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This work proposes a nonlinear finite element method whose nodal values preserve bounds known for
the exact solution. The discrete problem involves a nonlinear projection operator mapping arbitrary nodal
values into bound-preserving ones and seeks the numerical solution in the range of this projection. As the
projection is not injective, a stabilisation based upon the complementary projection is added in order to
restore well-posedness. Within the framework of elliptic problems, the discrete problem may be viewed as
a reformulation of a discrete obstacle problem, incorporating the inequality constraints through Lipschitz
projections. The derivation of the proposed method is exemplified for linear and nonlinear reaction-
diffusion problems. Near-best approximation results in suitable norms are established. In particular, we
prove that, in the linear case, the numerical solution is the best approximation in the energy norm among all
nodally bound-preserving finite element functions. A series of numerical experiments for such problems
showcase the good behaviour of the proposed bound-preserving finite element method.

1. Introduction

Structure-preserving numerical methods have been an overarching theme in computational partial
differential equations (PDEs) over the years. By structure-preserving we mean methods that produce
approximations satisfying certain desired properties of the underlying exact problem, e.g., local con-
servation, entropy inequalities, maximum principle, pointwise divergence-free constraints, or exactly
symmetric stress tensor approximations, just to name a few.

Numerical methods satisfying Discrete Maximum Principles (DMP) and/or monotonicity properties
have been studied extensively in the finite element literature; see Ciarlet (1970); Ciarlet & Raviart (1973);
Kikuchi (1977); Mizukami & Hughes (1985); Burman & Ern (2005); Brandts et al. (2008); Barrenechea
et al. (2017a,b) for a (very) nonexhaustive list, and Barrenechea et al. (2023) for a recent review and
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more related references. Methods satisfying the latter properties imply positivity preservation or, more
generally, bound preservation of the resulting numerical solutions.

Crucially, however, bound-preservation appears to be a weaker structural requirement than the DMP.
Nonetheless, bound-preserving numerical solutions are indispensable for the numerical stability of many
complex nonlinear phenomena modelled by systems of PDEs. For instance, many such PDE models
are valid only for positive solutions of the constituent equations. Examples include nonlinear reaction-
diffusion systems modelling concentrations of reactants, or turbulence-inducing fields. Also, phase-field
PDE models are usually characterised by solutions satisfying pointwise global maxima and minima.
Although failure to preserve the same bounds for the numerical solutions is not typically catastrophic for
scalar PDE problems, they may have a compounding effect when such PDEs are part of a more complex
system of equations. There is thus an interest in bound-preserving methods which, when appropriately
designed, may be less ‘rigid’ than current schemes striving to satisfy the DMP or monotonicity.

This work proposes a new finite element method in this spirit. To this end, assume that we are given
a partial differential equation (with its associated weak form), and a Lagrange finite element space of
arbitrary order. Moreover, for simplicity, assume that the exact solution is positive, i.e., the zero function
is a lower bound. Then, the formal derivation of the new method can be summarised by the following
three steps:

• Introduce a projection operator vh �→ v+
h on the finite element space so that the nodal values of

the projected function v+
h are positive.

• As usual, replace the test space in the weak formulation of the continuous problem with the finite
element space, but, instead of looking for a finite element function as the numerical solution, seek
for a projected one in the form u+

h .

• Add a stabilisation based upon the complementary projection vh �→ v−
h onto the finite element

space.

Notice that the projection operator and so the proposed method are nonlinear. The latter is expected
in light of the classical ‘Godunov barrier’ principle. The solution of the proposed method is sought in
the range of the projection, where the projection acts as a parametrisation and the parameter domain is
the finite element space. The fact that the projection is not injective entails the need of the stabilisation
in the third step.

Interestingly, if its nodal values are positive, the classical finite element solution coincides with the
one of the proposed method. More precisely, and more importantly, the solution to the present method
turns out to be the orthogonal projection of the exact solution onto the closed and convex set of finite
element functions with positive nodal values. This observation is instrumental in this work and yields
the following two important consequences:

• The proposed method can be viewed as a reformulation of a discrete obstacle problem. In contrast
to the latter, the reformulation consists of a discrete variational equality and encodes the crucial
inequality constraints in Lipschitz-continuous projections. This difference may prepare the ground
for solvers that are an alternative to the usually used constrained optimisation techniques; see, e.g.,
Evans et al. (2009). Here, we employ a simple approach based upon Richardson-like iterations.

• Near best approximation for suitable error notions follows as a corollary. In particular, for the linear
reaction-diffusion problem, the solution of the proposed method is actually the best approximation
to the exact solution in the energy norm from the aforementioned convex subset. For a more
general, semilinear problem with a power-like nonlinear reaction, the proposed method is shown
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to be quasi-optimal with respect to the sum of the H1-seminorm and a quasinorm associated with
the reaction term.

To illustrate both aspects, a series of numerical experiments is presented, showcasing the superior
performance of the proposed method compared to standard finite element approximations.

