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Abstract

Motivated by the inability of classical computational plasticity to fully exploit modern scientific computing, a multifield
ormulation for finite strain plasticity is presented. This avoids a local integration of the elastoplastic model. In the multifield
pproach, the balance of linear momentum, the flow relation and the Karush–Kuhn–Tucker constraints are collectively cast in
variational format. In addition to the deformation, both the plastic strain and the consistency parameter are global degrees

f freedom in the resulting spatially discrete problem. The ensuing proliferation of global degrees of freedom in the multifield
pproach is addressed by exploiting the block sparse structure of the algebraic system together with a tailored block matrix
olver which can utilise emerging hardware architectures. A series of numerical problems demonstrate the validity, capability
nd efficiency of the proposed approach.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Models and algorithms for elastoplasticity at finite deformations are well established [see e.g., 1,2, and the
references therein]. They typically entail a local integration of the elastoplastic model within a strain-driven format
wherein the deformation is treated as a field variable at the global level. The integration process is referred to as a
return mapping algorithm and the local points at which it is performed are typically the quadrature points of a finite
element. The local plastic state is then characterised by a set of internal variables associated with each quadrature
point. These features characterise classical computational plasticity.

The classical approach to computational plasticity was devised to be efficient on central processing unit (CPU)
based computing architectures where floating-point operations were the primary bottleneck. By contrast, modern
computing architectures, based on, e.g., graphical processing units (GPUs), can only be effectively exploited
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by algorithms that minimise memory access often at the expense of floating-point operations. This requires a
fundamental change in algorithm design philosophy and provides the primary motivation for matrix-free solvers
where the storage of large global sparse matrices is circumvented and the underlying weak forms computed
in place [see e.g., 3–5]. Matrix-free methods are not widely adopted in solid mechanics; a recent exception is
a work by Davydov et al. [6] on nonlinear elasticity. This is due to the complex nonlinearities (material and
geometric) and the widespread use of low-order finite element approximations, especially in commercial codes.
Furthermore, the evolution of quantities characterising inelastic processes – including classical plasticity – is
nearly always approximated at the local level of the quadrature point thereby inhibiting the use of matrix-free
approaches. The conventional framework for plasticity needs to be reconsidered for large-scale computations on
modern, energy-efficient architectures.

A key contribution of this work is to introduce a novel multifield formulation for finite strain plasticity well suited
for matrix-free approaches. To this end, the balance of linear momentum, the flow relation, and the Karush–Kuhn–
Tucker constraints are collectively cast in a variational format. Thus, in addition to the deformation, the plastic strain
tensor and the consistency parameter are global degrees of freedom in the resulting spatially discrete problem that
follows from a finite element discretisation. We adopt a finite strain plasticity formulation set in logarithmic strain
space that mimics the structure of the small strain setting [7–12]. The Karush–Kuhn–Tucker inequality constraints
on the evolution of plastic flow are recast as a variant of the nonlinear Fischer–Burmeister complementarity function;
for applications of this approach to various formulations of plasticity, see [13–15]. This circumvents the need for
an active set search at the global level [see e.g., 16,17, in the context of gradient crystal plasticity]. Attention is
restricted to implicit time integration schemes. The multifield approach results in a proliferation of global degrees of
freedom. This is addressed by exploiting the block sparse structure of the algebraic system together with a tailored
block matrix solver.

Multifield algorithms for classical local plasticity are relatively few. A three-field variational formulation, which
expressed the momentum balance equation, the plastic consistency condition, and the dilatational constitutive
equation in weak form was proposed by Pinsky [18]. Mixed formulations of plasticity – wherein the stress is
treated as an independent field variable – can also give rise to algorithmic structures that do not enforce the flow
rule at the quadrature point level [see e.g., 19]. A multifield formulation of small strain plasticity was developed
by Schröder and Kuhl [20,21] following a variational approach wherein the primary fields were the deformation,
plastic strain, stress and the consistency parameter. The deformation was treated as a continuous field while the
inelastic fields were continuous only at the element level. The ensuing system of coupled nonlinear equations was
solved using the finite element method combined with an active set strategy which required the local assessment of
the consistency condition. Static condensation of the discontinuous inelastic fields was used to reduce the overall
size of the linear system [21].

Multifield-type algorithms are often adopted for the solution of extended plasticity formulations used to describe
the size-dependent mechanical response of crystalline materials at the micro-scale [see e.g., 22–24, among others]
via the inclusion of a plastic strain gradient measure and a length scale [25–36]. The inclusion of the gradient of
a plastic strain measure dictates that the resulting approximation be continuous and hence a global approximation
thereof is convenient [see e.g., 16,17,37–47]. However, the continuity requirement is not applicable to multifield
formulations of classical plasticity as these necessitate only a dependence on a measure of the plastic strain and not
the gradient thereof.

