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We present a deep learning (DL) framework, termed few-photon fluorescence lifetime imaging (FPFLI), for fast analysis
offluorescence lifetime imaging (FLIM) data under highly low-light conditions with only a few photons per pixel. FPFLI
breaks the conventional pixel-wise lifetime analysis paradigm and fully exploits the spatial correlation and intensity
information of fluorescence lifetime images to estimate lifetime images, pushing the photon budget to an unprecedented
low level. The DL framework can be trained by synthetic FLIM data and easily adapted to various FLIM systems. FPFLI
can effectively and robustly estimate FLIM images within seconds using synthetic and experimental data. The fast
analysis of low-light FLIM images made possible by FPFLI promises a broad range of potential applications.
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1. INTRODUCTION

Fluorescence lifetime imaging (FLIM) is essential in diverse disci-
plines, including chemistry, pharmacy, fundamental biomedical
science, and clinical applications [1]. FLIM uses the fluorescence
lifetime of molecules to provide imaging contrast, allowing assess-
ing cellular micro-environments such as pH, temperature, ion
concentration, and metabolism [2,3]. FLIM is also more robust
than intensity imaging to measure Férster resonance energy trans-
fer (FRET), suitable for investigating protein—protein interactions
and protein conformational changes [4,5]. The time-correlated
single photon counting (TCSPC) technique is the gold standard
for FLIM measurement due to its high temporal resolution and
signal-to-noise ratio (SNR) approaching ideal Poisson statistics
[6]. A TCSPC generates decay histograms from time-stamped
photons, from which fluorescence lifetimes are estimated.

Various methods have been developed to quantify lifetimes in
FLIM precisely. These methods include model-fitting, fitting-free,
and deep learning (DL) approaches. Model-fitting techniques,
such as least-squares fitting (LSF) [7,8], maximum likelihood
estimation (MLE) [9], and Bayesian analysis (BA) [10], extract
lifetime parameters by iteratively optimizing pre-defined decay
models to fit the histogram. Fitting-free methods, such as the
phasor approach (PA) [11] and center-of-mass method (CMM)
[12], use graphical representation and the center of mass of the
decays to quickly characterize lifetimes. On the other hand, the
emerging DL offers a data-driven approach for fast FLIM analysis
by directly mapping decay histograms to target lifetime parameters
[13-16]. However, existing methods require a high photon budget
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for accurate lifetime estimation. For instance, LSF requires at least
1000 photons per pixel (PPPs) for accurate lifetime analysis [8].
MLE and BA perform better in scenarios with several hundred
PPPs, but their analysis is slow and complex due to prolonged opti-
mization routines. The performance of these methods noticeably
degrades when PPPs < 100. Extensive efforts have been made to
robustly analyze FLIM images under low-light conditions, such
as improving parameter estimation in BA [17], applying complex
wavelet filters for phasor analysis [18], and reconstructing decay
information using generative adversarial networks [16]. However,
all attempts are limited to pixel-wise analysis. As the detected PPPs
decrease to only a few or dozens, they inevitably fail because the
decay information within the pixel is permanently lost.

There are two reasons that obtaining sufficient photons can be
challenging or even impossible in many scenarios. First, microenvi-
ronments can be photon-starved due to alow probe concentration,
poor quantum yield and photosensitivity in cells, and unoptimized
excitation and emission wavelengths for FLIM measurements.
Transporting or transferring fluorescent molecules can also result
in low transporting/transfer efficiency for exogenous fluorophores,
resulting in a low fluorescence intensity [19,20]. Second, many
FLIM measurements are strictly time constrained. Excitation laser
pulses can quickly reduce cell vitality and cellular reproduction
[21] and lead to photobleaching and cell lysis [22]. If maintaining
biological viability and avoiding photo-perturbation is necessary,
the measurement time should be as short as possible with the
laser power kept low. Additionally, the measurement window for
observing transient biomedical phenomena is limited. Therefore,
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despite FLIM’s versatility, its application range is still limited by
the required high photon budget.

To address these challenges, we propose a DL framework called
few-photon FLIM (FPFLI), breaking the conventional pixel-wise
analysis paradigm to perform robust analysis in extremely low-light
conditions. FPFLI recognizes the spatial correlation of fluores-
cence lifetimes among neighboring pixels and the information in
fluorescence intensity images. We hypothesize that the informa-
tion in the intensity image can benefit the lifetime estimation in a
FLIM image. To tackle the severely ill-posed lifetime estimation
problem caused by an ultralow PPP in a single pixel, FPFLI starts
by estimating the average lifetime of the local area using a dedicated
neural network. Then FPFLI uses another neural network to fuse
the intensity and local lifetime information to reconstruct the
fluorescence lifetimes for all pixels. We developed a large-scale syn-
thetic FLIM dataset for fast training of the FPFLI algorithm. We
demonstrate that FPFLI is rapid and robust for lifetime estimation
that can push FLIM’s photon budget to a record low level with only
afew PPPs.

