4.9 that the configurations of a prime event
structure correspond to its extremal realisations. Such maps furnish the components of the
unit of the pseudo adjunction:

E≡
I

> 22 Fam≡
er

rr

Example 5.3. On the right we show a general event structure (all subsets consistent) and
on its left its causal unfolding to an ese under er ; the unfolding’s events are the prime
extremals.9

d1 d2 d

c1

OO

c2

OO

c

AND

OO

OR

a

OO

CC

b

OO

[[

a

BB

??

b

\\

__

6. Unfolding general event structures

Recall G is the category of general event structures. We obtain a pseudo adjunction from E≡
to G via an adjunction from Fam≡ to G. The right adjoint fam : G → Fam≡ is most simply
described. Given (E,Con,`) in G it returns the equivalence family (C∞(E),=) in Fam≡
comprising the configurations together with the identity equivalence between events that
appear within some configuration; the partial functions between events that are maps in G
are automatically maps in Fam≡—the action of fam on maps.

For the effect of the left adjoint col : Fam≡ → G on objects, define the collapse

col(A) =def (E,Con,`)

where

9See [dV15] for further examples of the causal unfolding including an inductive characterisation in 5.2.2.
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• E = A≡, the equivalence classes of events in A =def
⋃
A ;

• X ∈ Con iff X ⊆fin y≡ =def {{a}≡ | a ∈ y}, for some y ∈ A ; and
• X ` e iff e ∈ E, X ∈ Con and e ∈ y≡ ⊆ X ∪ {e}, for some y ∈ A.

It follows that y≡ is a configuration of col(A) whenever y ∈ A. From this it is easy to see
that col(A) is a replete general event structure.

Let (A,≡) ∈ Fam≡. Assume that A has underlying set A. The unit of the adjunction
is defined to have typical component ηA : (A,≡)→ fam(col(A,≡)) given by ηA(a) = {a}≡ .
It is easy to check that ηA is a map in Fam≡.

Theorem 6.1. Suppose that B = (B,ConB,`B) ∈ G and that g : (A,≡)→ (C∞(B),=) is
a map in Fam≡. Then, there is a unique map k : col(A,≡)→ B in G such that the diagram

(A,≡)
ηA//

g ''

fam(col(A,≡))

fam(k)

��
(C∞(B),=)

commutes.

Proof. The map k : col(A,≡)→ B is given as the function k(e) = g(a) where e = {a}≡ . It
is easily checked to be a map in G and moreover to be the unique map from col(A,≡) to B
making the above diagram commute.

Theorem 6.1 determines an adjunction:

Fam≡
col

> 33 G
fam

rr

The construction col automatically extends from objects to maps; maps in Fam≡ preserve
equivalence so collapse to functions preserving equivalence classes. The counit of the
adjunction has components εE : col((C∞(E),=)) → E which send singleton equivalence
classes {e} to e. The counit is an isomorphism at precisely those general event structures E
which are replete, so cuts down to a reflection from the subcategory of replete general event
structures into equivalence families.

Composing

E≡
I

> 22 Fam≡
er

rr

col

> 33 G
fam

rr

we obtain a pseudo adjunction

E≡ > 33 G .ss

Its right adjoint constructs the causal unfolding of a general event structure.
The composite pseudo adjunction from E≡ to G cuts down to a reflection, in the sense

that the counit is a natural isomorphism, when we restrict to the subcategory of G where
all general event structures are replete. Then the right adjoint provides a pseudo functor
embedding replete general event structures (and so families of configurations) in ese’s.

This concludes the construction of causal unfoldings of (very general) equivalence-families,
and, in particular, general event structures.

We can ask for those extra axioms an ese should satisfy in order that it arises from a
general event structure; an axiomatisation is given in Appendix C.
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7. Pullbacks of ese’s?

A major motivation has been to develop probabilistic strategies with parallel causes. In the
composition of strategies the constructions of (pseudo) pullback and hiding play a crucial
role. In composing strategies, essentially by playing them off against each other—the role of
(pseudo) pullbacks, it is important to hide the moves associated with this interaction. Do
event structures with equivalence, E≡, support these constructions?

Ese’s do support hiding. Let (P,≤,ConP ,≡) be an ese. Let V ⊆ P be a ≡-closed subset
of ‘visible’ events. Define the projection of P on V , to be P↓V =def (V,≤V ,ConV ,≡V ),
where v ≤V v′ iff v ≤ v′ & v, v′ ∈ V and X ∈ ConV iff X ∈ Con & X ⊆ V and v ≡V
v′ iff v ≡ v′ & v, v′ ∈ V .