It is worth mentioning that related approaches (albeit with distinct differences to the present one)
have been advocated in the literature. In Bochev et al. (2020) the bounds on the continuous solution
are imposed as a restriction in a constraint optimisation problem, and a link to nonlinear stabilisation
is presented. Also, in Mudunuru & Nakshatrala (2016) a constrained optimisation problem involving a
mixed weak formulation is employed to enforce bound-preservation. In Burman & Ern (2017) the link
between positivity-preservation and the contact problem is used to motivate a nonlinear stabilised method
that enforces the positivity of the solution in a weak way. In addition, the cut-off finite element method
(Lu et al., 2013) truncates the finite element function after it is computed at a given time step, so as to
input the truncated function as approximation of the current time step; see also Yang et al. (2022) for an
application of a related idea to the Allen-Cahn equation. In the steady state case, the idea of truncating
the finite element solution to respect given bounds has been justified for reaction-diffusion equations in
Kreuzer (2014) using energy arguments. In Lisa & Sashkov (2008) a conservative recovery strategy is
proposed and tested numerically. Finally, in the context of the Joule heating problem a truncation of one
of the variables is introduced in order to regularise a rough right-hand side in Jensen & Malquist (2013).

The remainder of the manuscript is organised as follows. The rest of introduction is devoted to setting
up notations and main assumptions of this work. The finite element method is presented in Section 3,
and its stability and optimal error estimates are proven. Then, in Section 4 we extend this framework to a
nonlinear reaction-diffusion equation. Finally, Section 5 is devoted to presenting numerical experiments.

2. General setting and the linear model problem

We will use standard notation for Sobolev spaces, in line with, e.g., Ern & Guermond (2021). More
precisely, a domain D ⊆ Rd, d = 1, 2, 3, we denote by ‖ · ‖0,p,D the Lp(D)-norm, when p = 2 the
subscript p will be often omitted, and we only write ‖ · ‖0,D. In addition, for s ≥ 0, p ∈ (1, ∞), we
denote by ‖ · ‖s,p,D (| · |s,p,D) the norm (seminorm) in Ws,p(D); when p = 2, we will again often omit the

subscript p. In addition, we denote by H−1(D) the dual of H1
0(D) while identifying L2(D) with its dual.

Thus, writing 〈·, ·〉D for the duality pairing, we have

〈f , v〉Ω =
∫

Ω

f (x)v(x) dx ∀ v ∈ H1
0(Ω),

whenever f ∈ H−1(D) is regular enough. The L2(D)-inner product is denoted by (·, ·)D. We will not
distinguish between inner product and duality pairing for scalar and for vector-valued functions.

The boundary-value problems we will be concerned with are posed in an open, bounded domain
Ω with polyhedral Lipschitz boundary ∂Ω . Let P be a conforming, shape-regular partition of Ω

into simplices (or quadrilaterals/hexahedra) K. Over P , and for k ≥ 1, we define the finite element
space

VP := {vh ∈ C0(Ω) : vh|K ∈ R(K) ∀ K ∈ P} ∩ H1
0(Ω), (2.1)



BOUND-PRESERVING NODAL VALUES 2201

where

R(K) =
{

Pk(K) if K is a simplex,
Qk(K) if K is an affine quadrilateral/hexahedron,

(2.2)

with Pk(K) denoting the polynomials of total degree k on K and Qk(K) denoting the the affine pull-back
of the polynomial of degree less than, or equal to, k in each variable. We denote by xi, i = 1, . . . , N the
set of internal nodes of P , and by φ1, . . . , φN the set of usual Lagrangian basis functions spanning the
space VP .

The diameter of K is denoted by hK , h = max{hK : K ∈ P}, and we define the mesh function h as
a continuous, element-wise linear function defined as a local average. More precisely, for a node xi of
P we define the local neighbourhood Kxi

= {K ∈ P : xi ∈ K}, and define h as the only element of VP
(with k = 1) given by the nodal values

h(xi) =
∑

K∈Kxi
hK

#Kxi

. (2.3)

We recall the inverse inequality (see, e.g., Ern & Guermond, 2021, Lemma 12.1): for all m, � ∈
N, m ≤ � and all p, q ∈ [1, +∞], there exists a constant C, independent of K ∈ P such that

|q|�,p,K ≤ Ch
m−�+d

(
1
p − 1

q

)
K |q|m,q,K , (2.4)

for every polynomial function q defined on K.
In the space VP we denote by (·, ·)h the lumped L2(Ω)-inner product given by

(vh, wh)h :=
N∑

i=1

hd(xi)vh(xi)wh(xi), (2.5)

with associated norm |vh|h = (vh, vh)
1
2
h .

Remark 2.1 The following result, whose proof can be found in Proposition 12.5 of Ern & Guermond
(2021), will be of importance for us in the analysis of the method proposed in Section 3: there exist
C, c > 0, independent of h, such that

c |vh|2h ≤ ‖vh‖2
0,Ω ≤ C |vh|2h , (2.6)

for all vh ∈ VP .

2.1 Linear model problem

Given f ∈ H−1(Ω) we consider the following reaction-diffusion equation: find u : Ω → R such that

−div
(
D∇u) + μu = f in Ω ,

u = 0 on ∂Ω , (2.7)
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with D = (
dij

)d
i,j=1 ∈ L∞(Ω)d×d and μ ∈ L∞(Ω) stand for the diffusion tensor and reaction coefficient,

respectively. We assume that μ(x) ≥ μ0 ≥ 0 a.e. in Ω , and that the diffusion tensor D is symmetric
and uniformly strictly positive-definite in Ω , viz., there exists a positive constant d0 > 0 such that, for
almost all x ∈ Ω , we have

d∑
i,j=1

yidij(x)yj ≥ d0

d∑
i=1

y2
i ∀ (y1, . . . , yd) ∈ Rd. (2.8)

The weak formulation of (2.7) reads: find u ∈ H1
0(Ω), such that

a(u, v) = 〈f , v〉Ω ∀ v ∈ H1
0(Ω), (2.9)

where a(·, ·) : H1
0(Ω) × H1

0(Ω) → R is the bilinear form defined by

a(v, w) := (D∇v, ∇w)Ω + (μv, w)Ω . (2.10)

Defining the energy norm

‖v‖a := √
a(v, v), (2.11)

the well-posedness of (2.9) follows from the Lax-Milgram Lemma (see, e.g., Ern & Guermond, 2021).

