
ON APPROXIMATION OF SOLUTIONS OF STOCHASTIC DELAY

DIFFERENTIAL EQUATIONS VIA RANDOMIZED EULER SCHEME
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Abstract. We investigate existence, uniqueness and approximation of solutions to
stochastic delay differential equations (SDDEs) under Carathéodory-type drift co-
efficients. Moreover, we also assume that both drift f = f(t, x, z) and diffusion
g = g(t, x, z) coefficient are Lipschitz continuous with respect to the space variable x,
but only Hölder continuous with respect to the delay variable z. We provide a con-
struction of randomized Euler scheme for approximation of solutions of Carathéodory
SDDEs, and investigate its upper error bound. Finally, we report results of numerical
experiments that confirm our theoretical findings.

MSC (2020): 68Q25, 65C30, 60H10

1. Introduction

In this paper, we investigate the efficiency of randomized numerical scheme for sim-
ulating the stochastic delay differential equations (SDDEs) by considering the SDDEs
of the following form

(1.1)

{
dX(t) = f(t,X(t), X(t− τ)) dt+ g(t,X(t), X(t− τ)) dW (t)

X(t) = x0, t ∈ [−τ, 0],

with the constant time-lag τ ∈ (0,+∞), fixed time horizon n ∈ N, f : [0, (n + 1)τ ] ×
Rd × Rd 7→ Rd, g : [0, (n + 1)τ ] × Rd × Rd 7→ Rd×m, and x0 ∈ Rd. We assume that
the drift coefficient f = f(t, x, z) is Borel measurable with respect to t, and (at least)
continuous with respect to (x, z). Therefore, the Carathéodory type conditions for f
are considered. For the diffusion coefficient g(t, x, z) we assume (at least) continuity
with respect to all variables (t, x, z).

Inspired by known Monte Carlo methods, randomized algorithms for approximation
of stochastic integrals and solutions of stochastic differential equations (SDEs) have been
recently considered in [5, 7, 12, 18, 15, 16, 20], to name but a few. The idea is to wisely
combine the probabilistic representation for integrals with classical numerical schemes.
A notable observation is that compared to classical algorithms, their randomized coun-
terparts may handle irregular coefficients well, which relates to the flexible smoothness
requirement of Monte Carlo methods. Suitably chosen randomization might be very
helpful in order to handle time-irregularities in the right-hand side functions both for
ODEs ([1, 2, 6, 8, 9, 11]) and SDEs ([16, 15, 18, 12, 20, 19]). For instance, the classical
Milstein method for non-autonomous SDEs requires the drift term to be differentiable

Key words and phrases. stochastic differential equations, constant delay, randomized Euler scheme,
Wiener process, Carathéodory-type conditions.
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with respect to both temporal and spatial variables in order to achieve an order of con-
vergence one. Its randomised version [12] can achieve the same order of convergence
with only an Lipschitz condition (resp. a Hölder continuity) on the drift wrt the spatial
variable (resp. the temporal variable).

Though SDEs can be regarded as a special case of stochastic delay differential equa-
tions (SDDEs), the extention of the randomized numerical approaches from SDEs to
SDDEs is non-trivial. On the one hand, compared to SDEs, the existence, uniqueness
and Lp-Hölder regularity of the strong solution to (1.1) is currently not known in the
literature under conditions for f and g considered in this paper. On the other hand, the
time-delays may induce instabilities in the basic SDDEs [14], and the presence of time-
delays may further influence the convergence speed [3]. Both aspects bring challenges.

In this article, we resolve these challenges one by one. For the study of the exact
solution to (1.1), instead of considering the SDDE over the entire interval all at once,
we follow a different way, known for CDDEs form in [6]. The entire time interval will
be divided into multiple subintervals of the length τ and the solution of the SDDE
will be considered at each subinterval separately. This will allow the SDDE to be
converted into a sequence of iterative SDEs with random coefficients and analyzed by
induction, where the delay term is treated as a random resource that has been given
(see (3.2)). The randomized Euler-Maruyama method is defined in the same manner,
i.e., iteratively. We keep the same grid for all the subintervals of length τ so that
the simulation obtained from the preceding subinterval will directly be the delay input
for the current subinterval. To assist the error analysis, we introduce the auxiliary
randomized Euler-Maruyama scheme. In the case when f or g are Hölder contiuous
with respect to z we observe that the numerical error accumulates over the subintervals.
In particular, this may suggest that this analysis is not valid for the infinite time horizon
cases.

To summarise, the main contributions of the paper are as follows:

• We show existence, uniqueness, and Hölder regularity of the strong solution to
(1.1) when both the drift f(t, x, z) and diffusion g(t, x, z) coefficients are Borel
measurable with respect to t, satisfy a global Lipschitz condition with respect to
x andf global linear growth condition wrt (x, z), but are continuous with respect
to the delay variable z (see Theorem 3.1).

• We perform rigorous error analysis of the randomized Euler scheme applied to
(1.1) when both drift coefficient f(t, x, z) and diffusion coefficient g(t, x, z) sat-
isfy a global Lipschitz condition with respect to x and a global Hölder condition
with respect to z. Still, we assume that f is only Borel measurable with respect
to t, but for g we assume now that it is also Hölder contiuous with respect to
the time variable t. (Theorem 4.1).

• We present an implementation of the randomized Euler-Maruyama method in
Python code and report results of numerical experiments that show stable error
behaviour as stated in Theorem 4.1.

The structure of the article is as follows. Basic notions, definitions together with
assumptions and the construction of the randomized Euler-Maruyama scheme are given
in Section 2. All Section 3 is devoted to the issue of existence and uniqueness of
strong solutions of the Carathéodory type SDDEs (1.1). Section 4 contains proof of
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Symbol Meaning

γjk uniformly distributed sample from [0, 1] for j ∈ N0 and k ∈ N
tjk tjk = jτ + kh for k ∈ [N ]0 and j ∈ [n]0

θjk+1 θjk+1 = tjk + hγjk+1

δjk+1 δjk+1 = kh+ hγjk+1

Table 1. Notations.

the main result of the paper (Theorem 3.1) that states upper bounds on the error of
the randomized Euler-Maruyama scheme. In Section 5 we report results of numerical
experiments with an exemplary Python implementation.

2. Preliminaries

Define N = {1, 2, . . .}, N0 = N ∪ {0}. For an integer k, [k] := {1, . . . , k} and [k]0 :=
{0} ∪ [k]. By | · | we mean the Euclidean norm in Rd or the Frobenius norm in Rd×m.
We consider a complete probability space (Ω,Σ,P). For a random variable X : Ω → Rd

we denote by ∥X∥Lp(Ω) = (E|X|p)1/p, where p ∈ [2,+∞). We denote by (Σt)t≥0 a
filtration, satisfying the usual conditions, such that W = (W (t))t≥0 is m-dimensional

Wiener process on (Ω,Σ,P) with respect to (Σt)t≥0. Let Σ∞ = σ
(⋃

t≥0 Σt

)
. For two

sub-σ-fields A, B of Σ we denote by A ∨ B = σ(A ∪ B).
Let us fix the horizon parameter n ∈ N. On the drift coefficient f : [0, (n + 1)τ ] ×

Rd × Rd 7→ Rd we impose the following assumptions:

(A1) f(t, ·, ·) ∈ C(Rd × Rd;Rd) for all t ∈ [0, (n+ 1)τ ],
(A2) f(·, x, z) : [0, (n+ 1)τ ] → Rd is Borel measurable for all (x, z) ∈ Rd × Rd,
(A3) There exist Kf ∈ (0,∞) such that for all t ∈ [0, (n+ 1)τ ], x, x1, x2, z ∈ Rd

|f(t, x, z)| ≤ Kf (1 + |x|+ |z|),
|f(t, x1, z)− f(t, x2, z)| ≤ Kf |x1 − x2|.