Hiding is associated with a factorisation of partial maps. Let f be a partial map from
(P,≤P ,ConP ,≡P ) to (Q,≤Q,ConQ,≡Q). Letting V =def {e ∈ E | f(e) is defined}, the map
f factors into the composition

P
f0 // P↓V

f1 // Q

of f0, a partial map of ese’s taking p ∈ P to itself if p ∈ V and undefined otherwise, and
f1, a total map of ese’s acting like f on V . We call f1 the defined part of the partial map
f . Because ≡-equivalent maps share the same domain of definition, ≡-equivalent maps
will determine the same projection and ≡-equivalent defined parts. The factorisation is
characterised to within isomorphism by the following universal characterisation: for any

factorisation P
g0 // P1

g1 // Q where g0 is partial and g1 is total there is a (necessarily

total) unique map h : P↓V → P1 such that we obtain the commuting diagram

P
f0 //

g0 $$

P↓V
h��

f1 // Q

P1 .
g1

::

By analogy with early work on prime event structures and their representation by stable
families [Win82, Win86] we might hope to obtain pullbacks and pseudo pullbacks in E≡ via
the adjunction to Fam≡. The category Fam≡ has pullbacks and pseudo pullbacks which
are easy to construct—see Section 7.3.

But unfortunately (pseudo) pullbacks in Fam≡ don’t provide us with (pseudo) pullbacks
in E≡ because the right adjoint is only a pseudo functor: in general it will only carry pseudo
pullbacks to bipullbacks. While E≡ does have bipullbacks (in which commutations and
uniqueness are only up to the equivalence ≡ on maps) it doesn’t always have pseudo pullbacks
or pullbacks—Appendix B. Whereas pseudo pullbacks and pullbacks are characterised up to
isomorphism, bipullbacks are only characterised up to a weaker equivalence—that induced
on objects by the equivalence on maps.10

We explore subcategories of E≡, in particular w.r.t. whether they support (pseudo)
pullbacks.

10Objects P and Q are equivalent iff there are two maps f : P → Q, g : Q → P s.t. gf ≡ idP and
fg ≡ idQ.
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7.1. Subcategories of E≡. Consider the following successively weaker axioms on an
ese (P,Con,≤,≡):

Ax0. {p1, p2} ∈ Con & p1 ≡ p2 =⇒ p1 = p2 .
Ax1. p1, p2 ≤ p & p1 ≡ p2 =⇒ p1 = p2 .
Ax2. p1 ≤ p2 & p1 ≡ p2 =⇒ p1 = p2 .

Ax0 says that any two prime causes of disjunctive event are mutually exclusive. Ax2 we
have met as a consequence of a realisation being extremal (Lemma 4.5(i)) so it will always
hold of any image under the construction er. Ax1 forbids any prime cause from depending
on two distinct prime causes of a common disjunctive event. Example 4.11 shows Ax1 does
not hold of all extremal realisations and can fail in an image under the construction er.
Ax1 enforces a form of atomicity on disjunctive events: whereas several prime causes of a
disjunctive event may appear in a configuration, another event is not permitted to depend
on, so detect, those several prime causes together.

Restricting to the full subcategories of E≡ satisfying these axioms we obtain E0
≡, E1

≡ and
E2
≡ respectively. The factorisation of maps we met for E≡ is inherited by all the subcategories

as their respective axioms are preserved by the projection operation. So all the subcategories
support hiding.

The full inclusion functors

E0
≡ ↪→ E1

≡ ↪→ E2
≡ ↪→ E≡

all have right adjoints so forming a chain of coreflections. Essentially the right adjoints work
by restricting the structures to that part satisfying the stronger axiom. The adjunctions
are enriched in the sense that the associated natural isomorphisms preserve and reflect the
equivalence ≡ between maps (see Appendix A).

For example, E0
≡ is the full subcategory of E≡ in which objects (P,Con,≤,≡) satisfy

the strongest axiom Ax0. Consequently its maps are traditional maps of event structures
which preserve equivalence. The inclusion functor E0

≡ ↪→ E≡ has a right adjoint r : E≡ → E0
≡

taking Q = (Q,ConQ,≤Q,≡Q) to (Q′,Con′,≤′,≡′) where

• Q′ consists of all q ∈ Q s.t. q1 6≡Q q2 for all q1, q2 ≤Q q;
• X ∈ Con′ iff X ⊆ Q′ and X ∈ ConQ and q1 6≡Q q2 for all q1, q2 ∈ X;
• ≤′ and ≡′ are the restrictions of ≤Q and ≡Q to Q′.