Remark 2.2 At the core of this work is the following property of the solution of (2.9): as a consequence
of maximum and comparison principles (see Gilbarg & Trudinger, 2001, or Renardy & Rogers, 2004,
Corollary 4.4) the following bounds can be proven: for almost all x ∈ Ω the solution u of (2.9) satisfies

− ‖f ‖0,∞,Ω

μ0
≤ u(x) ≤ ‖f ‖0,∞,Ω

μ0
. (2.12)

This last statement can be made more precise if f ≥ 0 in Ω . In fact, in this case for almost all x ∈ Ω the
following inequality holds:

0 ≤ u(x) ≤ ‖f ‖0,∞,Ω

μ0
. (2.13)

The results given in the above remark motivate the introduction of the following assumption.
Assumption (A1): We will suppose that the solution of (2.7) satisfies

0 ≤ u(x) ≤ a for almost all x ∈ Ω , (2.14)

where a is a known constant.

Remark 2.3 The lower bound in Assumption (A1) is not required to be equal to zero and all the results
proven below hold for a more general bounding box without major modifications. In particular, the value
a can be replaced by a non-negative, continuous function a(x).
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The standard Galerkin finite element method for (2.7) is given by: find uFEM
h ∈ VP such that

a
(
uFEM

h , vh

) = 〈f , vh〉Ω ∀ vh ∈ VP . (2.15)

It is well-known that uFEM
h is a best approximation in the following sense:

∥∥u − uFEM
h

∥∥
a = inf

vh∈VP
‖u − vh‖a. (2.16)

However, this nice property does not prevent that, when the reaction μ dominates the diffusion D, that
is, e.g., if ‖D‖0,∞,Ω � μ, then uFEM

h may exhibit spurious oscillations (see, e.g., Roos et al., 2008) and,
thus, uFEM

h may fail to satisfy Assumption (A1). In fact, very stringent conditions need to be imposed
on the mesh for the solution of a reaction-diffusion equation such as (2.9) to satisfy Assumption (A1)

(for details, see, Brandts et al., 2008), even in the case of scalar (isotropic) diffusion. For the case of a
general diffusion D, conditions on the mesh related to the weighted inner product (D·, ·) in Rd need to
be imposed, in addition to a mesh size restriction (for details, see, Huang, 2011).

3. The finite element method for the linear problem

The goal of this section is to derive a method that, on the one hand, essentially preserves the bounds
in Assumption (A1) without restrictions on the mesh and, on the other hand, maintains the good
approximation properties (2.16) of the classical finite element solution.

To this end, we define the following closed convex subset of VP :

V+
P := {vh ∈ VP : vh(xi) ∈ [0, a] for all xi = 1, . . . , N}, (3.1)

that is, the set of finite element functions that respect the bound (2.14) at their degrees of freedom. With
this convex set in mind, every finite element function is split as vh = v+

h + v−
h , where v+

h ∈ V+
P is

defined by

v+
h :=

N∑
i=1

max
{
0, min{vh(xi), a}

}
φi, (3.2)

and

v−
h := vh − v+

h , (3.3)

is the part of the function residing outside V+
P . From now on, we refer to the functions v+

h and v−
h as the

constrained and complementary parts of vh.
The finite element method proposed in this work reads: find uh ∈ VP , such that

ah(uh; vh) = 〈f , vh〉Ω ∀ vh ∈ VP , (3.4)

where ah(·; ·) is the nonlinear form given by

ah(uh; vh) := a(u+
h , vh) + s(u−

h , vh), (3.5)
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with a(·, ·) defined in (2.10), and s(·, ·) : C(Ω̄) × C(Ω̄) → R is the stabilizing bilinear form defined by

s(vh, wh) = α

N∑
i=1

(‖D‖0,∞,ωi
h(xi)

d−2 + ‖μ‖0,∞,ωi
h(xi)

d) vh(xi)wh(xi), (3.6)

where α > 0 is a nondimensional constant to be determined precisely in Theorem 3.2, and ωi :=
∪K∈P :K∩Kxi �=∅K denotes an extended patch. The definition of ωi will be exploited in establishing (3.8)
below.

Defining the stabilisation norm as

‖vh‖s := √
s(vh, vh), (3.7)

and using (2.6), there exists a Cequiv > 0, depending only on the shape-regularity constant, such that

‖vh‖2
a ≤ Cequiv

α
‖vh‖2

s ∀ vh ∈ VP , (3.8)

where α > 0 is the stabilisation parameter appearing in the definition (3.6) of s(·, ·).