(2.1)

For the diffusion coefficient g : [0, (n+1)τ ]×Rd ×Rd 7→ Rd×m we impose the following
assumptions:

(B1) g(t, ·, ·) ∈ C(Rd × Rd;Rd×m) for all t ∈ [0, (n+ 1)τ ],
(B2) g(·, x, z) : [0, (n+ 1)τ ] → Rd×m is Borel measurable for all (x, z) ∈ Rd × Rd,
(B3) There exists Kg ∈ (0,∞) such that for all t ∈ [0, (n+ 1)τ ], x, x1, x2, z ∈ Rd

|g(t, x, z)| ≤ Kg(1 + |x|+ |z|),
|g(t, x1, z)− g(t, x2, z)| ≤ Kg|x1 − x2|.

(2.2)

In Section 3 we show that, under the assumptions (A1)-(A3), (B1)-(B3), the SDDE (1.1)
has an unique strong solution. Next, in Section 4 we investigate error of the randomized
Euler scheme under slightly stronger assumptions than (A1)-(A3), (B1)-(B3). The
aforementioned randomized Euler scheme is defined as follows. Fix the discretization
parameter N ∈ N and set

tjk = jτ + kh, k ∈ [N ]0, j ∈ [n]0,
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where

(2.3) h =
τ

N
.

Note that for each j the sequence {tjk}
N
k=0 provides uniform discretization of the subin-

terval [jτ, (j + 1)τ ]. Let {γjk}j∈N0,k∈N be an iid sequence of random variables, defined

on the complete probability space (Ω,Σ,P), where every γjk is uniformly distributed on

[0, 1]. We assume that the σ-fields σ({γjk}j∈N0,k∈N) and Σ∞ are independent. Then
W = (W (t))t≥0 is also the Wiener process with respect to the extended filtration

(2.4) Σ̃t = Σt ∨ σ({γjk}j∈N0,k∈N), t ≥ 0.

We set y−1
0 = . . . = y−1

N = x0 and then for j = [n]0, k = [N − 1]0 we take

yj0 = yj−1
N ,(2.5)

yjk+1 = yjk + h · f(θjk+1, y
j
k, y

j−1
k ) + g(tjk, y

j
k, y

j−1
k )(W (tjk+1)−W (tjk)),(2.6)

where θjk+1 = tjk+hγjk+1. As the output we obtain the sequence of Rd-valued random vec-

tors {yjk}k∈[N ]0,j∈[n]0 that provides a discrete approximation of the values {X(tjk)}k∈[N ]0,j∈[n]0 .
By induction we get that for all j ∈ [n]0, k ∈ [N ]0

σ({yjk}) ⊂ σ
(
{γ0

1 . . . , γ
0
N , . . . , γj−1

1 , . . . , γj−1
N , γj1, . . . , γ

j
k}
)

∨σ
(
{W (t00), . . . ,W (t0N ), . . . ,W (tj0), . . . ,W (tjk)}

)
.(2.7)

As the horizon parameter n is fixed, the randomized Euler scheme uses O(N) evaluations
of f (with a constant in the ’O’ notation that depends on n but not on N).

The aim is to establish upper bounds on the Lp(Ω)-error

(2.8)
∥∥∥ max

0≤k≤N
|X(tjk)− yjk|

∥∥∥
Lp(Ω)

for all j = 0, 1, . . . , n.

3. Properties of solutions to Carathéodory SDDEs

We take into account the semi-flow property holds for SDDE (1.1). Namely, we define

(3.1) ϕl(t) := X(t+ lτ), t ∈ [0, τ ], l = −1, 0, 1, . . . , n

and, in particular, ϕ−1(t) = x0 for t ∈ [0, τ ]. Using change of variable formula for
Lebesgue and Itô integrals we arrive at the following SDE with random coefficients

(3.2)

{
dϕl(t) = fl

(
t, ϕl(t)

)
dt+ gl

(
t, ϕl(t)

)
dWl(t), t ∈ [0, τ ],

ϕl(0) = ϕl−1(τ),

where the random fields fl : R×Rd ×Ω → Rd and gl : R×Rd ×Ω → Rd×m are defined
follows

fl(t, x) := f
(
t+ lτ, x, ϕl−1(t)

)
,(3.3)

gl(t, x) := g
(
t+ lτ, x, ϕl−1(t)

)
,(3.4)
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and Wl(t) := W (t+ lτ), t ∈ [0, τ ], x ∈ Rd 1. We also set

Σ−1
t := {∅,Ω},(3.5)

Σj
t := Σt+jτ ,(3.6)

for t ∈ [0, τ ], j ∈ [n]0. The solution X of (1.1) can be written as

(3.7) X(t) =
n∑

j=−1

ϕj(t− jτ) · 1[jτ,(j+1)τ ](t), t ∈ [−τ, (n+ 1)τ ].

We state Lp-boundedness and regularity of the solution X in the following Theorem
3.1. Similar result is given in Theorem 3.1. at pages 156-157 in [13], however, the Lp

estimates and Lp-Hölder regularity of the solution is not studied there.

Theorem 3.1. Let n ∈ N0, τ ∈ (0,+∞), x0 ∈ Rd and let f, g satisfy the assumptions
(A1)-(A3), (B1)-(B3). Then there exists a unique strong solution X = X(x0, f, g) to
(1.1) such that for j ∈ [n]0 we have

(3.8) E
(
sup

0≤t≤τ
|ϕj(t)|p

)
≤ Kj ,

where K−1 := |x0|p, K = max{Kf ,Kg},

(3.9) Kj = Cp

(
Kj−1 + cpτ

p/2Kp(τp/2 + 1)(1 +Kj−1)
)
exp
(
Cpτ

pKp(1 +Kp)
)
,

and for all j ∈ [n]0, t, s ∈ [0, τ ] it holds

(3.10) ∥ϕj(t)− ϕj(s)∥Lp(Ω) ≤ cpK(τ1/2 + 1)(1 +K
1/p
j−1 +K

1/p
j )|t− s|1/2.

Proof. We proceed by induction. We start with the case when j = 0 and consider the
following SDE

(3.11)

{
dϕ0(t) = f0(t, ϕ0(t)) dt+ g0(t, ϕ0(t)) dW0(t), t ∈ [0, τ ],

ϕ0(0) = x0,

with f0(t, x) = f(t, x, ϕ−1(t)) = f(t, x, x0), g0(t, x) = f(t, x, ϕ−1(t)) = g(t, x, x0). More-
over, by (2.1), (2.2) we have for all t ∈ [0, τ ], x, y ∈ Rd that

(3.12) max{|f0(t, x)|, |g0(t, x)|} ≤ max{Kf ,Kg}(1 + |x0|+ |x|),

and

(3.13) max{|f0(t, x)− f0(t, y)|, |g0(t, x)− g0(t, y)|} ≤ max{Kf ,Kg}|x− y|.

Therefore, by Proposition 3.28, page 187 in [17] we have that there exists a unique
strong solution ϕ0 : [0, τ ]×Ω → Rd of (3.11) that is adapted to (Σ0

t )t∈[0,τ ]. By Remark
3.29, page 188 in [17], the solution ϕ0 satisfies (3.8) with j = 0 and

(3.14) K0 = Cp

[
|x0|p + cpτ

p/2Kp(1 + τp/2)(1 + |x0|p)
]
exp
(
Cpτ

pKp(1 +Kp)
)
,

with K = max{Kf ,Kg}. In addition, ϕ0 satisfies (3.10) for j = 0.