The adjunction being enriched means that the isomorphism

E0
≡(P, r(Q)) ∼= E0

≡(P,Q) ,

between homsets, beyond being natural in P ∈ E0
≡ and Q ∈ E≡, preserves and reflects the

equivalence ≡ between maps.
As a consequence we obtain an adjunction from E0

≡ to G. The universality of counit is
only up to ≡.11

The most important subcategory for us is E1
≡. Amongst the subcategories of E≡ it is

the smallest extension of prime event structures which supports parallel causes and hiding.
Its objects are called event structures with disjunctive causes (edc’s) [dVW17]. The right
adjoint to the inclusion

E1
≡ ↪→ E≡

11It was falsely claimed in [Win86] that the ‘inclusion’ of the category of prime event structures in that of
general event structures had a right adjoint. The adjunction from E0≡ to G corrects that originally incorrect
idea; though the repair is at the cost of uniqueness up to ≡.
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on objects simply restricts them to those events which satisfy Ax1. In general, within E≡
we lose the local injectivity property that we’re used to seeing for maps of event structures.
However for E1

≡ we recover local injectivity w.r.t. prime configurations [p]. If f : P → Q is a
map in E1

≡, then

p1, p2 ∈ [p] & f(p1) = f(p2) =⇒ p1 = p2 .

In the composite adjunctions from E1
≡ to Fam≡, and from E1

≡ to G, the right adjoint has
the effect of restricting to those extremal realisations within which Ax1 holds; recall that
the prime extremal realisations of an equivalence family A correspond to the configurations
of er(A). Because such prime extremals are necessarily injective functions their carriers can
be taken to be configurations of the equivalence family or general event structure of which
they are realisations. Appendix C.1 provides an axiomatisation of those edc’s which arise
from general event structures.

As we shall see, E1
≡ also has pullbacks and pseudo pullbacks. It is within E1

≡ that we
have developed probabilistic distributed strategies with parallel causes [dVW17, Win16].
The coreflection from E0

≡ to E1
≡ is helpful in thinking about constructions like pullback and

pseudo pullback in E1
≡ as its right adjoint will preserve such limits. In the category E0

≡, maps
coincide with the traditional maps of labelled event structures, regarding events as labelled
by their equivalence classes. Constructions such as pullback are already very familiar in
E0
≡. What changes in the corresponding constructions in E1

≡ is the manner of dealing with
consistency.

While not strictly a subcategory of E≡, we should also mention the relationship with the
category E of traditional event structures. There is an obvious ‘inclusion’ functor from the
category of event structures E to the category E0

≡; it takes an event structure to the same
event structure but with the identity equivalence adjoined. Regarding E0

≡ as a category, so
dropping the enrichment by equivalence relations, the ‘inclusion’ functor

E ↪→ E0
≡

has a right adjoint, viz. the forgetful functor which simply drops the equivalence ≡ from the
ese. The adjunction is a coreflection because the inclusion functor is full. Of course it is
no longer the case that the adjunction is enriched: the natural bijection of the adjunction
cannot respect the equivalence on maps.

The adjunction

E ↪→ E1
≡

is obtained as the composite of the adjunctions from E to E0
≡ and E0

≡ to E1
≡ and is necessarily

not enriched. Despite this the adjunction from E to E1
≡ has been useful in relating strategies

based on edc’s to strategies based on event structures. Its right adjoint, the functor forgetting
equivalence, preserves all limits and especially pullbacks important in composing strategies.
While this does not entail that composition of strategies is preserved by the forgetful functor—
because the forgetful functor does not commute with hiding, it gives us a strong relationship,
between composition of strategies before and after applying the forgetful functor [Win16].

7.2. Edc’s and stable ef’s—a coreflection. The previous section positioned the category
edc’s E1

≡ with respect to other subcategories of ese’s. We rechristen the category E1
≡ to EDC

in view of its importance in the theory of probabilistic distributed strategies with parallel
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causes. The closeness of edc’s to event structures suggests a generalisation of stable families
to aid with constructions such as product, pullback and pseudo pullback in EDC.12

We are fortunate in that the complicated pseudo adjunction between ese’s and ef’s
restricts to a much simpler adjunction, in fact a coreflection, between edc’s and stable ef’s
now defined.

In an equivalence family (A,≡A) say a configuration x ∈ A is unambiguous iff ∀a1, a2 ∈
x. a1 ≡A a2 =⇒ a1 = a2 . An equivalence family (A,≡A), with underlying set of events A,
is stable iff it satisfies

∀x, y, z ∈ A. x, y ⊆ z & z is unambiguous ⇒ x ∩ y ∈ A , and
∀a ∈ A, x ∈ A. a ∈ x ⇒ ∃z ∈ A, z is unambiguous & a ∈ z ⊆ x .