A key contribution of the work presented here is to develop a robust and efficient computational scheme for
multifield plasticity at finite strains. The proposed scheme does not require a local return mapping algorithm thereby
reducing memory storage requirements. It is therefore appropriate for matrix-free approaches on modern computing
architectures generally limited by memory bandwidth. Furthermore, by avoiding internal variables and treating all
unknowns as field variables, the scheme is well suited for the development and assessment of a posteriori error
indicators to guide mesh adaptivity. In addition, the rates of plastic quantities are explicitly calculated, allowing for
the straightforward calculation of material time derivatives and Arbitrary Lagrangian–Eulerian formulations.

The structure of the presentation is as follows. Standard notation is briefly summarised. Thereafter we recap the
key kinematic relations for an elastoplastic body subject to finite deformations in Section 2. The various relevant
stress measures, constitutive and flow relations are presented in Section 3 together with details of the variant of the
Fischer—Burmeister complementarity function. The governing equations are then stated in strong and variational
form in Section 4. The discretisation of the variational form of the governing equations in both time and space,
together with details of the Newton–Raphson solution scheme are provided in Section 5. Section 6 provides a series
2
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of numerical examples that serve to validate the formulation and demonstrate scalability. The presentation concludes
with a summary and discussion.

Nomenclature

Direct notation is adopted throughout. Occasional use is made of index notation, the summation convention for
repeated indices being implied.

The scalar products of two vectors a and b, and two second-order tensors A and B are respectively denoted by

a · b = ai bi and A : B = Ai j Bi j .

The conventional dyadic product of two vectors, and of two second-order tensors, are respectively given by

a ⊗ b = ai b j ei ⊗ e j and A ⊗ B = Ai j Bkl ei ⊗ e j ⊗ ek ⊗ el ,

where ei are the basis vectors of the Cartesian coordinate frame. The upper and lower dyadic products of pairs of
second-order tensors are respectively given by

A⊗B = Aik B jl ei ⊗ e j ⊗ ek ⊗ el and A⊗B = Ail B jk ei ⊗ e j ⊗ ek ⊗ el .

The second-order identity tensor is defined by

I = δi j ei ⊗ e j .

The various fourth-order identity tensors required are defined by

I := I⊗I = δikδ jl ei ⊗ e j ⊗ ek ⊗ el ,

I := I⊗I = δilδ jk ei ⊗ e j ⊗ ek ⊗ el ,

Ivol
:=

1
3
δi jδkl ei ⊗ e j ⊗ ek ⊗ el ,

Isym
:=

1
2

[
I+ I

]
,

Idev
:= Isym

− Ivol.

. Finite strain kinematics

The kinematics of an elastoplastic body undergoing finite deformations are briefly summarised. The presentation
f the additive plasticity model in logarithmic strain space follows that of Miehe et al. [7]. For further information
n nonlinear continuum mechanics, refer to [1], among others.

Consider a continuum body composed of matter. The deformation of the body from its reference configuration
⊂ R3 to its current configuration Ωt at time t is defined via the deformation map ϕ : Ω → R3 as x = ϕ(X, t),

here x ∈ Ωt and X ∈ Ω are physical points in the current and reference configurations, respectively. The boundary
f the reference configuration is denoted by Γ with outward unit normal N .

The invertible linear tangent map F : Ω → GL+(3)1 (i.e., the deformation gradient) maps a line element dX in
he reference configuration to a line element dx in the current configuration and is defined by the derivative of the
eformation with respect to the material placement; that is,

F := Gradϕ = R · U with dx = F · dX,

1 GL (3) is the set of positive definite 2nd order tensors in R3.
+

3
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where R ∈ SO(3)2 is the rotation tensor and U ∈ S+ is the right stretch tensor. The determinant of F is defined
y J := det F > 0. The symmetric right Cauchy–Green tensor C : Ω → S+3 is defined by

C := FT
· F = U · U =

3∑
A=1

λ2
A N A

⊗ N A,

here λ2
A and N A are the eigenvalues, i.e., the squared principal stretches, and eigenvectors of U , respectively,

ollowing from the spectral decomposition. The Hencky or logarithmic strain is defined by

E :=
1
2

ln
[
C
]
=

3∑
A=1

ln[λA]N A
⊗ N A

= ln
[
U
]
.

The plastic logarithmic strain is denoted by Ep with the elastic logarithmic strain then defined in an additive
format that mimics the infinitesimal deformation setting by

Ee
= E − Ep,

where the plastic incompressibility constraint follows as

tr
[
Ep]

= 0. (1)

3. Stress measures and constitutive relations

The relevant stress measures are recalled, and the stress power relation is then used to define the Hencky stress.
The constitutive relations for the kinetic measures follow from a Coleman–Noll procedure. The plastic flow relations
are then stated and the Karush–Kuhn–Tucker constraints recast in the form of a nonlinear relation which is central
to the multifield plasticity formulation.

3.1. Stress measures

The stress power relation identifies the stress quantity conjugate to the rate of change (i.e., the material time
derivative) of the total logarithmic strain Ė, denoted by T and termed the Hencky stress, as follows

P : Ḟ =
1
2

S : Ċ = T : Ė,

where P and S are the familiar Piola and Piola–Kirchhoff stress tensors, respectively. The key relations between
the various stress and strain measures are given by

P = T : P with P = ∂F E,
S = T : PL with PL = 2∂C E.