3.1 Well-posedness and consistency

In this section we will analyse the existence, uniqueness, and stability results for the proposed method
(3.4). We start with the following monotonicity result for the stabilizing form s(·, ·).
Lemma 3.1 The bilinear form s(·, ·) satisfies the following inequalities:

s(v−
h − w−

h , v+
h − w+

h ) ≥ 0 ∀ vh, wh ∈ VP , (3.9)

s(v−
h , wh − v+

h ) ≤ 0 ∀ vh ∈ VP , wh ∈ V+
P . (3.10)

Proof. Let xi ∈ P be any internal node. If vh(xi) ≥ wh(xi), then v+
h (xi) ≥ w+

h (xi). Moreover, if vh(xi) ≥
wh(xi) > a, then v−

h (xi) = vh(xi) − a ≥ wh(xi) − a = w−
h (xi). If vh(xi) > a and wh(xi) ≤ a, then

v−
h (xi) = vh(xi) − a ≥ 0 ≥ w−

h (xi). If vh(xi) ≤ a, then either v−
h (xi) = 0 ≥ w−

h (xi), or v−
h (xi) =

vh(xi) ≥ wh(xi) = w−
h (xi). Thus,

s(v−
h − w−

h , v+
h − w+

h )

= α

N∑
i=1

(‖D‖0,∞,ωi
h(xi)

d−2 + ‖μ‖0,∞,ωi
h(xi)

d) (v−
h − w−

h )(xi)(v
+
h − w+

h )(xi)

≥ 0, (3.11)

which proves (3.9). Taking wh ∈ V+
P gives w−

h = 0, and then (3.10) follows from (3.9). �
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Theorem 3.2 (Well-posedness). Let T : VP → [VP ]′ be the mapping defined by

[Tvh, wh] = a(v+
h , wh) + s(v−

h , wh). (3.12)

Then, T is continuous and, if the nondimensional parameter α is chosen such that α ≥ Cequiv, it is also
strongly monotone, since then T satisfies: there exists β > 0, independent of h, such that

[Tvh − Twh, vh − wh] ≥ β ‖vh − wh‖2
a, (3.13)

for all vh, wh ∈ VP . As a consequence, (3.4) has a unique solution uh ∈ VP .

Proof. We start defining the mesh-dependent norm ‖ · ‖P by

‖vh‖P := {‖vh‖2
a + ‖vh‖2

s

} 1
2 . (3.14)

Then, for all vh, wh, zh ∈ VP using the Cauchy-Schwarz inequality and (3.8) we get to

[Tvh − Twh, zh] = a
(
v+

h − w+
h , zh

) + s
(
v−

h − w−
h , zh

)
≤ (‖v+

h − w+
h ‖2

a + ‖v−
h − w−

h ‖2
s

) 1
2 ‖zh‖P , (3.15)

which proves the continuity of T . To prove the monotonicity of T , let vh, wh ∈ VP . Using the Cauchy-
Schwarz and Young inequalities, and (3.8), we obtain

[Tvh − Twh, vh − wh] = a(v+
h − w+

h , vh − wh) + s(v−
h − w−

h , vh − wh)

= ‖v+
h − w+

h ‖2
a + a(v+

h − w+
h , v−

h − w−
h ) + ‖v−

h − w−
h ‖2

s + s(v−
h − w−

h , v+
h − w+

h )

≥ 1

2
‖v+

h − w+
h ‖2

a +
(

1 − Cequiv

2α

)
‖v−

h − w−
h ‖2

s + s(v−
h − w−

h , v+
h − w+

h )

≥ 1

2
‖v+

h − w+
h ‖2

a +
(

1 − Cequiv

2α

)
‖v−

h − w−
h ‖2

s , (3.16)

where in the last inequality we used (3.9) in Lemma 3.1. Next, using that α ≥ Cequiv and (3.8) we
arrive at (

1 − Cequiv

2α

)
‖v−

h − w−
h ‖2

s ≥ α

2Cequiv
‖v−

h − w−
h ‖2

a. (3.17)

Hence, (3.13) follows replacing (3.17) in (3.16) and the fact that, since a(·, ·) is symmetric and elliptic,
we have ‖vh‖a ≤ √

2 (‖v+
h ‖a + ‖v−

h ‖a).
Finally, the existence and uniqueness of solutions follows by using classical results in monotone

operator theory (see, e.g., Renardy & Rogers, 2004, Theorem 10.49). �
For the next observation, it is useful to recall that, for Galerkin methods, consistency can be expressed

as an invariance property of the operator mapping the exact solution to the Galerkin one.
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Lemma 3.3 (Consistency).Under Assumption (A1), the method (3.4) enjoys the following invariance
property: if the exact solution u belongs to VP , then u+

h = uh = u.

Proof. As u ∈ VP , the functions u+ and u− are defined and, due to Assumption (A1), we have u+ = u
and u− = 0. As a result, we get

ah(u; vh) = a(u+, vh) = a(u, vh) = 〈f , vh〉Ω ,

for all vh ∈ VP . Thanks to Theorem 3.2, the solution of (3.4) is unique and therefore we obtain uh = u.
Using that u−

h = u− = 0, we conclude that u+
h = uh. �

Remark 3.4 Whenever k = 1 the method (3.4) is actually bound-preserving throughout the domain Ω ,
not only at the nodes. Furthermore, if μ > 0, in addition it also respects the discrete maximum principle.
That is, if f ≥ 0 then u+

h cannot attain an interior negative minimum, and reaches its minimum at the
boundary. If μ = 0, it appears that the method by construction does not guarantee that u+

h cannot attain
an interior minimum. Nonetheless, all our numerical experiments to date have failed to produce such
a case.