Given the other axioms of an ef, we can deduce the seemingly stronger property

∅ 6= X ⊆ A, z ∈ A. (∀x ∈ X. x ⊆ z) & z is unambiguous =⇒
⋂
X ∈ A

of a stable ef A.
In effect, a stable equivalence family contains a stable subfamily of unambiguous

configurations out of which all other configurations are obtainable as unions. Local to any
unambiguous configuration x there is a partial order on its events ≤x: each a ∈ x determines
a prime configuration

[a]x =def

⋂
{y ∈ A | a ∈ y ⊆ x} ,

the minimum set of events on which a depends within x; taking a ≤x b iff [a]x ⊆ [b]x defines
causal dependency between a, b ∈ x. Write SFam≡ for the subcategory of stable ef’s.

The configurations of an edc with its equivalence are easily seen to form a stable
ef providing a full and faithful embedding of EDC in SFam≡. The embedding has a right
adjoint Pr. It is built out of prime extremals but we can take advantage of the fact that in a
stable ef unambiguous prime extremals have the simple form of prime configurations. From
a stable ef(A,≡A) we produce an edc Pr(A,≡A) =def (P,Con,≤,≡) in which P comprises
the prime configurations with

• [a]x ≡ [a′]x′ iff a ≡A a′ ,
• Z ∈ Con iff Z ⊆ P &

⋃
Z ∈ F , and

• p ≤ p′ iff p, p′ ∈ P & p ⊆ p′ .
The adjunction is enriched in the sense that its natural bijection preserves and reflects the
equivalence on maps:

EDC > 11 SFam≡
Pr

rr

Compare the definition above with that of Pr on stable families. The significant difference
is in the way that consistency is defined; in the construction on a stable ef the consistency is
inherited not from the stable family of unambiguous configurations but from the ambient ef
A in which configurations may not be unambiguous.

A stable equivalence family A contains a stable subfamily unamb(A) of unambiguous
configurations out of which all other configurations are obtainable as unions. There is an
obvious ‘inclusion’ functor from the category of stable families SFam to SFam≡; it takes a

12It is hard to define the product and pullback of prime event structures directly. However the category
of prime event structures is in coreflection with the category of stable families where product and pullback
are easily defined; for example, the product of event structures is then obtained as the image under the right
adjoint of the product of their stable families of configurations [Win82, Win86].
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stable family A, with underlying set A, to the stable ef (A, idA). Its has unamb as a right
adjoint:

SFam > 11 SFam≡ .
unamb

rr

As the ‘inclusion’ functor from SFam to SFam≡ is full the adjunction is a coreflection. The
adjunction is not enriched in the sense that its natural bijection ignores the equivalence on
maps present in SFam≡. As right adjoints preserve limits, the stable family of unambiguous
configurations of the product, or pullback, of stable ef’s is the product, respectively pullback,
in stable families of the unambiguous configurations of the components.

We can now obtain a (pseudo) pullback in edc’s by first forming the (pseudo) pullback
of the stable ef’s obtained as their configurations and then taking its image under the right
adjoint Pr.

7.3. Constructions. We make use of the constructions of product, pullback and pseudo
pullback of ef’s; just as with prime event structures we cannot expect such constructions to
be easily achieved directly on ese’s. The constructions of product and pullback of ef’s will
reduce to product and pullback on families of configurations when we take the equivalences
≡ to be the identity relation. On stable families they reduce to the product and pullback of
stable families [Win82, Win86].

The product of ef’s is given as follows. Let A and B be ef’s with underlying sets A and B.
Their product will have underlying set A×∗ B, the product of A and B in sets with partial
functions with projections π1 to A and π2 to B. We take c ≡ c′ in A×∗ B iff π1c ≡ π1c

′, or
both are undefined, and π2c ≡ π2c

′, or both are undefined. Define the configurations of the
product by: x ∈ A× B iff

• x ⊆ A×∗ B such that
• π1x ∈ A & π2x ∈ B ,
• ∀c, c′ ∈ x. π1(c) ≡A π1(c′) or π2(c) ≡B π2(c′) =⇒ c ≡ c′ and
• ∀c ∈ x∃c1, · · · , cn ∈ x. cn = c &

∀i ≤ n. π1{c1, · · · , ci} ∈ A & π2{c1, · · · , ci} ∈ B .
We obtain the product in stable ef’s by restricting to those configurations of the product

of the stable ef’s which are unions of unambiguous configurations. Notice that unambiguous
configurations of the product of stable ef’s are exactly the configurations in the product in
stable families of the subfamilies of unambiguous configurations.

Restriction w.r.t. sets of events which are closed under ≡ and synchronised compositions
are defined analogously to before. In particular we obtain pullbacks and bipullbacks as
restrictions of the product.