3.2. Constitutive and flow relations

Consider a stored energy function ψ of the form

ψ = ψ(E − Ep, A, α)

where A ∈ S is a symmetric second-order tensor that models kinematic hardening and α a scalar variable describing
isotropic hardening. Following a now standard Coleman–Noll procedure [48], the conjugate kinetic measures are
obtained as

T = ∂Eeψ = −∂Epψ, B = −∂Aψ, β = −∂αψ. (2)

2 SO(3) denotes the special orthogonal group of rotations in R3.
3 S denotes the group of symmetric positive definite tensors.
+
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Consider now an additive decomposition of the stored energy function ψ into elastic and plastic parts, given by

ψ = ψe(E − Ep) + ψk(A) + ψ i(α)  
ψp

.

The plastic part ψp is composed of contributions from kinematic and isotropic hardening, denoted by ψk and ψ i,
respectively. More concretely, a quadratic form of the stored energy function is chosen, given by

ψ =
1
2
∥E − Ep

∥
2
D  

ψe

+
K
2
∥A∥2  
ψk

+
H
2
α2  
ψ i

where

∥Ee
∥D :=

√

Ee
: D : Ee.

D is the fourth-order tensor of elastic moduli,

D = 2µIsym
+ 3λIvol

= 2µIdev  
Dµ

+3κIvol,

ith λ and µ the Lamé parameters related to the Young’s modulus E , Poisson’s ratio ν and bulk modulus κ as
ollows

λ =
νE

[1 + ν][1 − 2ν]
, µ =

E
2[1 + ν]

, κ = λ+
2µ
3
.

The fourth-order symmetric, deviatoric and volumetric identity tensors, Isym, Idev and Ivol, respectively, were defined
n the Nomenclature. The isotropic and kinematic hardening moduli are denoted by H and K , respectively. Hence,
rom Eq. (2) one obtains the relations for the various kinetic measures as

T = D :
[
E − Ep], B = −K A, β = −Hα. (3)

The convex yield function f defines the elastic domain E and the yield surface and thereby restricts the admissible
tress and kinetic fields as follows

f (T , B, β) ≤ 0

here{
f < 0, (T , B, β) in the elastic domain (set)
f = 0, (T , B, β) on the yield surface (plastic set)

.

he plastic flow relations follow from the postulate of maximum plastic dissipation as

Ėp
= λ̇∂T f = λ̇Np, (4)

Ȧ = λ̇∂B f, (5)

α̇ = λ̇∂β f, (6)

here λ̇ is the consistency parameter and the second-order tensor Np is the flow direction (i.e., the normal to
the yield function). For the rate-independent case considered here, the plastic flow relations are subject to the
Karush–Kuhn–Tucker constraints given by

λ̇ ≥ 0, f ≤ 0, λ̇ f = 0. (7)

The inequality constraints (7) can be expressed in the form of a variant of the Fischer—Burmeister complemen-
tarity function c(λ̇, f ) [see e.g., 14], where

c(λ̇, f ) = cλλ̇− f −
⏐⏐cλλ̇+ f

⏐⏐. (8)

Note, the parameter cλ > 0 has units of stress times time. The Fischer–Burmeister complementarity function is
˙ ˙
piecewise smooth but non-differentiable at the line Z = {(λ, f ) : cλλ + f = 0}, as indicated in Fig. 1. The point

5
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Fig. 1. In (a), a schematic of the Fischer–Burmeister complementarity function c(λ̇, f ) indicating the elastic set (cλλ̇ = 0) and the plastic
set ( f = 0), together with the line Z dividing them. The point Z = 0 corresponds to the particular case of neutral loading. The view in
(b) is the plane at c(λ̇, f ) = 0.

Z = 0 divides the space spanned by the independent variables of c into two sets: a plastic (active) set where f = 0
nd an elastic (inactive) set where λ̇ = 0.

emark 1. The non-differentiability of the Fischer–Burmeister complementarity function can be addressed via
egularisation of the function in the vicinity of Z [14]. The alternative strategy adopted here is to enhance the
ewton–Raphson solver with a line-search method in order to attain quasi-quadratic convergence rates as discussed

n Section 5.3 and demonstrated in Section 6.2.
The role of the stabilisation parameter cλ is to improve the numerical robustness. Its inclusion does not affect the

ate of convergence or the converged solution. In general, cλ should be chosen to avoid large truncation and other
oating-point precision errors. Alternatively, as discussed in Section 5.5, a rescaling of the governing equations

allows cλ to be chosen as unity. □

Remark 2. We consider here an extension of the isotropic Mises–Huber yield condition to accommodate
Prager-type kinematic hardening where the yield function is given by

f (T , B, β) = ∥T + B∥Idev −

√
2
3

[
σy + β

]
, (9)

here B is the back stress, and ∥•∥Idev :=
√
• : Idev : •. The plastic flow relations (4)–(6) thus take the form