3.2 Characterisation of the constrained part and error estimates

One of the salient features of the method (3.4) is that u+
h is characterised as being the unique solution of

a variational inequality posed on the closed convex set V+
P . This is proven in the next result.

Theorem 3.5 (Characterisation of the constrained part). Let uh ∈ VP be the unique solution of (3.4).
Then, u+

h satisfies the following variational inequality: u+
h ∈ V+

P and satisfies

a(u+
h , vh − u+

h ) ≥ 〈f , vh − u+
h 〉Ω ∀ vh ∈ V+

P . (3.18)

Proof. Using (3.4) with vh ∈ VP , v−
h , and u+

h as test functions we have the following equalities:

a(u+
h , vh) + s(u−

h , vh) = 〈f , vh〉Ω ,

a(u+
h , v−

h ) + s(u−
h , v−

h ) = 〈f , v−
h 〉Ω ,

a(u+
h , u+

h ) + s(u−
h , u+

h ) = 〈f , u+
h 〉Ω .

Subtracting the second and third equation from the first one, and using that v+
h = vh − v−

h , we get

a(u+
h , v+

h − u+
h ) + s(u−

h , v+
h − u+

h ) = 〈f , v+
h − u+

h 〉Ω , (3.19)

for all v+
h ∈ V+

P . Finally, using (3.10) in Lemma 3.1, we get that u+
h ∈ V+

P satisfies (3.18), thus completing
the proof. �

Remark 3.6 Due to Stampacchia’s Theorem, problem (3.18) can be proven directly to have a unique
solution. This proves that both the stabilized method (3.4) and the variational inequality (3.18) are, in
fact, equivalent.

The equivalence of the method as a variational inequality enables us to prove best approximation
error estimates in a standard fashion.
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Theorem 3.7 (Abstract error analysis). Let u be the solution of (2.7) and uh ∈ VP be the unique solution
of (3.4). Then,

‖u − u+
h ‖a = min

vh∈V+
P

‖u − vh‖a. (3.20)

Moreover, let uFEM
h be the solution of the (standard) finite element method (2.15). Then, the negative

part u−
h satisfies the following error estimate

s(u−
h , u−

h )
1
2 ≤

√
Cequiv

α
min

{‖u − u+
h ‖a, ‖uFEM

h − u+
h ‖a

}
. (3.21)

Proof. Since u+
h is the solution of (3.18), it satisfies in particular

a(u+
h − u, vh − u+

h ) ≥ 0 ∀ vh ∈ V+
P . (3.22)

Thus, u+
h is the best approximation of u in V+

P with respect to the norm induced by a(·, ·), thus proving
the quasi-optimality for u+

h stated in (3.20).
To prove (3.21) we use the Cauchy-Schwarz inequality and (3.8) to get

s(u−
h , u−

h ) = a(u − u+
h , u−

h ) ≤
√

Cequiv

α
‖u − u+

h ‖a

√
s(u−

h , u−
h ). (3.23)

Alternatively, using that a(u − uFEM
h , u−

h ) = 0, then, we also have

s(u−
h , u−

h ) = a(uFEM
h − u+

h , u−
h ) ≤

√
Cequiv

α
‖uFEM

h − u+
h ‖a

√
s(u−

h , u−
h ), (3.24)

which proves (3.21). �

Remark 3.8 (Convergence of the complementary part). We may interpret the last result in two ways.
First, u−

h converges to zero at least at the same speed as u+
h converges to u. Moreover, (3.21) implies that

in certain cases this convergence is much faster than the one for u+
h . More precisely, focusing on the case

of piecewise linear finite element functions, if the mesh satisfies the conditions for the plain Galerkin
method to admit discrete maximum principle (see, e.g., Brandts et al., 2008), then uFEM

h ∈ V+
P , which

implies that uh = uFEM
h is also the solution to (3.4). Thus, thanks to (3.21), for certain meshes, and their

regular refinements, we have that u−
h = 0.

Remark 3.9 (Best approximation of the constrained part). In view of the best approximation result (3.20)
for the constrained part u+

h , there is no better finite element function with bound-preserving nodal values
in the energy norm. Thus, (3.20) is the counterpart of the classical best approximation result (2.16) for
the proposed method.

We finish this section by discussing briefly the notion of numerical solution. Since our main interest
is the part of the solution uh that belongs to V+

P , namely u+
h , then the latter will be considered to be the
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numerical solution in the remaining of the manuscript. The ‘intermediate’ solution uh appears mostly
as a tool to be able to replace the variational inequality by an equality posed over the whole vector
space Vh.

4. A problem with nonlinear reaction

To showcase the potential generality of the proposed bound-preserving approach, we now extend (3.4) to
a semilinear problem with monotone nonlinearity. Specifically, for p ∈ (1, ∞) we consider the problem
of finding u such that

−div
(
D∇u

) + |u|p−2 u = f in Ω ,

u = 0 on ∂Ω , (4.1)

where D satisfies the same assumptions as above. To avoid technical diversions, we will only consider
p ≥ 2. This class of equation is sometimes referred to as the Lane–Emden–Fowler equation and is
related to problems with critical exponents (Clément et al., 1996). Furthermore, they arise in the theory
of boundary layers of viscous fluids (Wong, 1975), among other application areas.