Pullbacks exist in general but we concentrate on pullbacks of total maps. Let f : A → C
and g : B → C be total maps of ef’s. Assume A and B have underlying sets A and B.
Define D =def {(a, b) ∈ A×B | f(a) = g(b)} with projections π1 and π2 to the left and right
components. On D, take d ≡D d′ iff π1(d) ≡A π1(d′) and π2(d) ≡B π2(d′). Define a family
of configurations of the pullback to consist of x ∈ D iff

• x ⊆ D such that
• π1x ∈ A & π2x ∈ B , and
• ∀d ∈ x∃d1, · · · , dn ∈ x. dn = d &

∀i ≤ n. π1{d1, · · · , di} ∈ A & π2{d1, · · · , di} ∈ B .
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The pullback in stable ef’s is again obtained by restricting to those configurations which
are unions of unambiguous configurations. The unambiguous configurations in the pullback
of stable ef’s are obtained as the pullback in stable families of the subfamilies of unambiguous
configurations.

Given that maps are related by an equivalence relation it is sensible to broaden our
constructions to pseudo pullbacks—the universal characterisation of pseudo pullback follows
the concrete construction.

Pseudo pullbacks of total maps f : A → C and g : B → C of ef’s are obtained in
a similar way to pullbacks. Assume A and B have underlying sets A and B. Define
D =def {(a, b) ∈ A×B | f(a) ≡C g(b)} with projections π1 and π2 to the left and right
components. On D, take d ≡D d′ iff π1(d) ≡A π1(d′) and π2(d) ≡B π2(d′). Define a family
of configurations of the pseudo pullback to consist of x ∈ D iff

• x ⊆ D such that
• π1x ∈ A & π2x ∈ B , and
• ∀d ∈ x∃d1, · · · , dn ∈ x. dn = d &

∀i ≤ n. π1{d1, · · · , di} ∈ A & π2{d1, · · · , di} ∈ B .
When A and B are stable ef’s we obtain their pseudo pullback by restricting to those
configurations obtained as the union of unambiguous configurations.

Recall the universal property of a pseudo pullback of f : A → C and g : B → C (in
this simple case). A pseudo pullback comprises two maps π1 : D → A and π2 : D → B
such that fπ1 ≡ gπ2 with the universal property that given any two maps p1 : D′ → A and
p2 : D′ → B such that fp1 ≡ gp2 there is a unique map h : D′ → D such that p1 = π1h and
p2 = π2h:

D′

p2

��

p1

��

h

��
D ==

π2   π1~~
A

f   

≡ B

g~~
C

Pseudo pullbacks are defined up to isomorphism. Pseudo pullbacks coincide with pullbacks
when the maps involved have an event structure as their common codomain.

Fortunately we do have both pullbacks and pseudo pullbacks in the subcategory E1
≡.

The constructions of pullbacks and pseudo pullbacks in E1
≡ can by-pass the complicated

er construction and be done via the corresponding constructions in SFam≡ in the manner
familiar from event structures and stable families. This is because we have an adjunction from
E1
≡ to SFam≡ and moreover an adjunction which is enriched with respect the equivalence

on homsets. So, for example, to form the (pseudo) pullback of ese’s in E1
≡ we regard their

configurations as stable ef’s, form the (pseudo) pullback in SFam≡ and take the image under
the right adjoint Pr. Each stable ef includes a subfamily of unambiguous configurations and
it is fortunate indeed that e.g. the subfamily of unambiguous configurations of the pullback
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of stable ef’s f : A → C and g : B → C is got as the pullback in stable families of f and g
between the subfamilies of unambiguous configurations.

8. Conclusion

This completes our exploration of extensions of event structures to support disjunctive and
especially parallel causes. We summarise the models and adjunctions we have met in a
figure.

E≡
I

> 22

��

Fam≡
er

ss

col

> 33 G
fam

rr

E2
≡

`

UU

��
E1
≡ > 11

��

`

TT

SFam≡
Pr

ss ?�

OO

unamb

��

E0
≡

��

`

TT

E

`

TT

> 22 SFam

`

SS

Pr
ss

The adjunction

E≡
I

> 22 Fam≡
er

rr

is a proper pseudo adjunction.

The adjunctions

E > 33 E0
≡

ss and SFam > 11 SFam≡
unamb

rr

are not enriched in the sense that the natural bijection
does not respect the equivalence ≡ on maps.

The adjunctions of the figure bridge between the two “classical” models of prime event
structures E and general event structures G; the former appropriate when each event has a
unique cause, the latter permitting causes in parallel. The other “classical” model of stable
families SFam supports exclusive disjunctive causes; an event may be enabled in several,
though incompatible, ways. Equivalence families Fam≡ and its subcategories provide us
with constructions of product and (pseudo) pullback. All the categories to the left of the
figure, subcategories of ese’s E≡, have the partial-total factorisation property used to support
an operation of hiding. The category E1

≡ (a.k.a. EDC) of edc’s distinguishes itself in also
having pullbacks and pseudo pullbacks. It thus answered the original motivation for our
search, to find a model in which to develop strategies with parallel causes. The category E1