Ėp
= λ̇

Idev
: [T + B]

∥T + B∥Idev
, (10)

Ȧ = Ėp
, (11)

α̇ = λ̇

√
2
3
=

√
2
3
∥Ėp

∥. □ (12)

emark 3. From the properties of the projection operator, the deviatoric projection of the Hencky stress term in
he plastic flow relation (10) can be expressed as

Idev
: D : Ee  

T

= Idev
: Dµ : Ee  

Tµ
. □ (13)

. The governing equations

The set of governing equations – the equilibrium equation, flow relation (4) and complementarity condition (8) –
re now stated in strong form. The point of departure for the novel multifield formulation proposed here is then to
6
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recast these equations into a variational format following a Galerkin approach. Recall that the classical approach to
computational plasticity typically entails a local integration of the elastoplastic model within a strain-driven format
wherein only the deformation is treated as a field variable at the global level. In the multifield approach, in addition
to the deformation, the plastic strain tensor, and the consistency parameter are global fields whose solution satisfies
the corresponding variational formulation.

4.1. Strong form

The strong form of the equilibrium problem is given by the (quasi-static) balance of linear momentum in the
absence of inertial forces and the set of Dirichlet and Neumann boundary conditions as

DivP + b = 0 in Ω ,

u = u on Γu,

P · N = t on Γt .

(14)

ere b is the body force per unit of reference volume and the boundary of the domain is decomposed into
on-overlapping portions Γ = Γu ∪ Γt . These are augmented by the flow relation (4) and the complementarity

condition (8) as summarised in Box 4.1.1.

Box. 4.1.1: Governing equations

DivP + b = 0 , (15a)

Ėp
− λ̇Np

= 0 , (15b)

c(λ̇, f ) = 0 . (15c)

emark 4. For the case of Prager-type kinematic hardening as introduced in Eq. (9), no additional governing
quation is required for the evolution of the back stress B. More complex kinematic hardening models involving,
or example, two or more back stresses [49], would require additional governing equations. □

emark 5. The elastoplasticity problem cannot be solved using the balance of linear momentum (15a) and either
he flow relation (15b) or the complementarity function (15c). All three relations are required. The complementarity
unction (15c) is a scalar equation and hence knowledge of ∥Ėp

∥ is not sufficient to uniquely characterise Ėp
. A

ensorial relationship is required and is provided by the flow relation (15b). Similarly, the flow relation requires
nowledge of the plastic state, which is provided by the complementarity function (15c). Hence, both the plastic
ultiplier field and the logarithmic plastic strain field are approximated and discretised, as presented in Sections 5

nd 4.2. □

.2. Variational formulation

The variational form of the governing equations presented in Box 4.1.1 follows from a Bubnov–Galerkin
procedure and results in three coupled nonlinear equations as stated in Box 4.2.1. Here δu, δEp and δλ are
dmissible variations of the deformation, plastic strain and the consistency parameter, respectively. D was introduced
n (17) for dimensional scaling. Note that one only requires the components of the variations in the plastic strain

nd the consistency parameter to be square integrable.

7
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Box. 4.2.1: Variational formulation

Find u ∈ [H 1
0 (Ω )]3, Ep

∈ [L2(Ω )]3×3, λ ∈ L2(Ω ) such that:∫
Ω

δF : P dV −

∫
Ω

δu · b dV −

∫
Γt

δu · t dA = 0 ∀δu ∈ [H 1
0 (Ω )]3 , (16)∫

Ω

δEp
: D :

[
Ėp

− λ̇Np]
= 0 ∀δEp

∈ [L2(Ω )]3×3 , (17)∫
Ω

δλ
[
cλλ̇− f −

⏐⏐cλλ̇+ f
⏐⏐] = 0 ∀δλ ∈ L2(Ω ) . (18)

. Discrete problem

The weak form of the problem is now discretised in both time and space. A general implicit time integration
rocedure is employed first to obtain a semi-discrete system of equations. The finite element method is then used
o discretise the problem in space. Details of the Newton–Raphson strategy employed to approximately solve the
ully discrete problem are given.

.1. Time discrete problem

Let [0, T ] ⊂ R+ be the time interval of interest. The time interval is partitioned into steps such that

[0, T ] =
⋃
n∈I

[tn, tn+1] where tn+1 = tn +∆t.

We consider here implicit time-integration schemes. The approximation of the time derivative of a quantity ˙(•)
is denoted by ˚(•). The time-discrete form of the governing Eqs. (16)–(18) at tn+1 is thus given by

Ru :=

∫
Ω

δF : P dV −

∫
Ω

δu · b dV −

∫
Γt

δu · t dA = 0, (19)

REp :=

∫
Ω

δEp
: D :

[
E̊

p
− λ̊Np]

= 0, (20)

Rλ :=
∫
Ω

δλ
[
cλλ̊− f −

⏐⏐cλλ̊+ f
⏐⏐] = 0. (21)

he various quantities are evaluated at tn+1 although this is not indicated here and henceforth for the sake of brevity.
ote that P = P(E, Ep), Np

= Np(E, Ep) and f = f (E, Ep, λ) and Ep is related to λ and Np in a weak sense.