1We can also take Wl(t) := W (t + lτ) −W (lτ) - in both cases Wl is a Wiener process with respect
to the filtration (Σl

t)t∈[0,τ ]= (Σt+lτ )t∈[0,τ ], see, for example, Theorem 100, page 67 in [21].
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Let us now assume that for some j ∈ [n − 1]0 there exists, adapted to (Σj
t )t∈[0,τ ], a

unique strong solution ϕj : [0, τ ]× Ω → Rd of

(3.15)

{
dϕj(t) = fj(t, ϕj(t)) dt+ gj(t, ϕj(t)) dWj(t), t ∈ [0, τ ],

ϕj(0) = ϕj−1(τ),

that satisfies (3.8), (3.10), where fj(t, x) = f(t + jτ, x, ϕj−1(t)), gj(t, x) = g(t +
jτ, x, ϕj−1(t)). We consider the following SDE

(3.16)

{
dϕj+1(t) = fj+1(t, ϕj+1(t)) dt+ gj+1(t, ϕj+1(t)) dWj+1(t), t ∈ [0, τ ],

ϕj+1(0) = ϕj(τ),

with fj+1(t, x) = f(t+ (j +1)τ, x, ϕj(t)), gj+1(t, x) = g(t+ (j +1)τ, x, ϕj(t)). Since the

process ϕj is adapted to (Σj
t )t∈[0,τ ], Σ

j
t ⊂ Σj+1

t and has continuous trajectories, for all

x ∈ Rd the processes (fj+1(t, x))t∈[0,τ ], (gj+1(t, x))t∈[0,τ ] are (Σj+1
t )t∈[0,τ ]-progressively

measurable. Moreover, by (2.1), (2.2) for all (t, x) ∈ [0, τ ]× Rd

(3.17) max{|fj+1(t, x)|, |gj+1(t, x)|} ≤ K(1 + |ϕj(t)|) +K|x|,

and for all t ∈ [0, τ ], x, y ∈ Rd it holds

(3.18) max{|fj+1(t, x)− fj+1(t, y)|, |gj+1(t, x)− gj+1(t, y)|} ≤ K|x− y|.

Hence, by by Proposition 3.28, page 187 in [17] there exists a unique strong solution
solution ϕj+1 : [0, τ ] × Ω → Rd of (3.16). By the inductive assumption and Remark
3.29, page 188 in [17] we get that

E
(
sup

0≤t≤τ
|ϕj+1(t)|p

)
(3.19)

≤ Cp

(
E|ϕj(τ)|p + E

( τ∫
0

K(1 + |ϕj(s)|) ds
)p

+ E
( τ∫

0

K2(1 + |ϕj(s)|)p/2 ds
)p)

× exp
(
Cpτ

p−1

τ∫
0

(Kp +K2p) ds
)

≤ Cp

(
Kj + cpτ

p/2Kp(τp/2 + 1)(1 +Kj)
)
exp
(
Cpτ

pKp(1 +Kp)
)
= Kj+1,

and therefore, by the Hölder and Burkholder inequalities, we get for s, t ∈ [0, τ ], s < t

E|ϕj+1(t)− ϕj+1(s)|p ≤ Cp

[
(t− s)p−1

t∫
s

E|fj+1(u, ϕj+1(u))|p du

+Ĉp(t− s)
p−2
2

t∫
s

E|gj+1(u, ϕj+1(u))|p du
]
≤ K̄j+1(t− s)p/2,(3.20)

where K̄j+1 = cppKp(τp/2 + 1)(1 +Kj +Kj+1). This ends the inductive proof. □
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4. Error analysis for the randomized Euler algorithm

In this section we provide error analysis for randomized Euler scheme under slightly
stronger assumptions than those stated in Section 2. Namely, for the drift coefficient
we assume that instead of (A3) it satisfies what follows:

(A3’) There exist α1 ∈ (0, 1], K̄f , Lf ∈ (0,∞) such that for all t ∈ [0, (n+ 1)τ ]

(4.1) |f(t, 0, 0)| ≤ K̄f ,

and for all t ∈ [0, (n+ 1)τ ], x1, x2, z1, z2 ∈ Rd

(4.2) |f(t, x1, z1)− f(t, x2, z2)| ≤ Lf (|x1 − x2|+ |z1 − z2|α1).

For the diffusion coefficient we impose the following assumption, that is stronger than
(B1), (B2), and (B3):

(B3’) There exist α2, ϱ ∈ (0, 1], K̄g, Lg ∈ (0,∞) such that for all t ∈ [0, (n + 1)τ ],

x, z ∈ Rd

(4.3) |g(t1, x, z)− g(t2, x, z)| ≤ K̄g(1 + |x|+ |z|)|t1 − t2|ϱ,

and for all t ∈ [0, (n+ 1)τ ], x1, x2, z1, z2 ∈ Rd

(4.4) |g(t, x1, z1)− g(t, x2, z2)| ≤ Lg(|x1 − x2|+ |z1 − z2|α2).

Note that for any f that satisfies the assumption (A3’) it holds for all t ∈ [0, (n+ 1)τ ],
x, z ∈ Rd

(4.5) |f(t, x, z)| ≤ Kf (1 + |x|+ |z|),

with Kf = K̄f + Lf , while for any g satisfying (B3’) we have for all t ∈ [0, (n + 1)τ ],

x, z ∈ Rd

(4.6) |g(t, x, z)| ≤ Kg(1 + |x|+ |z|),

with Kg = |g(0, 0, 0)|+ Lg + K̄g((n+ 1)τ)ϱ.
In order to perform error analysis, we define the auxiliary randomized Euler-Maruyama

scheme as follows:

ȳ0
0 = y0

0 = y−1
N = x0,(4.7)

ȳ0
k+1 = ȳ0

k + h · f0(θ
0
k+1, ȳ

0
k) + g0(t

0
k, ȳ

0
k)∆

0
kW, k = 0, 1, . . . , N − 1,(4.8)

and for l = 0, 1, . . . , n− 1

ȳl+1
0 = yl+1

0 = ylN ,(4.9)

ȳl+1
k+1 = ȳl+1

k + h · fl+1(δ
l+1
k+1, ȳ

l+1
k ) + gl+1(t

0
k, ȳ

l+1
k )∆l+1

k W, k = 0, 1, . . . , N − 1.(4.10)

where δl+1
k+1 = kh+ γl+1

k+1h and ∆l+1
k W := W (tl+1

k+1)−W (tl+1
k ) for l = −1, 0, . . . , n− 1.

Note that δl+1
k+1 is uniformly distributed in (t0k, t

0
k+1) and θl+1

k+1 = δl+1
k+1 + (l + 1)τ

is uniformly distributed in (tl+1
k , tl+1

k+1). For N ≥ 2 we have that h ∈ (0, τ), which

gives that tl+1
k > tlk+1 and Σtlk+1

⊂ Σtl+1
k

. This fact and Lemma 6.1 imply that for

ϕl(δ
l+1
k+1) = X(tlk + hγl+1

k+1), where ϕl is defined in (3.1), we have

(4.11) σ(ϕl(δ
l+1
k+1)) ⊂ σ({γl+1

k+1}) ∨ Σtlk+1
⊂ σ({γl+1

k+1}) ∨ Σtl+1
k

,
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and hence, ϕl(δ
l+1
k+1) is independent of ∆l+1

k W . Moreover, it follows from (3.3), (4.10)
that

ȳl+1
k+1 = ȳl+1

k + h · f(tl+1
k + hγl+1

k+1, ȳ
l+1
k , ϕl(δ

l+1
k+1))

+g(tl+1
k , ȳl+1

k , ϕl(t
l+1
k )) ·∆l+1

k W.(4.12)

Hence, by (4.12), (4.11), and induction we get for j ∈ [n]0 and k ∈ [N ]0 that

(4.13) σ(ȳjk) ⊂ Σ
tjk
∨ σ({γ0

1 . . . , γ
0
N , . . . , γj−1

1 , . . . , γj−1
N , γj1, . . . , γ

j
k}).