≡
supports hiding and probability, has pullbacks, pseudo pullbacks and through this leads to a
robust definition of probabilistic strategies with parallel causes [dVW17, Win16]. The tools
described here have been essential in carrying out that programme. While parallel causes
are ubiquitous, their more formal treatment has been rather sparse. The techniques of this
paper should be relevant wherever causal models allowing parallel causes are in use.
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Appendix A. Equiv-enriched categories

Here we explain in more detail what we mean when we say “enriched in the category of
sets with equivalence relations” and employ terms such as “enriched adjunction,” “pseudo
adjunction” and “pseudo pullback.” The classic text on enriched categories is [Kel82], but
for this paper the articles [KP14] and [Pow98] provide short, accessible introductions to the
notions we use from Equiv-enriched categories and 2-categories, respectively.

Equiv is the category of equivalence relations. Its objects are (A,≡A) comprising a set
A and an equivalence relation ≡A on it. Its maps f : (A,≡A)→ (B,≡B) are total functions
f : A→ B which preserve equivalence.

We shall use some basic notions from enriched category theory [Kel82]. We shall be
concerned with categories enriched in Equiv, called Equiv-enriched categories, in which the
homsets possess the structure of equivalence relations, respected by composition [KP14]. This
is the sense in which we say categories are enriched in (the category of) equivalence relations.
We similarly borrow the concept of an Equiv-enriched functor between Equiv-enriched
categories for a functor which preserves equivalence in acting on homsets. An Equiv-enriched
adjunction is a usual adjunction in which the natural bijection of the adjunction preserves
and reflects equivalence.
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Because an object in Equiv can be regarded as a (very simple) category, we can regard
Equiv-enriched categories as (very simple) 2-categories to which notions from 2-categories
apply [Pow98].

A pseudo functor between Equiv-enriched categories is like a functor but the usual
laws only need hold up to equivalence. A pseudo adjunction (or biadjunction) between
2-categories permits a weakening of the usual natural isomorphism between homsets, now
also categories, to a natural equivalence of categories. In the special case of a pseudo
adjunction between Equiv-enriched categories the equivalence of homset categories amounts
to a pair of ≡-preserving functions whose compositions are ≡-equivalent to the identity
function. With traditional adjunctions, by specifying the action of one adjoint solely on
objects, we determine it as a functor; with pseudo adjunctions we can only determine it
as a pseudo functor—in general a pseudo adjunction relates two pseudo functors. Pseudo
adjunctions compose in the expected way. An Equiv-enriched adjunction is a special case
of a 2-adjunction between 2-categories and a very special case of pseudo adjunction. In
Section 6 we compose an Equiv-enriched adjunction with a pseudo adjunction to obtain a
new pseudo adjunction.

Similarly we can specialise the notions pseudo pullbacks and bipullbacks from 2-categories
to Equiv-enriched categories which is highly relevant to the companion paper [dVW17] in
which we use pullbacks and pseudo pullbacks to compose strategies with parallel causes. Let
f : A→ C and g : B → C be two maps in an Equiv-enriched category. A pseudo pullback of
f and g is an object D and maps p : D → A and q : D → B such that f ◦ p ≡ g ◦ q which
satisfy the further property that for any D′ and maps p′ : D′ → A and q′ : D′ → B such
that f ◦ p′ ≡ g ◦ q′, there is a unique map h : D′ → D such that p′ = p ◦ h and q′ = q ◦ h;
note the insistence on the last two equalities, rather than just equivalences. There is an
obvious weakening of pseudo pullbacks to the situation in which the uniqueness is replaced
by uniqueness up to ≡ and the equalities by ≡—these are simple special cases of bilimits
called bipullbacks.

Right adjoints in a 2-adjunction preserve pseudo pullbacks whereas right adjoints in a
pseudo adjunction are only assured to preserve bipullbacks.

Appendix B. On (pseudo) pullbacks of ese’s

We show that the enriched category of ese’s E≡ does not always have pullbacks and pseudo
pullbacks of maps f : A→ C and g : B → C, the reason why we use the subcategory EDC,
which does, as a foundation on which to develop strategies with parallel causes. It suffices
to exhibit the lack of pullbacks when C is an (ese of an) event structure as then pullbacks
and pseudo pullbacks coincide. Take A, B, C as below, with the obvious maps f : A→ C
and g : B → C (given by the lettering). In fact, A and B are edc’s.
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The pullback in edc’s EDC does exist and is given by P with the obvious projection
maps. However this is not a pullback in E≡. Consider the ese D with the obvious total maps
to A and B; they form a commuting square with f and g. This cannot factor through P :
event b2 has to be mapped to b2 in P , but then a1 cannot be mapped to a1 (it wouldn’t
yield a map) nor to a2 (it would violate commutation required of a pullback).
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There is a bipullback bP got by applying the pseudo functor er to the pullback in ef’s.
But this is not a pullback because in the ese E the required mediating map is not unique in
that a1 can go to either a1 or a1′. In fact, there is no pullback of f and g. To show this we
use the additional ese F.