.2. Fully discrete problem

The triangulation of the reference configuration Ω into non-overlapping tetrahedral elements is denoted by
h
Ω . The displacement field u is approximated using a finite element space of globally continuous polynomials
f degree p. The fields for the plastic strain and the consistency parameter are both approximated using a finite
lement space of element-wise continuous polynomials of degree p − 1.

The macroscopic motion u ∈ [H 1(Ω )]3, the plastic strain Ep
∈ {Ep

i j ∈ L2(Ω ) : Ep
i j = Ep

j i }, and the consistency
arameter λ ∈ L2(Ω ) are respectively given in a vector space spanned by vector-, tensor-, and scalar-valued finite
lement basis functions (polynomials with local support), respectively denoted by Nu, N Ep and Nλ. That is, the
rimary fields and their associated rates and variations are approximated by

uh
=:

∑
I∈Iu

uI N I
u(X), δuh

:=

∑
I∈Iu

δuI N I
u(X), (22)

Ep,h
:=

∑
Ep

I N I
Ep (X), E̊

p,h
:=

∑
E̊p

I N I
Ep (X), δEp,h

:=

∑
δEp

I N I
Ep (X), (23)
I∈IEp I∈IEp I∈IEp

8
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λh
:=

∑
I∈Iλ

λI N I
λ (X), λ̊h

:=

∑
I∈Iλ

λ̊I N I
λ (X), δλh

:=

∑
I∈Iλ

δλI N I
λ (X), (24)

here the superscript h indicates that the representation is related to the finite element mesh with size function
h(X). Upright Greek and Roman letters are used to denote a global vector containing the degrees of freedom
ssociated with one of the three primary fields. The sets Iu and IEp and Iλ contain the degrees of freedom for

the displacement, plastic strain and consistency parameter fields, respectively. The discrete representation of the
gradient of the displacement field and its variation follows directly as

Fh
=

∑
I∈Iu

uI GradN I
u(X) and δFh

=

∑
I∈Iu

δuI GradN I
u(X).

5.3. Newton–Raphson strategy

Substituting the discrete representations (22)–(24) into the time-discrete form of the governing relations (19)–
(21), and omitting the size function h for brevity, yields the following three sets of coupled non-linear residual
equations:

R I
u =

∫
Ω

[
P : GradN I

u − b · N I
u

]
dV −

∫
Γt

t · N I
u dA ∀I ∈ Iu, (25)

R I
Ep =

∫
Ω

[
E̊

p
− λ̊Np]

: D : N I
Ep dV ∀I ∈ IEp , (26)

R I
λ =

∫
Ω

[
cλλ̊− f −

⏐⏐cλλ̊+ f
⏐⏐]N I

λ dV ∀I ∈ Iλ. (27)

The three global residual vectors, obtained by assembling the individual contributions from the residual
expressions associated with the respective degrees of freedom, are denoted by

R := [Ru REp
Rλ]T,

and the global vector of degrees of freedom by

d := [u Ep λ]T.

Note that dim Ru = dim u = |Iu|, dim REp = dim Ep
= |IEp |, and dim Rλ = dim λ = |Iλ|.

The coupled nonlinear residual Eqs. (25)–(27) are solved approximately using a Newton–Raphson strategy
hereby within each iteration (i) of the current load (time) step the linearised problem is given by

0 .
= R(i+1)

≈ R(i)
+

[
∂R(i)

∂d̊

∂d̊
∂d

+
∂R(i)

∂d

]
∆d

= R(i)
+

[
σ
∂R(i)

∂d̊
+
∂R(i)

∂d

]
  

K(i)

∆d

H⇒ K(i)∆d = −R(i), (28)

here the shift σ := ∂ •̊/∂• depends on the ordinary differential equation integrator and time step duration ∆t
ut not on the function being integrated [50]. This allows the time integration scheme to be chosen subsequent
o and independent of the numerical implementation of the finite element problem. The tangent matrix is denoted
y K. The Newton–Raphson algorithm is enhanced using a line-search algorithm [50]. The decomposition of the
9
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T

tangent matrix into time-dependent and time-independent parts allows for the straightforward application of a range
of implicit time integration schemes. Thus,⎡⎢⎣σ

⎡⎣0 0 0
0 ∂REp/∂E̊p ∂REp/∂ λ̊

0 ∂Rλ/∂E̊p ∂Rλ/∂ λ̊

⎤⎦(i)

+

⎡⎣ ∂Ru/∂u ∂Ru/∂Ep 0
∂REp/∂u 0 0
∂Rλ/∂u 0 0

⎤⎦(i)
⎤⎥⎦

  ⎡⎢⎢⎣
Kuu KuEp 0
KEpu KEp Ep KEpλ

Kλu KλEp Kλλ

⎤⎥⎥⎦
(i)

⎡⎣∆u
∆Ep

∆λ

⎤⎦(i)

= −

⎡⎣ Ru
REp

Rλ

⎤⎦(i)