2. METHODS
A. Algorithm Implementation

FPFLI involves two main steps for estimating fluorescence lifetime
images from low-light FLIM data, as illustrated in Fig. 1(a). Before
lifetime estimation, we filter out noise background pixels and
retain sample morphology through an image mask X. In TCSPC
measurement, Poisson noise from the photon detection process
plays a dominant role, and noisy background pixels can be easily
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distinguished using a lower threshold. Given the measured FLIM
data H(Z, 1), where i = [i,, i,] € 1, M]? is the spatial coordinate
vector, and £ € [1, N] is the temporal coordinate, the masked
image is obtained by H' = X - H. The dot operator denotes the
scalar product of the matrices.

The first step of FPFLI is to estimate lifetime distributions in
small local areas. As estimating the lifetime of individual pixels
is no longer available, we utilize the strong spatial correlation of
fluorescence lifetime images and perform pixel binning on neigh-
boring pixels to evaluate the lifetime in that local area. For example,
we merge the photon counts in an 8 x 8-pixel area into a single
histogram with tens to hundreds of photons, which makes the local
lifetime estimation well posed. After spatial pixel binning, FLIM
data are calculated as H' = 1#*1 @ H', where # is the binning
factor, and ®; — (z.£.1y is the 3D cross-correlation operator with
the stride s = (%, 4, 1) along the spatial and temporal dimensions.
To estimate the average lifetime in each local area, we use a local
lifetime estimator (LLE), which employs a 1D ConvMixer archi-
tecture as its backbone [23] (Supplement 1 Note 1 and Fig. S1).
This lightweight architecture has fewer parameters, making it
accurate and quick to train. To increase its applicability to different
TCSPC FLIM systems, LLE takes both the instrument response
function (IRF) and decay histograms as inputs. We denote the
function of LLE as C(0; -) with parameters 6. The local lifetime
image L'iscalculated as

L'=C(0; IRF, H'). 1)
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Algorithm overview of FPFLI. (a) FPFLI consists of two sub-networks: (i) local lifetime estimator (LLE) using ConvMixer architecture for

estimating the average lifetimes of local areas, and (ii) neural implicit image interpolation (NIII) network for reconstructing lifetime images. NIII contains
an encoder and decoder. The encoder adopts a residual dense network (RDN) as the backbone, and the decoder is a five-layer dense network. (b) Semi-
synthetic low-light FLIM data for algorithm training. The average PPPs of the samples range from four to 10, and the lifetimes range from 1 to 4 ns.
(c) Accuracy analysis of LLE using mean absolute error (MAE) under low-light conditions. The ranges of photons, lifetimes, and lifetime components are
40 ~ 400, 1 ~ 4 ns, and 1 ~ 3, respectively. When one variable is under investigation, other variables change in their corresponding ranges randomly. The
solid line indicates the median value, and the two dashed lines indicate upper and lower quartiles. (d) NIII for analyzing synthetic low-light alphabetical
FLIM images. The four letters have four lifetimes increasing from 1 to 2.5 ns with a 0.5 ns interval.


https://doi.org/10.6084/m9.figshare.23535252

Research Article

Vol. 10, No. 7 / July 2023 / Optica 946

The second step is fusing the local lifetime distribution L' and
the intensity image I to reconstruct the target lifetime image L.
The intensity image can be quickly obtained by summing up the
photon counts in each pixel, as given by I(7) = Zt]\il H' (i, ).
However, L! and I have a size and pixel resolution mismatch. To
address this, the neural implicit image interpolation (NIII) tech-
nique is used, which consists of an encoder and a decoder [24-27].
The encoder parameterizes the input images to latent codes using
implicit neural representations (INRs). INRs use a continuous and
differentiable implicit function to map coordinates to the corre-
sponding signal, efficiently capturing signals’ underlying features
with fewer parameters. Signals parameterized by INR are inde-
pendent of spatial resolutions and can theoretically be sampled at
arbitrary spatial resolutions. Encoder-based methods are proposed
to share knowledge of all inputs instead of fitting individual func-
tions for each input instance. In our study, two identical encoder
networks are applied to extract two sets of latent codes distributed
in spatial dimensions from L’ and I. The encoders adopt a residual
dense network (RDN) as the backbone to learn the local and global
hierarchical features and extract latent codes [28] (Supplement 1
Note 1 and Fig. S1). The sets of latent codes are expressed as

zi=E(¢: L") (x)
{gf =E(p; D (xj)° @

where z; and g are the latent codes from L’ and I for the query
pixel coordinates x; and x j, respectively. £(¢; -)and E(g; - )are
the encoders with parameters ¢ and @, respectively.