Therefore, ȳjk is measurable with respect to larger σ-field than yjk (see (2.7)). Note that

ȳlk is not implementable. However, we use ȳlk only in order to estimate the error (2.8)

of (implementable scheme) ylk.

Theorem 4.1. Let n ∈ N0, τ ∈ (0,+∞), x0 ∈ Rd, and let f, g satisfy the assump-
tions (A1), (A2), (A3’) and (B1), (B2), (B3’) for some ϱ, α1, α2 ∈ (0, 1]. There exist
C0, C1, . . . , Cn ∈ (0,+∞) such that for all N ≥ ⌈τ⌉ and j = 0, 1, . . . , n it holds

(4.14)
∥∥∥ max

0≤k≤N
|X(tjk)− yjk|

∥∥∥
Lp(Ω)

≤ Cjh
min{ϱ, 1

2
}αj

,

where α := min{α1, α2}, and, in particular, if α = 1 then

(4.15)
∥∥∥ max

0≤k≤N
|X(tjk)− yjk|

∥∥∥
Lp(Ω)

≤ Cjh
min{ϱ, 1

2
}.

Proof. We start with the initial-vale problem (3.2) with l = 0. Since ȳ0
0 = y0

0 = x0,
f0(t, x) = f(t, x, x0) and g0(t, x) = g(t, x, x0), we have that ȳ

0
k = y0

k for all k = 0, . . . , N .
Moreover, by (A1), (A2), (A3’) and (B1), (B2), (B3’) we have that f0 and g0 is Borel
measurable, and for all t, t1, t2 ∈ [0, τ ] and x, y ∈ Rd

|f0(t, x)| ≤ Kf (1 + |x0|+ |x|),
|f0(t, x)− f0(t, y)| ≤ Lf |x− y|.(4.16)

and

|g0(t, x)| ≤ Kg(1 + |x0|+ |x|),
|g0(t, x)− g0(t, y)| ≤ Kg|x− y|(4.17)

|g0(t1, x)− g0(t2, x)| ≤ K̄g(1 + |x|+ |x0|)|t1 − t2|ϱ.

Since for l = 0 we deal with ordinary SDE, by Theorem 3.1 and by using analogous
arguments as in the proof of Proposition 1 in [15] we get∥∥∥ max

0≤k≤N
|ϕ0(t

0
k)− y0

k|
∥∥∥
Lp(Ω)

≤ C0h
min{ϱ, 1

2
},

where C0 does not depend on N . Since ϕ0(t
0
k) = X(t0k) we get (4.14) for j = 0.

Let us now assume that there exists l ∈ {0, 1, . . . , n − 1} for which there exists
Cl ∈ (0,+∞) such that for all N ≥ ⌈τ⌉

(4.18)
∥∥∥ max

0≤k≤N
|ϕl(t

0
k)− ylk|

∥∥∥
Lp(Ω)

≤ Clh
min{ϱ, 1

2
}αl

.
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We consider the initial-value problem (3.2) for ϕl+1. By (A1), (A2), (A3’) and (B1),
(B2), (B3’) we have that fl+1 and gl+1 are Borel measurable, and for all t, t1, t2 ∈ [0, τ ],
x, y ∈ Rd

|fl+1(t, x)| ≤ Kf (1 + |x|+ |ϕl(t)|),
|fl+1(t, x)− fl+1(t, y)| ≤ Lf |x− y|.(4.19)

and

|gl+1(t, x)| ≤ Kg(1 + |x|+ |ϕl(t)|),
|gl+1(t, x)− gl+1(t, y)| ≤ Lg|x− y|(4.20)

|gl+1(t1, x)− gl+1(t2, x)| ≤ K̄g(1 + |x|+ |ϕl(t1)|)|t1 − t2|ϱ

+Lg|ϕl(t1)− ϕl(t2)|α2 .

The following error decomposition holds

(4.21)

∥∥∥ max
0≤k≤N

|ϕl+1(t
0
k)− yl+1

k |
∥∥∥
Lp(Ω)

≤
∥∥∥ max

0≤k≤N
|ϕl+1(t

0
k)− ȳl+1

k |
∥∥∥
Lp(Ω)

+
∥∥∥ max

0≤k≤N
|ȳl+1

k − yl+1
k |

∥∥∥
Lp(Ω)

.

Firstly, we estimate
∥∥∥ max

0≤k≤N
|ȳl+1

k − yl+1
k |

∥∥∥
Lp(Ω)

. For k ∈ [N ] we get

ȳl+1
k − yl+1

k =
k∑

j=1

(ȳl+1
j − ȳl+1

j−1)−
k∑

j=1

(yl+1
j − yl+1

j−1)

= h
k∑

j=1

(
f(θl+1

j , ȳl+1
j−1, ϕl(δ

l+1
j ))− f(θl+1

j , yl+1
j−1, y

l
j−1)

)

+
k∑

j=1

(
g(tl+1

j−1, ȳ
l+1
j−1, ϕl(t

0
j−1))− g(tl+1

j−1, y
l+1
j−1, y

l
j−1)

)
∆l+1

j−1W,

where ∆l+1
j−1W = W (tl+1

j )−W (tl+1
j−1). This gives by the assumption (4.3) that

|ȳl+1
k − yl+1

k |p ≤ CpL
p
f

(
h

k∑
j=1

|ȳl+1
j−1 − yl+1

j−1|+ h
k∑

j=1

|ϕl(δ
l+1
j )− ylj−1|α1

)p
+ Cp

∣∣∣ k∑
j=1

(
g(tl+1

j−1, ȳ
l+1
j−1, ϕl(t

0
j−1))− g(tl+1

j−1, y
l+1
j−1, y

l
j−1)

)
∆l+1

j−1W
∣∣∣p

Let us denote by

(4.22) Gl+1
j−1 = g(tl+1

j−1, ȳ
l+1
j−1, ϕl(t

0
j−1))− g(tl+1

j−1, y
l+1
j−1, y

l
j−1).
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Hence, for k ∈ [N ] we get that

E
[
max
0≤i≤k

|ȳl+1
i − yl+1

i |p
]
≤ Lp

fCpτ
p−1h

k∑
j=1

E
[

max
0≤i≤j−1

|ȳl+1
i − yl+1

i |p
]

+CpL
p
fτ

p−1h
k∑

j=1

E
[
|ϕl(δ

l+1
j )− ylj−1|α1p

]
+ CpE

[
max
1≤i≤k

∣∣∣ i∑
j=1

Gl+1
j−1 ·∆

l+1
j−1W

∣∣∣p](4.23)

Moreover

E[|ϕl(δ
l+1
j )− ylj−1|α1p] ≤ CpE[|ϕl(δ

l+1
j )− ϕl(t

0
j−1)|α1p] + CpE

[
max

0≤k≤N
|ϕl(t

0
k)− ylk|α1p

]
where by Theorem 3.1, Jensen inequality (applied to the concave function [0,+∞) ∋
x → xα1), and (4.18) we have

(4.24) E[|ϕl(δ
l+1
j )− ϕl(t

0
j−1)|α1p] ≤

(
E[|ϕl(δ

l+1
j )− ϕl(t

0
j−1)|p]

)α1

≤ K̄α1
l hα1p/2,

and

(4.25) E
[
max

0≤k≤N
|ϕl(t

0
k)− ylk|α1p

]
≤

(
E
[
max

0≤k≤N
|ϕl(t

0
k)− ylk|p

])α1

.