Suppose Q with projection maps to A and B were a pullback of f
and g in E≡. Consider the three ese’s D, E and F with their obvious
maps to A and B; in each case they form a commuting square with
f and g. There are three unique maps hD : D → Q, hE : E → Q,
and hF : F → Q such that the corresponding pullback diagrams
commute. We remark that there are also obvious maps kD : E → D
and kF : E → F (given by the lettering) which commute with
the maps to the components A and B. By uniqueness, we have
hD ◦ kD = hE = hF ◦ kF , so we have hD(a1) = hF (a1). From the
definition of the maps, the event hD(a1) = hF (a1) has at most one
≤-predecessor in Q which is sent to b in C (as D only has one).
Because of the projection to B, it has at least one (as B has one).
So the event hD(a1) = hF (a1) has exactly one predecessor which is
sent to b. From the definition of maps, this event is hD(b2) which
equals hF (b1). But hD(b2) cannot equal hF (b1) as they go to two
different events of A —a contradiction.

ese F
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_LR
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Hence there can be no pullback of f and g in E≡. (By adding intermediary events, we would
encounter essentially the same example in the composition, before hiding, of strategies if
they were to be developed within the broader category of ese’s.)

Appendix C. General event structures as ese’s

The pseudo adjunction

E≡ > 33 G .ss

cuts down to a reflection, in which the counit is a natural isomorphism, when we restrict
to the subcategory of G where all general event structures are replete. The right adjoint
provides a full and faithful embedding of replete general event structures (and so families of
configurations) in ese’s.

We can ask on what subcategory of E≡ the pseudo adjunction further cuts down to a
pseudo equivalence with the category of replete general event structures. We do this by
characterising those ese’s which are obtained to within isomorphism as images of replete
general event structures under the right adjoint, or equivalently as images of families of
configurations.

The characterising axioms on an ese (P,≤,Con,≡) are:

(A) For X a finite down-closed subset of P ,
X ≡ y & y ∈ C(P ) =⇒ X ∈ C(P ) ;

(B) For p, q ∈ P , [p) = [q) & p ≡ q =⇒ p = q ;
(C) For X a down-closed subset of P and p ≡ q,
X ⊆ [p) & [q)≡ ⊆ X≡ =⇒ X = [p) ;

(D) For x ∈ C(P ) and t ∈ P ,
x ∪ [t] ∈ C(P ) & (x ∪ [t])≡ = x≡ ∪ {{t}≡} =⇒ ∃p ∈ P. p ≡ t & x ∪ {p} ∈ C(P ) .

In writing the axioms we have used expressions such as X ≡ Y , for subsets X and Y of P ,
to mean for any p ∈ X there is q ∈ Y with p ≡ q and vice versa; and X≡ to stand for the
set of ≡-equivalence classes {{p}≡ | p ∈ X}; so X ≡ Y iff X≡ = Y≡.

Axiom (D) may be replaced by

(D′) For x, y ∈ C(P ) and t ∈ P ,

x
t
−−⊂ & x ≡ y =⇒ ∃p ∈ P. p ≡ t & x ∪ {p} ∈ C(P ) .

Assume (D) and, for x, y ∈ C(P ), that x
t
−−⊂ and x ≡ y. Then, by (A), y ∪ [t] ∈ C(P ) as

y ∪ [t] ≡ x ∪ {t}, clearly consistent; whence y ∪ {p} ∈ C(P ) for some p by (D). Conversely,
assuming (D′) and x ∪ [t] ∈ C(P ) and (x ∪ [t])≡ = x≡ ∪ {{t}≡}, in the case where t /∈ x we

obtain x ∪ [t)
t
−−⊂ and x ∪ [t) ≡ x; whence x ∪ {p} ∈ C(P ) for some p by (D′). This shows

(D) follows from (D′) in the case when t /∈ x; in the case when t ∈ x, axiom (D) is obvious.

Theorem C.1. Let P ∈ E≡. Then, P ∼= er(A) for some equivalence family A iff P satisfies
axioms (A), (B), (C) and (D).

Proof. We show axioms (A), (B), (C), (D) hold of any ese P = er(A), constructed from a
family of configurations A. We obtain P satisfies axiom (A) from the way the consistency of
er(A) is defined: if X ≡ y, with y a configuration, X inherits consistency from y ensuring
that X, assumed down-closed, is a configuration. If [p) = [q) and p ≡ q, then p and q
correspond to the same extremal realisation with top, so are equal—ensuring (B) holds of P .
We obtain (C) via Lemma 4.6(i), as [p] corresponds to an extremal with top p. Given the
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correspondence between configurations of P and extremal realisations, axiom (D) expresses
an obvious extension property of extremal realisations.