. (29)

he various contributions to the tangent matrix K are given by[
Kuu

]
I J = ∂uJ RI

u =

∫
Ω

∂uJ
[

P : GradN I
u
]

dV =

∫
Ω

[
∂F P : GradN J

u
]
: GradN I

u dV ,

[
KuEp

]
I J = ∂Ep J RI

u =

∫
Ω

∂Ep J
[

P : GradN I
u
]

dV =

∫
Ω

[
∂Ep P : GradN J

Ep
]
: GradN I

u dV ,

[
KEpu

]
I J = ∂uJ RI

Ep =

∫
Ω

∂uJ
[
D :

[
E̊

p
− λ̊Np]

: N I
Ep
]

dV = −

∫
Ω

[
D : λ̊∂F Np

: GradN J
u
]
: N I

Ep dV ,[
KEp Ep

]
I J = σ∂

E̊p J RI
Ep + ∂Ep J RI

Ep

= σ

∫
Ω

∂
E̊p J

[
D :

[
E̊

p
− λ̊Np]

: N I
Ep
]

dV +

∫
Ω

∂ J
Ep
[
D :

[
E̊

p
− λ̊Np]

: N I
Ep
]

dV

= σ

∫
Ω

D :
[
N J

Ep
]
: N I

Ep dV −

∫
Ω

[
D : λ̊∂Ep Np

: N J
Ep
]
: N I

Ep dV

=

∫
Ω

[
D :

[
σ I− λ̊∂Ep Np]

: N J
Ep

]
: N I

Ep dV ,

[
KEpλ

]
I J = σ∂

λ̊J RI
Ep = σ

∫
Ω

∂
λ̊J

[
D :

[
E̊

p
− λ̊Np]dV = −σ

∫
Ω

[
D : Np N J

λ

]
: N I

Ep dV ,

[
Kλu

]
I J = ∂uJ RI

λ =

∫
Ω

∂uJ
[
cλλ̊− f −

⏐⏐cλλ̊+ f
⏐⏐]dV =

∫
Ω

[
∂Fc : GradN J

u
]
N I
λ dV ,

[
KλEp

]
I J = ∂Ep J RI

λ =

∫
Ω

∂Ep J
[
cλλ̊− f −

⏐⏐cλλ̊+ f
⏐⏐]dV =

∫
Ω

[
∂Epc : N J

Ep
]
N I
λ dV ,

[
Kλλ

]
I J = σ∂

λ̊J RI
λ = σ

∫
Ω

∂λ̊J
[
cλλ̊− f −

⏐⏐cλλ̊+ f
⏐⏐]dV = σ

∫
Ω

[
∂λ̊c : N J

λ

]
N I
λ dV .

The partial derivatives of the various quantities in the components of the tangent matrix can be obtained with aid
of the following relations:

Cep
N := ∂F P = ∂F[F · S] = I · S + F · Cep

L : ∂F C

where

∂ C = I⊗FT
+ FT

⊗I, Cep
= PT

: D : P + T : L , L = 4∂2 E.
F L L L L L CC

10
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d
a

H

Fig. 2. Block matrices structure resulting from the multifield plasticity problem’s nested solution strategy: (a) the full matrix K with diagonal
block matrices KEp Ep (δEpEp block) and Kλλ (δλλ block), (b) the matrix KS1 as defined in (34) and (c) the structure of Kuu and KS2

efined in Eq. (36). Note the sparsity pattern of the blocks associated with the plastic deformation fields Ep and λ arising from their
pproximation in L2 space.

ence,

∂F P = Cep
N , ∂Ep P = −P : D ,

∂T Np
=

1
∥T + B∥ Idev

[
Idev

− Np
⊗ Np] , ∂F Np

= ∂T Np
: D :

1
2
PL : ∂F C  
∂F T

,

∂F N = −∂T N : D ,

∂ f c = −

[
1 +

cλλ̊+ f

|cλλ̊+ f |

]
, ∂T f =

Idev
: [T + B]

∥T + B∥Idev
,

∂Fc = ∂ f c ∂T f : D :
1
2
PL : ∂F C = ∂ f c ∂T f : ∂F T , ∂Epc = −∂ f c ∂T f : D ,

∂λ̊c =

[
cλ +

cλλ̊+ f

|cλλ̊+ f |

]
.

5.4. Block matrix solver

A naive application of the Newton–Raphson approximation to the fully discrete global problem (28) leads to a
proliferation of the number of degrees of freedom. The size of the resulting tangent matrix K is large in comparison
to classical single-field approaches for plasticity where there is only one unknown global field, i.e., the displacement
u. An efficient solution procedure is therefore required for the multifield formulation to be competitive. As now
detailed, this is achieved by exploiting the structure of the tangent matrix, as depicted in Fig. 2. More specifically, the
linear system resulting from the Newton–Raphson approximation (28) is solved approximately in a nested manner
using block matrix solvers available in PETSc [50] via the FieldSplit functionality. This allows the solution of
the fully discrete global problem to be obtained from the solution of a series of significantly smaller systems of
equations.
11
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An alternative approach to reduce the size of the global problem is to statically condense out the plastic strain and
consistency parameter fields during assembly, in a similar manner to [21] for a formulation of multifield plasticity
at small strains. However, this requires substantial computational effort and is cumbersome for nonlinear problems
such as finite strain plasticity, since it requires the calculation of the (consistent) tangent matrix for the statically
condensed system.