Now define for all t ∈ [0, tl+1
N ] the following stochastic process

M(t) :=

∫ t

0

N∑
j=1

Gl+1
j−1 · 1[tl+1

j−1,t
l+1
j )(s) dW (s).

Note that by (4.22), (2.7), and (4.13) we have that

(4.26) σ(Gl+1
j−1) ⊂ Σ̃tl+1

j−1
= Σl+1

t0j−1
∨ σ({γjk}j∈N0,k∈N),

and, hence, Gl+1
j−1 is independent of ∆l+1

j−1W . Therefore, the stochastic Itô integral above

is well-defined. Moreover, the quadratic variation of the martingale M for t ∈ [0, tl+1
N ]

is as follows

⟨M⟩(t) =
∫ t

0

N∑
j=1

|Gl+1
j−1|

2 · 1[tl+1
j−1,t

l+1
j )(s) ds

and then for k ∈ [N ]

⟨M⟩(tl+1
k ) = h

k∑
j=1

|Gl+1
j−1|

2.
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From Burkholder-Davis-Gundy inequality (see, for example, Corollary 2.9, page 82 in
[17]), Jensen’s inequality and the assumption (4.4) on g, we have that

E
[
max
1≤i≤k

∣∣∣ i∑
j=1

Gl+1
j−1 ·∆

l+1
j−1W

∣∣∣p] = E
[
max
1≤i≤k

|M(tl+1
i )|p

]
≤ E

[
sup

0≤t≤tl+1
k

|M(t)|p
]

≤ CpE
(
⟨M⟩(tl+1

k )
)p/2

≤ Cpτ
p
2
−1h

k∑
j=1

|Gl+1
j−1|

p

≤ C̄pτ
p
2
−1Lp

gh
k∑

j=1

E
[

max
0≤i≤j−1

|ȳl+1
i − yl+1

i |p
]

+C̄pτ
p
2Lp

g

(
E
[
max

0≤k≤N
|ϕl(t

0
k)− ylk|p

])α2

.(4.27)

Combining (4.23), (4.24), (4.25), (4.27) and using the fact that yl+1
0 = ȳl+1

0 we arrive
for k ∈ [N ] at

E
[
max
0≤i≤k

|ȳl+1
i − yl+1

i |p
]
≤ c1h

k−1∑
j=1

E
[
max
0≤i≤j

|ȳl+1
i − yl+1

i |p
]
+ c2h

α1p/2

+c3

(
E
[
max

0≤k≤N
|ϕl(t

0
k)− ylk|p

])α1

+ c4

(
E
[
max

0≤k≤N
|ϕl(t

0
k)− ylk|p

])α2

.(4.28)

By the discrete version of Gronwall’s lemma (see, for example, Lemma 2.1. in [11]) we
get

E
[
max

0≤k≤N
|ȳl+1

k − yl+1
k |p

]
≤ K1,le

K2,lτ

[
hα1p/2 +

(
E
[
max

0≤k≤N
|ϕl(t

0
k)− ylk|p

])α1

+

(
E
[
max

0≤k≤N
|ϕl(t

0
k)− ylk|p

])α2
]
.(4.29)
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We now establish an upper bound on
∥∥∥ max

0≤i≤N
|ϕl+1(t

0
i )− ȳl+1

i |
∥∥∥
Lp(Ω)

. For k ∈ [N ] we

have

ϕl+1(t
0
k)− ȳl+1

k = ϕl+1(0)− ȳl+1
0 + (ϕl+1(t

0
k)− ϕl+1(t

0
0))− (ȳl+1

k − ȳl+1
0 )

= (ϕl(t
0
N )− ylN ) +

k∑
j=1

(ϕl+1(t
0
j )− ϕl+1(t

0
j−1))−

k∑
j=1

(ȳl+1
j − ȳl+1

j−1)

= (ϕl(t
0
N )− ylN ) +

k∑
j=1

( t0j∫
t0j−1

fl+1(s, ϕl+1(s)) ds− hfl+1(δ
l+1
j , ȳl+1

j−1)

)

+
k∑

j=1

( t0j∫
t0j−1

gl+1(s, ϕl+1(s)) dWl+1(s)− gl+1(t
0
j−1, ȳ

l+1
j−1)∆

l+1
j−1W

)

= (ϕl(t
0
N )− ylN ) +

6∑
i=1

Sk
i,l+1,(4.30)

where

Sk
1,l+1 =

k∑
j=1

( t0j∫
t0j−1

fl+1(s, ϕl+1(s)) ds− hfl+1(δ
l+1
j , ϕl+1(δ

l+1
j ))

)
,

Sk
2,l+1 = h

k∑
j=1

(
fl+1(δ

l+1
j , ϕl+1(δ

l+1
j ))− fl+1(δ

l+1
j , ϕl+1(t

0
j−1))

)
,

Sk
3,l+1 = h

k∑
j=1

(
fl+1(δ

l+1
j , ϕl+1(t

0
j−1))− fl+1(δ

l+1
j , ȳl+1

j−1)
)
,

Sk
4,l+1 =

t0k∫
0

N∑
j=1

(
gl+1(s, ϕl+1(s))− gl+1(t

0
j−1, ϕl+1(s))

)
1[t0j−1,t

0
j )(s) dWl+1(s),

Sk
5,l+1 =

t0k∫
0

N∑
j=1

(
gl+1(t

0
j−1, ϕl+1(s))− gl+1(t

0
j−1, ϕl+1(t

0
j−1))

)
1[t0j−1,t

0
j )(s) dWl+1(s),

Sk
6,l+1 =

t0k∫
0

N∑
j=1

(
gl+1(t

0
j−1, ϕl+1(t

0
j−1))− gl+1(t

0
j−1, ȳ

l+1
j−1)

)
1[t0j−1,t

0
j )(s) dWl+1(s).

We have that

(4.31) Sk
1,l+1 =

t0k∫
0

Yl+1(s) ds− h
k∑

k=1

Yl+1(δ
l+1
j ),
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where δl+1
j = t0j−1+hγl+1

j , Yl+1(t) = fl+1(t, ϕl+1(t)) = f
(
t+(l+1)τ, ϕl+1(t), ϕl(t)

)
, and

σ((Y (t))t∈[0,τ ]) ⊂ Σ∞. Hence, the process Y is independent of the σ-field σ({γjk}j∈N0,k∈N).
Moreover, by Theorem 3.1 we arrive at

(4.32) ∥fl+1(·, ϕl+1(·))∥Lp([0,τ ]×Ω;Rd) ≤ T 1/pCpKf (1 +Kl +Kl+1)
1/p < +∞.

Therefore, by Theorem 4.1 in [12] we obtain

(4.33)
∥∥∥ max

1≤k≤N
|Sk

1,l+1|
∥∥∥
Lp(Ω)

≤ 2Cpτ
p−2
2p (1 +Kl)(1 +Kl+1)h

1/2.