Once the latent codes are generated from the encoders, they are
used as inputs along with query coordinates to a five-layer dense
neural network decoder F(o; -) with parameters 0 to generate
weights and values for interpolating the target lifetime image L
(Supplement 1 Note 1 and Fig. S1). Given a query pixel coordi-
nate x, in L, 2, ; and v, ; are the interpolation weight and value
between 7 and ¢, respectively, where 7 is a neighboring pixel for g.
They are calculated as [27]

aq,,‘,vq,,‘:F(O';Zi»gi»gq_gi»xq_xi)- (3)

We chose the four nearest corner pixels of g in L’ as shown in
the inset in Fig. 1(a), as the set of neighbor pixels for 4, denoted as
N ¢+ The normalized weights w, ; are obtained by applying the
SoftMax tunction on a,, ;:

eﬂq,i
Wi == (4)
1 Zz’e Ny e“a

Then, the lifetime in x,, is calculated as

L(x,) = Z Wq.iVq.i- 6)

ieNy

The reconstructed lifetime image L is obtained by iterating

through all pixels.

B. Semi-synthetic FLIM Datasets

Developing DL algorithms for FLIM analysis faces a signifi-
cant challenge due to insufficient FLIM datasets for training.
Experimentally acquiring diverse FLIM images is time consum-
ing and labor intensive, and the available samples often limit the
cellular morphologies and decay features. Additionally, precisely

controlling the SNR, fluorophores’ lifetime component num-
ber, and lifetime ranges in experiments is difficult. Furthermore,
FLIM images require a large photon count. Then they use a con-
ventional algorithm to calculate the ground truth (GT) images,
which further increases the experimental difficulty and limits the
performance of DL algorithms.

We generated model-based semi-synthetic FLIM data to
overcome these difficulties for algorithm training. We used
immunofluorescence intensity images from the Human Protein
Atlas (HPA) dataset [29]. We converted them into large-scale
low-intensity FLIM datasets by considering both spatial Poisson
distribution and a temporal non-homogeneous Poisson process
(Supplement 1 Note 2 and Fig. §2). Without losing general-
ity, we generated 5000 low-light FLIM samples with a size of
256 x 256 x 256 for training purposes. We use the average PPPs
to quantify the intensity level of the FLIM data, defined as the
average photons in pixels that have detected photons, excluding
background pixels. The average PPP for pixels of the sample ranges
from four to 10. The decay histograms in the training samples have
a period of 10 ns, and dynamic lifetime ranges from 1 to 4 ns. The
training FLIM dataset covers diverse cellular morphologies, com-
plex decay features, and varying lifetime distributions. Figure 1(b)
shows three low-count FLIM images from our training dataset.
The first column displays the intensity maps of the FLIM images,
whereas the second column presents the histogram of the intensity
distribution. The intensity values range from zero to dozens, and
most pixels have only a few photons, resulting in a low PPP of less
than 10. The third column shows the GT lifetime maps, which are
the amplitude-averaged lifetimes of all lifetime components.

C. Network Training and Evaluation

We trained the LLE and NIII sub-networks separately. LLE was
trained by synthetic decays with 256 time bins and a period of
10 ns. (Supplement 1 Fig. S2). The lifetime and photon count
range from 1 to 4 ns and 50 ~ 1000 counts, respectively. The
lifetime components are randomly set from one to three. To
cover a wide range of TCSPC systems, we considered two types
of IRFs, Gaussian and exponential, with FWHM ranging from
100 to 400 ps and peak position from the 10¢h to 30th time bin.
The training dataset comprised 100,000 samples. We employed
the amplitude-weighted average lifetime (74) as the reference
GT target, denoted as 74 =" «;7;, where «; and 7, represent
the fraction ratio and lifetime of the 7th lifetime component,
respectively. Using 74, we ensure a robust estimation of lifetimes,
regardless of the number of lifetime components in the decay
histograms, thus avoiding model mismatch problems. Moreover,
74 facilitates the analysis of other lifetime parameters, such as
the ratio of lifetime components and FRET efficiency (£). For
instance, in FLIM-FRET applications, £ can be directly calculated
as £ =[1— t4/tpl, with 7p the donor’s lifetime [1]. We use the
L, norm as the loss function