Conversely, we now show that if an ese P = (P,Con,≤,≡) satisfies (A), (B), (C), (D)
then there is an isomorphism

ηP : P ∼= er(A)

if we take the family of configurations so

A = C∞(col(C∞(P ),≡)) .

Recall, from Proposition 5.1, that the configurations of er(A) correspond to extremal
realisations of col(C∞(P ),≡).

Before we define the map ηP we remark that a configuration x of P determines an
extremal realisation of col(C∞(P ),≡): the realisation has carrier x with order inherited
from P and map taking p ∈ x to the equivalence class {p}≡. Axioms (B) and (C) ensure
that this realisation is extremal, via Lemma 4.6.

It follows from the remark that we define a map ηP : P → er(A) by sending p ∈ P
to the realisation with carrier [p], ordered as in P , and function [p]→ P≡ taking elements
to their equivalence classes. The injectivity of ηP follows from (B). Moreover ηP reflects
consistency because of axiom (A). We now only require its surjectivity to ensure ηP is an
isomorphism.

We use (D) in showing that ηP is surjective. We show by induction on n ∈ ω that all
extremal realisations with top of col(P ) of depth less than n are in the image of ηP . (Recall
the depth of an event in an event structure is the length of a longest ≤-chain up to it; we
take the depth of an event structure to be the maximum depth of its events.) Because ηP
reflects consistency the induction hypothesis entails that all extremal realisations of depth
less than n are (up to isomorphism) in the image under ηP of configurations of P .

Let (R,≤R) of depth n with ρ : R→ col(P ) be an extremal realisation with top r, so
R = [r]R. Then its restriction ρ′ : [r)R → col(P ) is an extremal realisation of lesser depth.
By induction there is x′ ∈ C(P ) and an isomorphism of realisations θ′ : ρ′ ∼= ηPx

′. Write

y =def ρ
′[r)R, z =def ρ[r]R. Then y, z ∈ C(col(P )) and y

e
−−⊂ z for some e ∈ P≡. From the

definition of col(P ), it follows fairly directly that there is some t ∈ P s.t. {t}≡ = e and
[t)≡ ⊆ y. As ηP reflects consistency, x′ ∪ [t] ∈ C(P ). We have

(x′ ∪ [t])≡ = x′≡ ∪ {{t}≡} = z .

By (D) there is some p ∈ P s.t. p ≡ t and x′ ∪{p} ∈ C(P ). The configuration x =def x
′ ∪{p}

with order inherited from P and map taking p′ ∈ x to {p′}≡ is the realisation ηPx. Let θ be
the function θ : R→ x extending θ′ s.t. θ(r) = p. Then θ : ρ � ηPx is a map of realisations.
But ρ is extremal ensuring θ : ρ ∼= ηPx, and that ηP is surjective.

Corollary C.2. The pseudo adjunction from E≡ to G cuts down to a pseudo equivalence
of categories between the subcategory of E≡ satisfying axioms (A), (B), (C), (D) and the
subcategory of G comprising the replete general event structures.

C.1. General event structures as edc’s. The composite

E1
≡ > 33 E≡ss

I

> 22 Fam≡
er

rr

col

> 33 G
fam

rr
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forms pseudo adjunction from edc’s to general event structures; we call its composite right
adjoint edc. As above we can cut this down to a pseudo equivalence between the subcategory
E1
≡ of edc’s and replete general event structures via a slight modification of Axiom (D) on

ese’s (P,≤,Con,≡):

(D1) For x an unambiguous configuration in C(P ) and t ∈ P ,
x ∪ [t] ∈ C(P ) & (x ∪ [t])≡ = x≡ ∪ {{t}≡} =⇒ ∃p ∈ P. p ≡ t & x ∪ {p} ∈ C(P ) .

Axiom (D1) may be replaced by

(D′1) For x, y ∈ C(P ), with y unambiguous, and t ∈ P ,

x
t
−−⊂ & x ≡ y =⇒ ∃p ∈ P. p ≡ t & x ∪ {p} ∈ C(P ) .

Theorem C.3. Let P be an edc. Then, P ∼= edc(G) for some general event structure G iff
P satisfies axioms (A), (B), (C) and (D1).

Proof. The proof is a slight refinement of the proof of Theorem C.1 above.

Corollary C.4. The pseudo adjunction from E≡ to G cuts down to a pseudo equivalence of
categories between the subcategory of edc’s E1

≡ satisfying axioms (A), (B), (C), (D1) and the
subcategory of G comprising the replete general event structures.
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license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
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