By Jensen’s inequality we get

max
1≤k≤N

|Sk
2,l+1|p ≤ τp−1Lp

fh
N∑
j=1

|ϕl+1(δ
l+1
j )− ϕl+1(t

0
j−1)|p.

Thus, by Theorem 3.1

(4.34)

∥∥∥ max
1≤k≤N

|Sk
2,l+1|

∥∥∥
Lp(Ω)

≤ LfcpτK(τ1/2 + 1)(1 +K
1/p
l +K

1/p
l+1)h

1/2.

Moreover,

(4.35)

E
[
max
1≤i≤k

|Si
3,l+1|p

]
≤ CpL

p
fτ

p−1hE|ϕl(t
0
N )− ylN |p

+ CpL
p
fτ

p−1h
k−1∑
j=1

E
[
max
0≤i≤j

|ϕl+1(t
0
i )− ȳl+1

i |p
]
.

Regarding Sk
4,l+1 we shall apply Burkholder-Davis-Gundy inequality (see Corollary 2.9,

page 82 in [17]), Theorem 3.1 and (4.20) on gl+1, and get



14 P. PRZYBY LOWICZ, Y. WU, AND X. XIE

E
[
max

1≤k≤N
|Sk

4,l+1|p
]

≤ CpE

( t0N∫
0

N∑
j=1

∣∣gl+1(s, ϕl+1(s))− gl+1(t
0
j−1, ϕl+1(s))

∣∣21[t0j−1,t
0
j )(s) ds

)p/2

= CpE

(
N∑
j=1

t0j∫
t0j−1

∣∣gl+1(s, ϕl+1(s))− gl+1(t
0
j−1, ϕl+1(s))

∣∣2 ds)p/2

≤ CpN
p
2
−1

N∑
j=1

E

( t0j∫
t0j−1

∣∣gl+1(s, ϕl+1(s))− gl+1(t
0
j−1, ϕl+1(s))

∣∣2 ds)p/2

≤ Cpτ
p
2
−1

N∑
j=1

t0j∫
t0j−1

E|gl+1(s, ϕl+1(s))− gl+1(t
0
j−1, ϕl+1(s))|p ds

≤ C̃1,l

N∑
j=1

t0j∫
t0j−1

|s− t0j−1|pϱ · E
(
1 + |ϕl+1(s)|+ |ϕl(s)|)p ds

+ C̃2,l

N∑
j=1

t0j∫
t0j−1

E
∣∣ϕl(s)− ϕl(t

0
j−1)

∣∣pα2 ds

≤ K̃1,lh
pϱ + C̃2,l

N∑
j=1

t0j∫
t0j−1

(
E
∣∣ϕl(s)− ϕl(t

0
j−1)

∣∣p)α2

ds

≤ K̃1,lh
pϱ + K̃2,lh

pα2/2 ≤ K̃3,lh
pmin{ϱ,α2/2}.

(4.36)
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Following the similar arguments as in Eqn.(4.36), and utilising Theorem 3.1 together
with the Assumption (4.20) on gl+1 we get

E
[
max

1≤k≤N
|Sk

5,l+1|p
]

≤ CpE

( t0N∫
0

N∑
j=1

∣∣gl+1(t
0
j−1, ϕl+1(s))− gl+1(t

0
j−1, ϕl+1(t

0
j−1))

∣∣21[t0j−1,t
0
j )(s) ds

)p/2

≤ CpL
p
gE

(
N∑
j=1

t0j∫
t0j−1

∣∣ϕl+1(s)− ϕl+1(t
0
j−1)

∣∣2 ds)p/2

≤ CpL
p
gN

p
2
−1

N∑
j=1

E

( t0j∫
t0j−1

∣∣ϕl+1(s)− ϕl+1(t
0
j−1)

∣∣2 ds)p/2

≤ CpL
p
gτ

p
2
−1

N∑
j=1

t0j∫
t0j−1

E
[∣∣ϕl+1(s)− ϕl+1(t

0
j−1)

∣∣p]ds ≤ K̃4,lh
p/2.

(4.37)

For the last term Sk
6,l+1 we use similar arguments as above and obtain

E
[
max
1≤i≤k

|Si
6,l+1|p

]
≤ CpL

p/2
g τp/2−1hE|ϕl(t

0
N )− ylN |p

+ CpL
p/2
g τp/2−1h

k−1∑
j=1

E
[
max
0≤i≤j

∣∣ϕl+1(t
0
i )− ȳl+1

i

∣∣p].
Hence, from (4.30) and (4.35) we have for k ∈ {1, 2, . . . , N}

E
[
max
0≤i≤k

|ϕl+1(t
0
i )− ȳl+1

i |p
]
≤ K1E|ϕl(t

0
N )− ylN |p

+ cp
∑

m∈{1,2,4,5}

E
[
max

1≤k≤N
|Sk

m,l+1|p
]

+K2h

k−1∑
j=1

E
[
max
0≤i≤j

∣∣ϕl+1(t
0
i )− ȳl+1

i

∣∣p].
Now by using Gronwall’s lemma (see, Lemma 2.1 in [11]), (4.18), and (4.33) to (4.37)
we get for all k ∈ [N ]

E
[
max
0≤i≤k

|ϕl+1(t
0
i )− ȳl+1

i |p
]
≤ K3

(
E|ϕl(t

0
N )− ylN |p

+
∑

m∈{1,2,4,5}

E
[
max

1≤k≤N
|Sk

m,l+1|p
])

,
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which gives

(4.38)
∥∥∥ max

0≤i≤N
|ϕl+1(t

0
i )− ȳl+1

i |
∥∥∥p
Lp(Ω)

≤ K5,l

(
E
[
max

0≤k≤N
|ϕl(t

0
k)− ylk|p

]
+ hpmin{ϱ,α2/2}

)
.

Combining (4.21), (4.29), and (4.38) we obtain∥∥∥ max
0≤i≤N

|ϕl+1(t
0
i )− yl+1

i |
∥∥∥
Lp(Ω)

≤ K6,l

(
hmin{ϱ,α1/2,α2/2} +

∥∥∥ max
0≤i≤N

|ϕl(t
0
i )− yli|

∥∥∥
Lp(Ω)

+
∥∥∥ max

0≤i≤N
|ϕl(t

0
i )− yli|

∥∥∥α1

Lp(Ω)
+
∥∥∥ max

0≤i≤N
|ϕl(t

0
i )− yli|

∥∥∥α2

Lp(Ω)

)
,(4.39)

and therefore

(4.40)
∥∥∥ max

0≤i≤N
|ϕl+1(t

0
i )− yl+1

i |
∥∥∥
Lp(Ω)

≤ Cl+1h
min{ϱ, 1

2
}αl+1

,

which ends the inductive part of the proof. Finally, ϕl+1(t
0
i ) = ϕl+1(ih) = X(ih+ (l +

1)τ) = X(tl+1
i ) and the proof of (4.14) is finished. □

Remark 4.2. We briefly comment on optimality of the defined algorithm in the Information-
Based Complexity sense, see [10]. In the special case α1 = α2 = 1 we have the optimal

bound Θ(hmin{ϱ,1/2}), which follows from Proposition 5.1 in [18].