1 B
Lur=~)

where B is the batch size, and / and / are the predicted and GT
lifetimes, respectively. To train the NIII sub-network, we first
processed the FLIM data using a trained LLE to estimate the
local lifetime image L, which was then fed into the NIII with the

A |2
ln - ln ) (6)
2
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intensity image I. The lifetime deviation introduced by LLE was
treated as noise for the inputs to improve the training robustness.
The spatial pixel binning was performed using 8 x 8 pixel patches.
Next, we sampled pixels from the GT lifetime image and queried
the decoder with the corresponding pixel coordinates to predict the
pixel values. The L loss is applied for optimization:

| .
LNmzmannL(xn)—L(xn)m, @)

where M? is the total pixel number in FLIM images. The detailed
implementation and training are described in Supplement 1
Note 1. LLE required a significantly shorter training time, tak-
ing only 8 min, while NIII required a longer training time of
approximately 60 h for training,.

After completing the training processes, we quantitatively
evaluated the performance of both LLE and NIII. Figure 1(c)
illustrates LLE’s performance on lifetime estimation under low-
light conditions. Mean absolute error (MAE) was employed as a
figure of merit to evaluate the accuracy of the algorithms, with the
performance of MLE for lifetime estimation used as a benchmark
for comparison purposes (implementation of MLE is described
in Supplement 1 Note 3). We considered varying conditions,
including different photon counts, lifetime ranges, and lifetime
components. The results demonstrate that LLE has significantly
improved the accuracy of lifetime estimation in all scenarios. For
instance, when comparing FPFLI with MLE across various photon
counts (40-100) and different lifecime components, FPFLI’s
MAE is merely one-fifth of MLE’s. This highlights the substantial
enhancement in accuracy achieved by LLE.

To evaluate NIIIs effectiveness and robustness, we also ana-
lyzed a 512 x 512 synthetic alphabetical FLIM image with an
average PPP of five. The image has distinct morphologic features,
such as linear boundaries and sharp corners, that do not appear
in training images. MLE failed to estimate the lifetime due to too
fewer photons. In contrast, the reconstructed lifetime image by
NIII is very close to the GT. The histogram further confirms the
accuracy of lifetime estimation. The lifetimes estimated by FPFLI
have four distinct clusters corresponding to the four GT lifetimes,
while those for MLE have a flat distribution. It is worth noting
that both LLE and NIII have low accuracy in estimating decays
with long lifetimes, as seen in Figs. 1(c) and 1(d). This is reasonable
because, fora given photon count, the photons tend to distribute in
more time bins for decay histograms with longer lifetimes, making
it challenging to estimate lifetime. Nevertheless, Figs. 1(c) and
1(d) demonstrate that FPFLI is a robust and effective method for
analyzing low-light FLIM images.

3. RESULTS

Validating FPFLI on synthetic images. We began by validating
FPFLI on synthetic FLIM images, which are ideal for quantitative
analysis due to their controllable photon counts and known GT
lifetime images. We generated a particular FLIM dataset for testing
purposes using the same process as the training dataset and then
employed the trained FPFLI algorithm to calculate the lifetime
images. Figure 2 illustrates four examples with varying shapes,
granularities, and lifetime distributions. MLE takes tens of min-
utes for lifetime calculation, but the images produced by MLE are
erroneous and far from GT images. The lifetimes have a random
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Fig. 2. Validation of FPFLI on low-light synthetic FLIM images with

data size of 256 x 256 x 256. (a)—(d) Four different samples and their
analyzed results. The scale bar is 20 pm. The first column is intensity
images with photon counts ranging from 0 to 40 (PPP varies from five to
10). In contrast, the second to fourth columns show the corresponding
estimated lifetime images calculated from MLE and FPFLI and the GT
images. The last two columns are the error map for MLE and FPFLI,
respectively.

distribution within an extensive range, making it difficult to obtain
meaningful information. Furthermore, we conducted an addi-
tional analysis to compare FPFLI and other pixel-wise approaches,
confirming that none of the existing methods is inappropriate for
extremely low-light conditions (Supplement 1 Note 4 and Fig. S3).