The weak form of this problem is given by: find u ∈ X := H1
0(Ω) ∩ Lp(Ω) such that

a(u, v) + b(u; u, v) = 〈f , v〉Ω ∀ v ∈ X , (4.2)

where a(·, ·) is given by (2.10) (with μ = 0 in this case), and the semilinear form b is given by

b(w; u, v) := (|w|p−2 u, v)Ω . (4.3)

The space X is provided with the norm

‖v‖X := |v|1,Ω + ‖v‖0,p,Ω , (4.4)

thus making it a reflexive Banach space. So, using monotone operator theory (see, e.g., Renardy &
Rogers, 2004, Chap 10), this problem can be proven to have a unique solution.

The error analysis of this type of problem has been carried out in several works, as early as Glowinski
& Marrocco (1974, 1975) (in the context of the p-Laplacian). In there, the estimates are suboptimal for
some values of the exponent p. So, later approaches (see, e.g., Barret & Liu, 1993) have made use of the
concept of quasinorm in order to obtain optimal error estimates. As this is the approach we will follow
in this work, we start recalling the definition of a quasinorm.

Definition 4.1 (Quasinorm). Let V be a real vector space. A quasinorm ‖·‖(q) in V is a mapping ‖·‖(q) :
V → R that satisfies

‖v‖(q) ≥ 0 , and ‖v‖(q) = 0 ⇐⇒ v = 0, (4.5)

for all v ∈ V . However, the usual triangle inequality is replaced by

‖v + w‖(q) ≤ C
(‖v‖(q) + ‖w‖(q)

)
, (4.6)
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for all v, w ∈ V , where C may depend on the definition of ‖·‖(q), and the elements v and w themselves.

Remark 4.2 Strictly speaking, we should also demand that the quasinorm is homogeneous, that is,
‖αv‖(q) = |α| ‖v‖(q) for all v ∈ V and all α ∈ R. The mapping we will use to measure the error does not
satisfy this last property, but this will not affect the error estimates presented below.

In our analysis below we will make use of the following quasinorm in Lp(Ω): for a given w ∈ Lp(Ω)

we define

‖v‖2
(w,p) :=

∫
Ω

|v|2(|w| + |v|)p−2 dx, (4.7)

for all v ∈ Lp(Ω). It has the following properties.

Lemma 4.3 The mapping ‖·‖(w,p) is a quasinorm in Lp(Ω). Moreover, for all v, w ∈ Lp(Ω), the following
equivalence holds

‖v‖p
0,p,Ω ≤ ‖v‖2

(w,p) ≤ ‖|v| + |w|‖p−2
0,p,Ω ‖v‖2

0,p,Ω . (4.8)

Proof. The proof that ‖·‖(w,p) is a quasinorm is completely analogous to that of Proposition 2.1 in
Ebmeyer & Liu (2005). The equivalence (4.8) is proven following exactly the same steps as in the proof
of Equation (10) in Ebmeyer & Liu (2005) (see also Liu, 2000, Proposition 3.1). �

In addition, the following monotonicity and continuity results can be proven for the nonlinear form
b(·; ·, ·).
Lemma 4.4 The nonlinear form b(·; ·, ·) is strongly monotone with respect to the quasinorm (4.7). More
precisely, there exists a constant CC > 0 such that

b(u; u, u − v) − b(v; v, u − v) ≥ CC ‖u − v‖2
(u,p). (4.9)

Moreover, for any θ ∈ (0, 1] the following holds:

|b(u; u, w) − b(v; v, w)| ≤ CB

(
θ ‖u − v‖2

(u,p) + θ−p+1 ‖w‖2
(u,p)

) ∀ u, v, w ∈ Lp(Ω), (4.10)

where CB depends only on p.

Proof. In Lemma 2.1 of Barret & Liu (1993) the following bounds are proven:

(|x|p−2x − |y|p−2y
)
(x − y) ≥ C2

(|x| + |y|)p−2|x − y|2, (4.11)∣∣|x|p−2x − |y|p−2y
∣∣ ≤ C1

(|x| + |y|)p−2|x − y|, (4.12)

for all x, y ∈ R. Next, (4.9) follows by from (4.11) and noticing that |x| + |y| ≥ (|x| + |x − y|)/2. To
prove (4.10) we combine (4.12) with the result from Lemma 2.2 in Liu (2000). �
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4.1 The finite element method

The finite element method we consider is the natural extension of (3.4), that is, find uh ∈ VP such that

a
(
u+

h , vh

) + b
(
u+

h ; u+
h , vh

) + s
(
u−

h , vh

) = 〈f , vh〉Ω ∀ vh ∈ VP . (4.13)

Here, the stabilisation term is given by

s(vh, wh) := α

N∑
i=1

‖D‖0,∞,ωi
h(xi)

d−2 vh(xi)wh(xi), (4.14)

where, once again, α > 0 is an dimensionless constant. Following very similar steps to those from the
proof of Theorem 3.2, Method (4.13) can be proven to have a unique solution uh ∈ VP . We note that there
appears to be no traceable numerical advantage in including a linearised reaction term in the stabilisation
(4.14), at least for modestly large values of p, so we omit it for simplicity.

As in the linear case, (4.13) can be linked to a variational inequality, as the following result (whose
proof is totally analogous to that of Theorem 3.5) shows.