5. Numerical experiments

In order to illustrate our theoretical findings we perform several numerical experi-
ments. We chose the following exemplary right-hand side functions:

(5.1) fi(t, x, z) = ki(t)
(
x+ 0.01|z|α1 + sin(10x) · cos(100|z|α1)

)
,

and the diffusion is either additive

(5.2) g1(t, x, z) = 0.5| cos(25πt)|,
or multiplicative

(5.3) g2(t, x, z) = k(t)
(
x+ 0.01|z|α2 + cos(10x) · cos(100|z|α2)

)
,

where, α1, α2 ∈ (0, 1], k1 is the following periodic function

(5.4) k1(t) =

n∑
j=0

(
(j + 1)τ − t

)−1/γ1
· 1[jτ,(j+1)τ ](t), γ1 > 2,

which belongs to Lp([0, (n+ 1)τ ]), k2 is a step function satisfying

k2(t) =
n∑

j=0

0.1 · (j + 1) · 1[jτ,(j+1)τ ](t),(5.5)

and k is given by

(5.6) k(t) = tγ2 , γ2 ∈ (0, 1],

which is γ2-Hölder continuous. Note that formally f1 does not satisfy our assumptions,
however, we get numerical evidence that we probably could extend result of Theorem
4.1 to the case when Lf , Lg are integrable funtions.



ON APPROXIMATION OF SOLUTIONS OF SDDES 17

We implement randomized Euler-Maruyama scheme (2.5)-(2.6) using Python program-
ming language. Moreover, since for the right-hand side functions (5.1) plus (5.2) or (5.1)
plus (5.3) we do not know the exact solution X(t), we approximate the mean square
error (2.8) for each 0 ≤ j ≤ n with∥∥∥∥ max

0≤i≤N
|ỹji − yji |

∥∥∥∥
L2(Ω)

≈

(
1

K

K∑
k=1

max
0≤i≤N

|ỹji (ωk)− yji (ωk)|2
) 1

2

,

where K ∈ N, {ωk}Kk=1 represents the kth realisation from the complete probability

space, yji is the output of the randomized Euler-Maruyama scheme on the initial mesh

tji := jτ + ih and h := τ
N for i = 0, . . . , N −1, while ỹji is the reference solution obtained

also from the randomized Euler-Maruyama scheme but on the refined mesh t̃ji := jτ+ih̃

and h̃ := h
m = τ

mN for i = 0, . . . ,mN −1. Note that {ωk}Kk=1 is generated on the refined
mesh.

The implementation of the randomized Euler-Maruyama method method is straight-

forward. To evaluate the solution at time point tji = ih + jτ within the interval
[jτ, (j + 1)τ ], we need two steps:

Step (j1): First simulate γ ∼ U(0, 1) and set random time point tji−1+γh ∈ [tji−1, t
j
i ].

Step (j2): Compute yji as defined in (2.5) and (2.6).
Listing 1 shows an implementation of method (2.5) and (2.6) in the case of a 1-

dimensional Wiener process (m = 1) in Python.

Listing 1. A sample implementation of (2.5) and (2.6) in Python

1 import numpy as np
2

3 def f ( t , x , z ) :
4 return [ . . . ]
5

6 def g ( t , x , z ) :
7 return [ . . . ]
8

9

10 def randEM full ( tau , X0 , h , f , g , n taus ) :
11

12 # input : de lay l a g tau , s t e p s i z e h , i n i t i a l s X0,
13 # d r i f t and d i f f u s i o n f unc t i on s f and g
14 # number o f i n t e r v a l s o f l e n g t h tau n taus
15 # output :
16 # one t r a j e c t o r y o f the randomized Euler−Maruyama method
17

18 ###to ge t numerical e v a l ua t i on :
19

20 #number o f s t e p s w i th in one i n t e r v a l wi th l e n g t h tau
21 N=int ( tau/ s t e p s i z e )
22

23 #s e t t i n g i n i t i a l c ond i t i on s
24 s o l = np . z e ro s ( (N+ 1 , n tau+1))+X0
25
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26 #for each i n t e r v a l [ j ∗ tau , ( j +1)∗ tau ]
27 for j in range (1 , n taus +1):
28

29 s o l [ 0 , j ] = s o l [ −1 , j −1]
30

31 # c o l l e c t the g r i d po in t s over [ j ∗ tau , ( j +1)∗ tau ]
32 g r id = j ∗ tau + h ∗np . arange (0 , N)
33

34

35 for i in range (1 ,N+1):
36

37 # step ( j1 ) :
38 gamma=np . random . rand ( )
39 rand time=gr id [ i −1]+gamma∗h
40

41 # step ( j2 ) :
42 d r i f t=h∗ f ( rand time , s o l [ i −1, j ] , s o l [ i −1, j −1])
43 d i f f=g ( g r id [ i −1] , s o l [ i −1, j ] , s o l [ i −1, j −1]) \
44 ∗np . s q r t (h)∗np . random . normal ( )
45

46 s o l [ i , j ] = s o l [ i −1, j ]+ d r i f t+d i f f
47

48

49 return s o l

Example 5.1 (Additive noise). In the following numerical tests we use (5.1) with (5.4)
and (5.2) (So in this case we formally have α2 = 1.). We fix the number of experiments
K = 1000 for each N = 2l, l = 5, . . . , 10, and the reference solution is computed with
stepsize 2−17; also, the horizon parameter is n = 3. We get the following results for
γ1 = 3:
letting α1 = 0.1, the negative mean square error slopes are 0.65, 0.65, and 0.62. See
Figure 1a;
letting α1 = 0.5, the negative mean square error slopes are 0.65, 0.64, and 0.62. See
Figure 1b;
letting α1 = 1, the negative mean square error slopes are 0.63, 0.63, and 0.58. See
Figure 1c;
while, for γ1 = 5:
letting α1 = 0.1, the negative mean square error slopes are 0.60, 0.63, and 0.61. See
Figure 2a;
letting α1 = 0.5, the negative mean square error slopes are 0.65, 0.65, and 0.62. See
Figure 2b;
letting α1 = 1, the negative mean square error slopes are 0.63, 0.63 and 0.59. See Figure
2c.

All the figures show that the error of [jτ, (j+1)τ ] is worse that the error of [(j−1)τ, jτ ]
for j ∈ {1, 2} though the changes in the order of convergence from [(j − 1)τ, jτ ] to
[jτ, (j + 1)τ ] are not significant.

Example 5.2 (Multiplicative noise). In the following numerical tests we use (5.1)
with (5.4) and (5.3). We fix the number of experiments K = 1000 for each N = 2l,
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(a) α = 0.1. (b) α = 0.5. (c) α = 1.

Figure 1. Mean square errors slope for γ = 3 and values of α =
0.1, 0.5, 1 for (5.1) plus (5.2).

(a) α1 = 0.1. (b) α1 = 0.5. (c) α1 = 1.

Figure 2. Mean square errors slope for γ1 = 5 and values of α1 =
0.1, 0.5, 1 for (5.1) plus (5.2).

l = 5, . . . , 10, and the reference solution is computed with stepsize 2−17; also, the horizon
parameter is n = 3. We fix γ1 = 5 and vary γ2, α1 and α2.

We get the following results for γ1 = 5 and γ2 = 0.1:
letting α1 = 0.1 and α2 = 0.1, the negative mean square error slopes are 0.23, 0.13, and
0.11. See Figure 3a;
letting α1 = 0.1 and α2 = 1, the negative mean square error slopes are 0.23, 0.15, and
0.14. See Figure 3c;
letting α1 = 1 and α2 = 0.1, the negative mean square error slopes are 0.23, 0.14, and
0.11. See Figure 3b;
letting α1 = 0.5 and α2 = 0.5, the negative mean square error slopes are 0.30, 0.18, and
0.22. See Figure 3d;
while, for γ1 = 5 and γ2 = 0.5:
letting α1 = 0.1 and α2 = 0.1, the negative mean square error slopes are 0.31, 0.15, and
0.17. See Figure 4c;
letting α1 = 1 and α2 = 0.1, the negative mean square error slopes are 0.31, 0.15, and
0.17. See Figure 4b;
letting α1 = 0.1 and α2 = 1, the negative mean square error slopes are 0.31, 0.16, and
0.23. See Figure 4c;
letting α1 = 0.5 and α2 = 0.5, the negative mean square error slopes are 0.31, 0.18, and
0.25. See Figure 4d;
while, for γ1 = 5 and γ2 = 1:
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(a) α1 = 0.1 and α2 = 0.1. (b) α1 = 1 and α2 = 0.1.