In contrast, FPFLI can estimate the fluorescence lifetime images
within 1 s, producing highly accurate results almost identical to
the GT images. It can reconstruct complex local fluorescence
lifetime distributions from different cellular organelles, even if the
information is vague and indistinguishable in the intensity images.
For instance, FPFLI can reconstruct the lifetime and shapes of cell
nuclei, even when their shapes cannot be identified by human eyes,
as seen in Figs. 2(a), 2(c), and 2(d). In practical FLIM measure-
ments, the images often have uneven intensity distribution due
to different fluorophores’ emission efficiencies and their varying
concentrations. This raises the question of whether FPFLI is robust
to intensity perturbation and can extract correct intensity informa-
tion for lifetime reconstruction. To verify this, Figs. 2(c) and 2(d)
show FLIM samples with non-uniform intensities. The sample in
Fig. 2(c) has occasional bright spots, and the sample in Fig. 2(d)
has a significant intensity variation. Despite these irregular inten-
sity changes, the reconstructed lifetime images are unaffected,
demonstrating FPFLI’s effectiveness and robustness.

Like any algorithm tackling ill-posed problems, FPFLI may
produce inaccurate predictions. These errors are quantified as the
absolute difference between the predicted lifetime images, denoted
as L (obtained through MLE or FPFLI), and the GT images,

represented as L. As expected, almost every pixel has a significant
error for MLE, showing that MLE cannot converge to the correct
lifetime under such low-light conditions. In contrast, the error
map for FPFLI has minor errors, mainly occurring at the bound-
aries. This is understandable because low-intensity images tend
to shrink as the photons at boundaries are missing. We quantify
the error using the image mean-squared error (IMMSE) as the
figure of merit, which is defined as Y, Zjv[:l (IA,l-j — L;)*/ M.
A smaller IMMSE value indicates greater similarity between the
reconstructed and GT images. Following the previous results,
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IMMSE for FPFLI is much smaller for all examples, showing that
FPFLI is an effective algorithm for fluorescence lifetime estimation
under low-light conditions. We verified more samples with differ-
ent shapes and lifetime distributions to confirm that FPFLI has a
stable performance with high accuracy (Supplement 1 Fig. S4).
Notably, FPFLI offers a fast calculation speed owing to its distinc-
tive lifetime reconstruction approach. FPLFI requires estimating
only a few lifetimes of local areas and inferring the entire lifetime
image via interpolation. We performed a quantitative analysis
of the calculation time of FPFLI on FLIM images of different
sizes. The reconstruction of 256 x 256 and 512 x 512 lifetime
images took only 0.63 sand 1.72 s, respectively. Even for large-scale
1024 x 1024 FLIM images, the calculation time was around 7s
(Supplement 1 Fig. S§5). The speed could be further improved
by several times without inferring background pixels. Fast and
accurate estimating lifetime can improve the discrimination of
cellular structures under low-light scenarios, leading to potential
applications such as i# vivo and real-time FLIM-based surgical
guidance for tumor excision or tissue delineation [30,31]. This is
particularly valuable in situations where the fluorescence signals
havelow SNR.

FPFLI analysis of mouse kidney section. We then tested
FPFLI on experimental FLIM data obtained from a cryostat
section of a mouse kidney stained with Alexa Fluor 488 wheat
germ agglutinin (F24630, FluoCells Prepared Slide, Thermo
Fisher, UK). We used a confocal microscopic FLIM system
(MicroTime 200 STED, PicoQuant, Germany) with a 483 nm
picosecond diode laser operating at 40 MHz to measure the cell
images. Fluorescence emissions were collected by a 63x water
immersion objective and recorded by a single photon avalanche
diode (SPAD) detector with a 530/30 nm bandpass filter. To
obtain low-intensity images, we terminated the measurement
when the maximum photon count reached 40. We also measured
corresponding high-intensity images with a maximum photon
count 4000 and fitted them by MLE as GT images. The measured
FLIM data have 512 x 512 pixels, and their histograms have a
20 ps timing resolution with a period of 50 ns. We post-processed
the images to 512 x 512 x 256 with a 0.1 ns timing resolution
through temporal binning. Three cell images with different fields
of view (FOVs) are shown in Fig. 3, and their PPPs are around six to
seven. The sample shapes and decay profiles show vast differences
from the training data. We adapted FPFLI by retaining LLE using
training data with a 0.1 ns timing resolution to analyze better the
experimental data, which took only 8 min. The synthetic IRF was
used for our confocal FLIM system (Supplement 1 Note S6) [32].