By construction, the PETSc FieldSplit solver [50] assumes a two-by-two block matrix structure. Given this
structure, the abstract algebraic expressions for the solution of an arbitrary two-by-two block matrix system
following from a chain of multiplications of simpler matrices can be obtained from the procedure presented in
Box 5.4.1 [see e.g., 51].

Box. 5.4.1: FieldSplit solution procedure for an arbitrary two-by-two block matrix system

[
A11 A12
A21 A22

] [
a1
a2

]
=

[
f1
f2

]
⇒

[
a1
a2

]
=

[
S−1

−S−1A12A−1
22

−A−1
22 A21S−1 A−1

22 + A−1
22 A21S−1A12A−1

22

] [
f1
f2

]
,

(30)

where S is the Schur complement of the block matrix A22 defined by S = A11−A12A−1
22 A21. The expression

(30) can be decomposed in terms of a chain of simpler matrix multiplications as follows:

[
a1
a2

]
=

[
I 0
0 A−1

22

]
[a[4]

1 a[4]
2 ]T  

[
I 0

−A21 I

] [
S−1 0
0 A22

] [a[2]
1 a[2]

2 ]T  [
I −A12
0 I

] [
I 0
0 A−1

22

] [
f1
f2

]
  

[a[1]
1 a[1]

2 ]T  
[a[3]

1 a[3]
2 ]T

. (31)

The solution process presented in Eq. (31) should be understood as a chain multiplication starting from the
ightmost matrix–vector multiplication [a[1]

1 a[1]
2 ]T followed by the next matrix multiplication [a[2]

1 a[2]
2 ]T and so

n. Henceforth, block-vectors annotated with a superscript [n] refer to the result of the nth multiplication of the
cheme (31). It is important to note that the action of the inverse matrices S−1 and A−1

22 with the vectors resulting
rom prior stages of the chain can be evaluated via the (possibly approximate) solution of a linear system of
quations with size equal to the size of the matrix under consideration. Thus, rather than explicitly evaluating
−1 and A−1

22 , one solves the sub-problems A22a[1]
2 = f2, Su[3]

1 = u[2]
1 and A22a2 = a[4]

2 as part of the 1st, 3rd
nd 5th multiplications, respectively, in Eq. (31). Various approaches can be chosen to solve these sub-problems.
he choice of the generalised minimal residual (GMRES) method with either block Jacobi (BJacobi) or algebraic
ultigrid (GAMG) preconditioners is assessed in Section 6.4. A direct solver could also be employed.
The block structure of K is depicted in Fig. 2(a). The block diagonal structure of KEp Ep and Kλλ is an emerging

roperty of functional setting whereby Ep, δEp
∈ L2(Ω ) and λ, δλ ∈ L2(Ω ). This property can be exploited in the

olution scheme (31).
The application of the general procedure for a two-by-two block matrix system presented in Box 5.4.1 to the

angent matrix for the multifield problem (29) follows as the composition of two nested FieldSplit solution schemes.
This is done by considering two two-by-two block systems denoted as the outer and inner problems.
Outer problem

The outer problem involves the FieldSplit solution of the system (29) by partitioning (without the need to
xplicitly move columns and rows) the matrix K as

K∆d = −R H⇒

[
A B

] [
∆s

p

]
= −

[
rs

]
, (32)
C KEp Ep ∆E REp

12
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where A, B, C, ∆s and rs are defined by

A :=

[
Kuu 0
Kλu Kλλ

]
, B :=

[
KuEp

KλEp

]
, C :=

[
KEpu
KEpλ

]T

,∆s :=

[
∆u
∆λ

]
, rs :=

[
Ru
Rλ

]
. (33)

he block matrices of the outer problem are related to the FieldSplit scheme in 30 as follows: S = K/KEp Ep ,
12 = B, A21 = C and A22 = KEp Ep , where K/KEp Ep is the Schur complement of KEp Ep defined by

K/KEp Ep = KS1
:=

[
Kuu − KuEpK−1

Ep EpKEpu −KuEpK−1
Ep EpKEpλ

Kλu − KλEpK−1
Ep EpKEpu Kλλ − KλEpK−1

Ep EpKEpu

]
=

[
Suu Suλ
Sλu Sλλ

]
.