Theorem 4.5 Let uh be the unique solution of (4.13). Then, u+
h satisfies the variational inequality

a
(
u+

h , vh − u+
h

) + b
(
u+

h ; u+
h , vh − u+

h

) ≥ 〈
f , vh − u+

h

〉
Ω

∀ vh ∈ V+
P . (4.15)

The following result is the main reason for the use of a quasinorm instead of the norm induced by
the problem. In fact, starting from the last result a Céa type estimate can be obtained, but, analogously
to what is reported in Ciarlet (2002), that would lead to a suboptimal estimate for certain values of p. So,
in the next result we provide an optimal estimate with respect to the quasinorm (4.7).

Theorem 4.6 Let u solve (4.1) and uh ∈ VP be the solution of (4.13). Then,

‖u − u+
h ‖2

a + ‖u − u+
h ‖2

(u,p) ≤ C inf
vh∈V+

P

(‖u − vh‖2
a + ‖u − vh‖2

(u,p)

)
. (4.16)

Proof. Using the coercivity (4.9) of b followed by Theorem 4.5, we get

CC

(∥∥u − u+
h

∥∥2
a + ∥∥u − u+

h

∥∥2
(u,p)

)
≤ a

(
u − u+

h , u − u+
h

) + b
(
u; u, u − u+

h

) − b
(
u+

h ; u+
h , u − u+

h

)
≤ a

(
u − u+

h , u − vh

) + b
(
u; u, u − vh

) − b
(
u+

h ; u+
h , u − vh

)
,

(4.17)

for every vh ∈ V+
P . Next, using Young’s inequality and (4.10) we have, for all θ ∈ (0, 1],

CC

(∥∥u − u+
h

∥∥2
a + ∥∥u − u+

h

∥∥2
(u,p)

)
≤ CC

4

∥∥u − u+
h

∥∥2
a + CC

∥∥u − vh

∥∥2
a

+ CB

(
θ

∥∥u − u+
h

∥∥2
(u,p)

+ θ−p+1
∥∥u − vh

∥∥2
(u,p)

)
. (4.18)

Choosing θ = min
(

CC
4CB

, 1
2

)
and rearranging the inequality yields the desired result. �
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5. Numerical tests

In the following tests we detail some aspects of our implementation and showcase the methodology
looking at the symmetric problem (2.7) and its nonlinear counterpart (4.1) in two space dimensions. We
recall once again that all references to the numerical solution refer to the function u+

h ∈ V+
P , and not the

function uh.
To linearise the problem, we pose the following Richardson-like iterative approximation for (3.4):

Given u0 and ω ∈ (0, 1], for each n = 0, 1, . . . find un+1 such that

a(un+1, v) = a(un, v) + ω
(〈f , v〉Ω − a

((
un)+ , v

) − s
((

un)− , v
))

. (5.1)

We initialise the finite element approximation of (5.1) by the Galerkin approximation, that is we set
u0

h ∈ VP such that, for all vh ∈ VP

a(u0
h, vh) = 〈f , vh〉Ω . (5.2)

Then, the approximation to the iteration (5.1) becomes for each n = 0, . . . , N − 1, find un+1
h ∈ VP such

that for all vh ∈ VP

a(un+1
h , vh) = a(un

h, vh) + ω
(〈f , vh〉Ω − a

((
un

h

)+ , vh

) − s
((

un
h

)− , vh

))
. (5.3)

In each experiment we take α = 1 within the stabilisation. The linear systems arising in (5.3) are
solved using an LU decomposition within the Eigen library. The linearisation was terminated when∥∥un+1

h − un
h

∥∥
0,Ω ≤ 10−12.

5.1 Convergence on a regular grid with a smooth solution

We first consider D = εI , where I denotes the 2 × 2 identity matrix, with ε = 10−5, μ = 1, and set f
such that the function

u(x, y) = sin(πx) sin(πy) (5.4)

solves the problem (2.7) over the unit square.
Convergence results for piecewise linear, k = 1, and quadratic, k = 2, elements over a sequence of

uniformly refined criss-cross meshes are shown in Figures 1 and 2, respectively. In line with the error
estimates from Section 3.2, the method converges with optimal rate in the function approximation sense
for both k = 1 and k = 2. Notice also that the number of iterations of the linearisation decreases as a
function of h. Here, and thereafter, EOC stands for estimated order of convergence.

5.2 Convergence on an obtuse grid with a smooth solution

We again consider D = εI , with ε = 10−5, μ = 1. The analytical solution of (2.7) over (−1, 1)× (0, 1)

is taken as

u(x, y) = sin(π(x + 1)/2) sin(πy), (5.5)
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Fig. 1. We test the convergence of a piecewise linear conforming approximation given by (5.3) on a sequence of concurrently
refined criss-cross meshes. The Richardson iteration converges for ω = 1.

Fig. 2. We test convergence of a piecewise quadratic conforming approximation (5.3) on a sequence of concurrently refined
criss-cross meshes. The Richardson iteration converges for ω = 1.

and we compute f accordingly. Notice that u(x) ∈ [0, 1] for all x ∈ Ω . We pose the problem over
a sequence of triangulations with obtuse elements as described in Brandts et al. (2009) illustrated in
Figure 3. This mesh was used in Brandts et al. (2009) as an example of triangulations for which the
finite element method does not satisfy the discrete maximum principle, even for the Poisson equation;
so, it poses a challenge to the finite element method as solutions do not in general satisfy DMP even if
ε � 1.