Consistent with previous findings, only FPFLI can produce
meaningful lifetime images under the highly low-light conditions
considered in this study. The overall lifetime distributions for all
FOVs analyzed were in good agreement with their corresponding
GTs, and subtle lifetime differences in some local areas were easily
distinguishable. Quantitative analysis of IMMSE, similar to that
for synthetic images, indicates that FPFLI trained by synthetic
FLIM data has similar performance on different experimental
FLIM data. The quick training of LLE enables FPFLI to adapt
to varying decay histograms, making it a promising tool for gen-
eral FLIM systems. However, it is worth noting that FPFLI can
generate slight artifacts, such as the bright spots observed in the
reconstructed lifetime images in Figs. 3(a)-3(c). These artifacts are
mainly due to relatively large lifetime deviations from low photon
counts. In addition, images with high spatial complexity, such as

Intensity MLE FPFLI GT Err_MLE Err_FPFLI
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Fig. 3. FPFLI analyzing FLIM images of the mouse kidney section
with different fields of view (FOVs). Average PPPs for (a)—(c) are 7.49,
6.78,and 7.46, respectively.

those with complex shapes or lifetime distributions [Figs. 2(d) and
3(a)], have larger IMMSEs, indicating that FPFLI is more chal-
lenging to reconstruct lifetime images in such cases. Nevertheless,
our results experimentally demonstrate that FPFLI can robustly
estimate lifetime images from extreme low-light conditions with
only a few PPPs, which is impossible for conventional FLIM
analysis methods.

Identifying the moving fluorophore-tagged microspheres.
Analyzing fluorescence lifetime images under highly low-light
conditions allows imaging of fast-moving targets. To demon-
strate this, we used FPFLI to analyze moving fluorophore-tagged
microspheres, widely used in flow cytometry. Two kinds of fluo-
rescent microsphere aqueous solutions with a concentration
of 3.6 x 10° beads/ml, one containing crimson (C, F8831,
FluoSphere Polystyrene Microspheres, Thermo Fisher, UK) and
the other containing yellow-green (YG, F8836, FluoSpheres
Polystyrene Microspheres, Thermo Fisher, UK) fluorescent
microspheres, were mixed at an identical ratio. Both microspheres
have an average size of 10 pm. The average lifetimes for C- and
YG-microspheres, measured from their steady solution using a
commercial lifetime fluorometer (FluoroCube Extreme, HORIBA
Scientific, UK) were: ¢ from 1.9 to 2.1 and Tyg from 2.9 to 3.2 ns,
respectively. We dropped the mixed solution on a coverslip at
room temperature to acquire the FLIM data and then scanned
it using the MicroTime 200 STED FLIM system. The YG- and
C-microspheres were excited using 40 MHz 483 nm and 637 nm
picosecond pulsed lasers, respectively. The fluorescence light they
emitted was detected by two separate SPAD detectors equipped
with 530 nm and 650 nm long-pass filters, respectively. The micro-
spheres underwent Brownian motion and slowly moved towards
the boundary of the droplet due to the force of surface tension. To
avoid motion blur, we kept the measurement time below 10s. The
measured FLIM data have 512 x 512 pixels and a 50 ns period
with a 40 ps timing resolution. The data were then post-processed
to 256 time bins with 0.1 ns timing resolution and analyzed by
FPFLI.

Figures 4(a)-4(d) present microsphere images with varying
FOVs. Since itis difficult to accumulate high photon counts to cal-
culate GT lifetimes for moving samples, GT images were obtained
separately from different detector channels. The lifetimes of C-
and YG-microspheres were assigned as ¢ = 2.0 and tyg = 3.0 ns
for reference, respectively. Both microspheres have similar quan-
tum yields [Fig. 4(a)]; therefore, it is impossible to identify the
microsphere type from the intensity images. Additionally, as
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Fig.4. Identification of moving fluorophore-tagged microspheres with
FPFLI. Average PPPs for microspheres in (a)—(d) are 8.4, 9.9, 9.2, and
15.7, respectively. The different quantum yields cause uneven intensity
distributions in some microspheres, which were mixed from different
production batches.

the photon counts are too few, lifetime images estimated by the
traditional MLE also fail to recognize the microsphere type.

In contrast, lifetime images calculated by FPFLI quickly and
accurately discriminate the microsphere types compared to the
GT images. Even in the case of large FOVs and extremely dense
microsphere distribution [Fig. 4(d)], FPFLI maintains high dis-
crimination accuracy in identifying the types of microspheres. All
C-microspheres can be sorted out from the lifetime image. The
error maps and immse for FPFLI indicate that FPFLI has a small
error for overall lifetime estimation. The bias for estimating the
lifetime of C-microspheres is around £0.1 ns. However, the esti-
mated lifetime of YG-microspheres has an extensive distribution
and skews towards larger values with a bias of 0.3 ns. Under the
same photon count conditions, it is more challenging for FPFLI to
estimate longer lifetimes, as discussed in the previous section [Fig. 1
(0)]. To verify the robustness of FPFLI, we conducted a follow-up
experiment using a two-photon FLIM system. In this setup, both
microspheres were excited by a single laser, and a photomultiplier
detector recorded their fluorescence signals. The measured FLIM
images have much lower PPPs and significant background noise.
Our findings demonstrate that FPFLI exhibits exceptional accu-
racy and robustness. Even for FLIM images with only one PPP,
FPFLI still delivers lifetime images that can discriminate the types
of microspheres (Supplement 1 Note 7 and Fig. S7). This indicates
that FPFLI holds excellent potential for high-throughput FLIM
applications.