(c) α1 = 0.1 and α2 = 1. (d) α1 = 0.5 and α2 = 0.5.

Figure 3. Mean square errors slope for γ1 = 5 and γ2 = 0.1 and values
of (α1, α2) = (0.1, 0.1), (1, 0.1), (0.1, 1), (0.5, 0.5) for (5.1) plus (5.3).

letting α1 = 0.1 and α2 = 0.1, the negative mean square error slopes are 0.31, 0.28, and
0.25. See Figure 5c;
letting α1 = 1 and α2 = 0.1, the negative mean square error slopes are 0.31, 0.27, and
0.24. See Figure 5b;
letting α1 = 0.1 and α2 = 1, the negative mean square error slopes are 0.31, 0.25, and
0.22. See Figure 5c;
letting α1 = 0.5 and α2 = 0.5, the negative mean square error slopes are 0.31, 0.18, and
0.25. See Figure 5d.

It can be observed that for each fixed (α1, α2) pair and for each fixed [jτ, (j + 1)τ ]
interval, the order of convergence increases with γ2; for each fixed γ2 and for each fixed
[jτ, (j + 1)τ ] interval, the negative slops for (α1, α2) = (0.1, 0.1), (1, 0.1), (0.1, 1) are
almost the same, which are slightly less than the negative slop of (α1, α2) = (0.5, 0.5);
for each fixed (α1, α2) pair and for each fixed γ2, the negative slope decreases with j.
All these observations coincide with Theorem 4.1.

Example 5.3 (Multiplicative noise). In the following numerical tests we use (5.1)
with (5.5) and (5.3). We fix the number of experiments K = 1000 for each N = 2l,
l = 5, . . . , 10, and the reference solution is computed with stepsize 2−17; also, the
horizon parameter is n = 3. We vary γ2, α1, but allow the same value of α2 as α1, ie,
α1 = α2 = α.

We get the following results for γ2 = 0.1:
letting α = 0.1, the negative mean square error slopes are 0.34, 0.31, and 0.25. See
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(a) α1 = 0.1 and α2 = 0.1. (b) α1 = 1 and α2 = 0.1.

(c) α1 = 0.1 and α2 = 1. (d) α1 = 0.5 and α2 = 0.5.

Figure 4. Mean square errors slope for γ1 = 5 and γ2 = 0.5 and values
of (α1, α2) = (0.1, 0.1), (1, 0.1), (0.1, 1), (0.5, 0.5) for (5.1) plus (5.3).

Figure 6a;
letting α = 0.5, the negative mean square error slopes are 0.35, 0.25, and 0.23. See
Figure 6b;
letting α = 1, the negative mean square error slopes are 0.35, 0.23, and 0.23. See Figure
6c;
while, for γ2 = 0.5:
letting α = 0.1, the negative mean square error slopes are 0.30, 0.27, and 0.27. See
Figure 6d;
letting α = 0.5, the negative mean square error slopes are 0.31, 0.27, and 0.24. See
Figure 6e;
letting α = 1, the negative mean square error slopes are 0.34, 0.27, and 0.26. See Figure
6f;
while, for γ2 = 1:
letting α = 0.1, the negative mean square error slopes are 0.29, 0.30, and 0.23. See
Figure 6g;
letting α = 0.5, the negative mean square error slopes are 0.32, 0.27, and 0.25. See
Figure 6h;
letting α = 1, the negative mean square error slopes are 0.35, 0.30, and 0.28. See
Figure 6i. One can compare the results horizontally or vertically in Figure 6. For each
fixed (α1, α2) pair and for each fixed γ2, the negative slope in general decreases with j.
Horizontally, each fixed γ2 and for each fixed [jτ, (j + 1)τ ] interval, the error decreases
significantly with increasing α1. Vertically, for each fixed (α1, α2) pair and for each
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(a) α1 = 0.1 and α2 = 0.1. (b) α1 = 1 and α2 = 0.1.

(c) α1 = 0.1 and α2 = 1. (d) α1 = 0.5 and α2 = 0.5.

Figure 5. Mean square errors slope for γ1 = 5 and γ2 = 1 and values
of (α1, α2) = (0.1, 0.1), (1, 0.1), (0.1, 1), (0.5, 0.5) for (5.1) plus (5.3).

fixed [jτ, (j+1)τ ] interval, the numerical error decreases with γ. All these observations
coincide with Theorem 4.1.

6. Appendix

Lemma 6.1. Let Y = (Y (t))t≥0 is (Σt)t≥0-progressively measurable stochastic process
and let ξ : Ω → [a, b], −∞ < a < b < +∞, is a random variable on (Ω,Σ,P). Then
Y (ξ) is σ(ξ) ∨ Σb-measurable.

Proof. Since Y is progressively measurable we have that the mapping [a, b]×Ω ∋ (t, ω) →
Y (t, ω) ∈ Rd is B([a, b])⊗ Σb-to-B(Rd) measurable. Let us define

(6.1) Ω ∋ ω → H(ω) = (ξ(ω), ω),

and F0 = {B × F | B ∈ B([a, b]), F ∈ Σb}. Note that B([a, b]) ⊗ Σb = σ(F0). Since
for any B × F ∈ F0 we have that H−1(B × F ) = ξ−1(B) ∩ F ∈ σ(ξ) ∨ Σb, we get
by Proposition 2.3., page 6 in [4] that the function H is σ(ξ) ∨ Σb-to-B([a, b]) ⊗ Σb

measurable. Since

(6.2) Ω ∋ ω → Y (ξ(ω), ω) = (Y ◦H)(ω) ∈ Rd,

we get for any B ∈ B(Rd) that (Y ◦H)−1(B) = H−1(Y −1(B)) ∈ σ(ξ)∨Σb. This implies
the thesis. □
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(a) γ2 = 0.1, and α = 0.1. (b) γ2 = 0.1 and α = 0.5. (c) γ2 = 0.1 and α = 1.

(d) γ2 = 0.5, and α = 0.1. (e) γ2 = 0.5 and α = 0.5. (f) γ2 = 0.5 and α = 1.

(g) γ2 = 1 and α = 0.1. (h) γ2 = 1 and α = 0.5. (i) γ2 = 1 and α = 1.

Figure 6. Mean square errors slope for (5.1) with (5.5) plus (5.3) at
γ2 = 0.1, 0.5, 1 and values of α1 = α2 = α = 0.1, 0.5, 1.
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to Carathéodory delay differential equations. arXiv preprint arXiv:2204.02016, 2022.
[7] S. Heinrich. Complexity of stochastic integration in Sobolev classes. J. Math. Anal. Appl., 476:177–

195, 2019.
[8] S. Heinrich and B. Milla. The randomized complexity of initial value problems. J. Complex., 24:77–

88, 2008.
[9] A. Jentzen and A. Neuenkirch. A random Euler scheme for Carathéodory differential equations.
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