Convergence results for piecewise linear elements over this mesh are given in Figure 4. The
method converges optimally and similar results are observed for higher order elements. Notice that
the linearisation takes more iterations to achieve convergence, which is to be expected, as the Galerkin
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Fig. 3. Three refinements of the mesh with a single obtuse triangle from Brandts et al. (2009). The result is a layer of obtuse
triangles.

Fig. 4. We test convergence of a piecewise linear conforming approximation (5.3) on a sequence of concurrently refined meshes
with obtuse elements as illustrated in Figure 3. Here the Richardson linearisation converges for ω = 1.

solution will, very likely, never respect the bounds for the problem, regardless of how fine the mesh is
(the iteration count remains, nevertheless, low).

5.3 Resolution of boundary layers

Consider the problem

−εΔu + u = 1 in Ω ,

u = 0 on ∂Ω .
(5.6)

We fix h ≈ 0.02 on a criss-cross and vary ε ∈ [10−2, 10−7]. For particularly small ε the Richardson
iteration required dampening for convergence. With ε > 10−5, we use ω = 1 and convergence was
achieved within 4 iterations. When ε ≤ 10−5, ω = 1

2 is sufficient for convergence with fewer than 46
iterations in each case. The most challenging case being the smallest value of ε. Computed solutions for
different values of ε are shown in Figure 5.
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Fig. 5. Elevations of the approximation to (5.6) for fixed h and different values of ε. We notice the absence of oscillations even
for particularly small values of ε.

5.4 Resolution of boundary layers with discontinuous Dirichlet conditions

Consider the problem

−εΔu + u = 0 in Ω ,

u = gD on ∂Ω ,
(5.7)

where gD = 1 on [0, 1
2 ] ×{0}, gD = 0 on ( 1

2 , 1] ×{0} and periodically follows the same pattern counter-
clockwise. We fix h ≈ 0.02 on a criss-cross mesh and vary ε ∈ [10−2, 10−7]. For particularly small
ε the Richardson iteration required dampening for convergence. With ε > 10−5 we used ω = 1 and
convergence was achieved within 5 iterations. When ε ≤ 10−5, then ω = 0.5 provided a convergent
algorithm and took fewer than 40 iterations in each case. Figure 6 shows some solutions. Once again,
we notice the lack of oscillations in the discrete solution for the whole range of reaction and diffusion
coefficients.

5.5 A solution with an interior layer

Consider the problem

−εΔu + u = f in Ω ,

u = 0 on ∂Ω ,
(5.8)
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Fig. 6. Elevations of the approximation to (5.7) for fixed h and varying ε. We notice there are no apparent oscillations even for
particularly small values of ε.

with

f =
⎧⎨
⎩

1
2 in

[
1
4 , 3

4

]2

1 otherwise.
(5.9)

In this case the solution is expected to achieve a local minimum in the interior. We fix h ≈ 0.02 and
examine the solution for ε = {10−4, 10−7}. We compare the standard finite element solution and the
approximation given by (5.3) in Figure 7. Notice that the plain Galerkin solution has oscillations near
the boundary layer that become extreme for ε � 1, which are totally removed by the current method. In
addition, for k = 2, there are noticeable undershoots around the interior layer, which are totally removed
by the current method.

5.6 Anisotropic diffusion with nonlinear reaction

Consider the domain Ω = Ω1\Ω2 with Ω1 = (0, 1)2, Ω2 = [ 4
9 , 5

9 ]2 and the problem

−div(εD∇u) + u3 = f in Ω ,

u =
{

0 on ∂Ω1

2 on ∂Ω2
,

(5.10)
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Fig. 7. A cross section taken about the x = y plane of the finite element solution, coloured red presenting oscillations at the
boundary layer, and the approximation given by (5.3), coloured green with no oscillations at the boundary. Panels (A) and (B) are
computed using k = 1, while (C) depicts the approximations obtained using k = 2.

with ε = 10−5,

D = RART , R =
[

cos(θ) sin(θ)

− sin(θ) cos(θ)

]
, A =

[
100 0

0 1

]
, (5.11)

and θ = −π
6 . This is a challenging realisation of (4.1) with an anisotropic diffusion coefficient and

nonlinear reaction term, with p = 4, posed over a nonconvex domain. In Figure 8 we show the finite
element solution, the bound-preserving solution and contour plots highlighting the oscillatory nature of
the standard finite element solution for this problem.

6. Concluding remarks

We proposed an inexpensive and simple way to impose hard bounds on the range of a finite element
solution. This is achieved through the definition of a nonlinear stabilised Galerkin approach, which
is designed to provide the orthogonal projection into the closed convex set of physically admissible
solutions satisfying hard bounds. In an effort to highlight the key ideas, we have confined the presentation
to linear and monotone semilinear reaction-diffusion equations. We stress, however, that the framework
is general enough to allow other model problems, as well as bound-preserving variants of other known
finite element methods, to be constructed following the methodology presented here. In particular, an
interesting extension of the proposed methodology to convection-dominated problems is both relevant
and, we believe, within reach. Moreover, the extension to discontinuous Galerkin methods posed on
general polygonal/polyhedral meshes is also conceivable. Both these, and other, topics are ongoing, and
will be discussed elsewhere.
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Fig. 8. Approximations to the problem (5.10) with h ≈ 0.02 over a Delaunay mesh. Notice the finite element approximation
exhibits oscillatory behaviour in contrast to the bound preserving method.
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