FPFLI analyzing gold-nanoparticle-labeled Hek293 cells.
The success of FPFLI in accurately estimating lifetimes depends
on the spatial correlation of FLIM, which transforms the highly
ill-posed problem into a well-posed one. As a result, DL neural
networks make it possible to reconstruct lifetime images. However,
some readers may question the performance of FPFLI when the
spatial correlation in FLIM images is weak. To address this con-
cern, we experimented using FPFLI to analyze the lifetime changes
in human embryonic kidney (Hek293) cells labeled with gold
nanorods (GNRs). GNRs are promising contrast agents in bio-
medical research that offer several advantages over organic dyes
[33,34]. These advantages include better photo-stability, low tox-
icity, extraordinary intracellular stability, broad-range fluorescence
quenching capability, and the ability to conjugate to biomolecules.
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Fig. 5. Fluorescence lifetime analysis of 256 x 256 gold-nanorod-

labeled Hek293 cells. (a) Intensity image of the cell sample. The average
PPP of cells was approximately nine. White dashed boxes mark two
regions of interest (ROIs) with 31 x 31 pixels for detailed analysis.
(b) GT lifetime image calculated from the same FLIM image with a
maximum photon count of 10%. (c), (d) Lifetime images obtained by
MLE and FPFLI for the low-light cell image. (e) Lifetime distribution his-
tograms comparing MLE, FPFLI, and GT. The lower panel compares the
GNRs’ lifetime distributions obtained by FPFLI and GT. (f), (g) Image

comparisons of intensity, lifetime, and error maps in ROIs 1 (f) and 2 (g).

Their strong two-photon luminescence and characteristic short
fluorescence lifetime are especially beneficial for FLIM imaging
[35]. Our experiments obtained the FLIM image of GNR-labeled
Hek293 cells using a two-photon FLIM system. The LLE was
quickly retrained for the system with a dynamic range from 1 to
3 ns. The sample preparation and image acquisition are described
in Supplement 1 Note 8.

Figure 5(a) shows the low-light intensity image. Due to the
strong two-photon luminescence, GNRs show bright spots with
dozens of photons, irregularly scattered among cells. Nevertheless,
most pixels of cells have fewer than 10 photons. In Fig. 5(b), the
corresponding GT lifetime image shows that GNRs shorten the
cells’ lifetimes because of their ultra-short lifetimes and fluores-
cence quenching effects. Due to the nanoscale size of GNRs, the
lifetime changes occur at small discrete areas where GNRs accu-
mulate. Therefore, the lifetime image has a low spatial correlation.
Figures 5(c)-5(e) present the estimated lifetime images and their
distributions obtained using MLE and FPFLI. The lower panel in
Fig. 5(e) presents the lifetime distributions specifically for GNRs,
highlighting the histogram calculated by FPFLI, which exhibits a
high degree of overlap with the GT histogram. Only FPFLI obtains
a lifetime image with a lifetime distribution highly overlapped
with that of the GT image. The low-lifetime regions identify
the locations of GNRs. However, the image delivered by FPFLI
becomes smooth and blurred compared to the GT image, resulting
in more pixels with shorter lifetimes. This can be observed in both
Figs. 5(d) and 5(e).

For better analysis, Figs. 5(f) and 5(g) provide detailed com-
parisons of intensity and lifetime images in two distinct regions of
interest (ROIs). In ROI 1, the dark pixels show shorter lifetimes. In
contrast, a bright spot at the left corner does not affect the lifetime,
possibly due to GNRs being located inside the cells and the spot
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being caused by contaminations. On the other hand, the bright
pixels corresponding to GNRs have shorter lifetimes in ROI 2.
These two ROIs suggest that high intensity is not always correlated
to a short lifetime, and pixels with shorter lifetimes are spatially
discrete. Therefore, the intensity information cannot precisely
guide the interpolation. FPFLI can output only lifetime images
that are most likely to resemble GTs, resulting in over-smoothed
lifetime images. Despite that, the error maps of FPFLI indicate that
the estimation accuracy remains high, with a deviation of about 0.1
and 0.3 for ROIs 1 and 2, respectively.

The results in Fig. 5 indicate that even in scenarios with low
light and weak spatial correlation, FPFLI can still effectively esti-
mate the overall lifetime distribution and local lifetime changes.
However, it is essential to note that some artifacts, such as over-
smoothed images and inaccurate lifetime estimations, may still
occur. Therefore, it is crucial to be cautious to prevent incorrect
interpretations of the results.

4. DISCUSSION AND CONCLUSION

We present FPFLI, a DL-based method to estimate fluorescence
lifetime images under extreme low-light conditions efficiently.
Our approach enables robust analysis for FLIM data with only
a few PPPs without requiring slow and complex optimization
processes. As a purely computational technique, FPFLI eliminates
the need to modify FLIM systems or acquire additional data. The
algorithm can be effectively trained using synthetic FLIM data
and easily adapted for different experimental settings. To validate
FPFLI’s efficacy and resilience, we test it on synthetic images and
experimental data from mouse kidney sections, fluorophore-
tagged microspheres, and gold-nanoparticle-labeled Hek293 cells
acquired via confocal and two-photon FLIM systems.

FPFLI can be viewed as a DL-improved global analysis (GA)
method. GA has been a popular choice for analyzing low-light
FLIM data by accumulating all detected photons in a histogram
for lifetime estimation and then assigning the same lifetime to all
pixels of the sample [36]. GA provides a reliable lifetime readout
with limited photons but sacrifices all the spatial information
of fluorescence lifetimes. A variant GA method incorporating
image segmentation techniques can be used for analyzing spatially
varying FLIM data [37]. However, this method is impractical
due to the challenges in accurately segmenting images with low
SNR, complex morphology, and uneven intensity distribution, as
demonstrated in Figs. 2, 3, and 5. FPFLI addresses this difficulty
by combining local lifetime estimation and global intensity image
fusion. FPFLI’s sub-network LLE estimates the average lifetimes
of small local areas like GA. The information fusion with intensity
images by NIII preserves morphology information and provides
both local and non-local information to reconstruct the lifetime
image. Thus, FPFLI retains the merit of GA while delivering as
much spatially variant lifetime information as possible.

FPFLI employs a decoupled approach for local lifetime esti-
mation and intensity image fusion, which brings significant
advantages and flexibility. First, it reduces the algorithm complex-
ity to a great extent. Unlike an end-to-end deep neural network that
directly maps 3D FLIM data to final lifetime images, FPFLI uses
low-dimensional (1D and 2D) convolution operators, making the
algorithm compact, easy to train, and faster. The unique lifetime
reconstruction using NIII achieves unprecedented fast calculation
speed, and the analysis of 512 x 512 images takes less than 2 s.
Second, FPFLI is more adaptable to different FLIM systems and

application scenarios. For example, LLE can be retrained for decay
histograms with varying timing resolutions and lifetime ranges
in just a few minutes, as previously demonstrated (Figs. 3 and 4).
In principle, FPFLI can be further adapted for time-gated FLIM
systems, where the decay histograms are integrated into several
time gates [38]. This allows for the extension of our algorithm to
non-TCSPC systems. It is worth mentioning that NIII exhibits
a robust performance for various images that show significant
differences from the training data. This is due to the self-guided
nature of NIII, as the intensity image is directly derived from FLIM
data.

It is important to note that the size of the neighboring pixel for
local lifetime estimation significantly impacts the algorithm’s per-
formance. In this study, we utilized 8 x 8 patches to estimate local
lifetimes for all considered FLIM data, which was found to be a
good balance between the accuracy of local lifetime estimation and
spatial complexity. If the local area under consideration is too small,
for instance, 2 X 2 or 4 x 4 patches, the estimated local lifetimes
tend to have low accuracy due to insufficient photon counts, which
degrades the sequential interpolation. Conversely, suppose the
local area is too large. In that case, the algorithm may fail to detect
small local lifetime changes and output incorrect estimations
and artifacts (Supplement 1 Note 9 and Fig. S8). Undoubtedly,
no one-size-fits-all algorithm can consistently achieve excellent
performance across all situations. The FPFLI framework can be
flexibly modified and adjusted according to the specific properties
of the FLIM data being analyzed. The LLE and NIIT architectures
could be replaced with more advanced alternatives.

In summary, our work presents FPFLI, a powerful tool for
analyzing FLIM data with a few PPPs. FPFLI combines lifetime
estimation of local areas and global information fusion with the
intensity image, providing exceptional accuracy, fast speed, and
high flexibility for adapting to different FLIM systems. FPFLI
significantly reduces the photon budget with rapid analysis, prom-
ising broad and novel low-light FLIM applications previously
unattainable with existing methods, such as investigating dynamic
living samples and performing high-throughputimaging screens.
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