(34)

he matrix KS1 has the same structure as A as shown in Fig. 2(b). Thus, the block diagonal structure of the matrix
λλ can be exploited when solving KS1∆s[3]

= ∆s[2] using the scheme (31). This leads to the definition of the
nner problem.
nner problem

The inner problem is to find the solution of[
Suu Suλ
Sλu Sλλ

] [
∆u[3]

∆λ[3]

]
=

[
∆u[2]

∆λ[2]

]
. (35)

he FieldSplit solver is again invoked. In a similar manner to the outer problem, a Schur complement is used to
olve (35). This entails the solution of three smaller sub-problems involving the matrices Sλλ and KS1/Sλλ defined
y

KS1/Sλλ = KS2
:= Suu − SuλS−1

λλSλu. (36)

ote that the matrix KS2 has the same structure as Kuu as depicted in Fig. 2(c). Thus it is of the same size and
tructure as the tangent matrix for the classical elastoplasticity problem.

The key matrices for the two-level nested solution process employed are summarised in Box 5.4.2. Further details
f the implementation in PETSc are provided in the Appendix.

Box. 5.4.2: Matrices utilised for the solution of the two-level nested scheme

Outer problem:

• K: solve associated problem using Schur complement FieldSplit scheme (Box 5.4.1)
• KS1: the Schur complement of the outer problem, the solution of the associated problem is the subject

of the inner problem
• KEp Ep : solve associated problem using GMRES with either GAMG or BJacobi preconditioner

Inner problem:

• KS1: solve associated problem using Schur complement FieldSplit scheme (Box 5.4.1)
• KS2: solve associated problem using GMRES with either GAMG or BJacobi preconditioner
• Sλλ: solve associated problem using GMRES with either GAMG or BJacobi preconditioner

.5. Scaling and convergence criteria

The discretised form of the residual Eqs. (25)–(27) have units of work. The three global residual vectors are
scaled by a physical parameter with units of stress (i.e., the Young’s modulus, the yield stress and the hardening
parameter, respectively) to convert them to units of length with magnitudes proportional to the characteristic size
of the body L . As a consequence, the stabilisation parameter is chosen as cλ = 1.

The Newton–Raphson scheme is deemed converged if the L2 norm of the residual vector satisfies the following
stopping criterion:

∥R∥ < min
(

tola
, tolr∥R0

∥

)
= min

(
tol

a
, tol

r)
,

L
13
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where tola and tolr are the absolute and relative tolerances, respectively, and R0 is the residual corresponding to the
initial Newton iteration.

5.6. Influence of decomposition of tensor of elastic moduli on convergence behaviour

The robustness of the solution method is improved by following Remark 3. The incompressibility constraint for
plastic flow (1) states that tr[Ep] = 0. Hence, from Eq. (4), tr[Ėp

] = tr[Np] = 0. For pressure-independent yield
unctions, as considered here, the following equality holds f (T , Ep, λ) = f (Tµ, Ep, λ), where Tµ was defined
n Eq. (13). That is, using Tµ to evaluate the residual Eqs. (26)–(27) does not change the results; however, it
mproves robustness. This improvement stems from the observation that during the Newton–Raphson process the
omputation of the global tangent matrix contains terms involving the sensitivity of the direction of plastic flow

Np relative to changes in the primary fields. From plastic incompressibility we expect Np to be isochoric, but this
eed not necessarily be the case at non-converged Newton steps. Consequently, using Tµ in (26)–(27) ensures that
ne satisfies a priori the incompressibility constraint, by forcing the non-equilibrated solution to remain on the
onstraint manifold. This improves robustness and does not have any effect on the physical correctness or accuracy
f the solution.

.7. Numerical integration in space and time

The non-smoothness of the Fischer–Burmeister complementarity function (8) was discussed in Remark 1. The
umerical integration of the residual terms in Rλ requires careful consideration. Consider an element intersected
y a plastic front, i.e., where part of the element is active and part inactive. The tangential derivative of the
omplementarity function is discontinuous at the plastic front. We address that issue by adopting a pragmatic
pproach, which provides a robust solution scheme, by applying a standard Gaussian quadrature rule order for
etrahedral elements [see e.g., 52]. The same integration rule is used to evaluate all terms in the left and the right-
and side of the linearised algebraic equations and has been shown to be robust. A backward Euler time integration
cheme is employed for all examples.

. Numerical examples

The multifield plasticity formulation is validated using a series of benchmark problems. It is shown that the
ormulation is as accurate as classical approaches using either a multiplicative decomposition of the deformation
radient or a logarithmic strain formulation. The performance of the approach is assessed, and features of the
nderlying theory are elucidated.

The implementation of the finite element model is performed in the open-source library MoFEM [53]. MoFEM
s built upon the PETSc library [54]. PETSc provides a wide range of preconditioners, like FieldSplit, which allows
or the hierarchical construction of block solvers. The preconditioner can be nested inside other preconditioners,
uch as multigrid or a higher level FieldSplit, with the construction of the hierarchy and other algorithmic choices as
untime options. Fundamental in FieldSplit preconditioning is the concept of extracting submatrices from a global
atrix acting on the coupled system, making it ideally suited for multifield plasticity.
The order of the polynomial approximations for the displacement, plastic strain, and consistency parameter fields

re chosen as 2, 1, and 1, respectively.

.1. Beam with self-weight

As presented in [55], consider a beam with rectangular cross section subjected to loading in the form of self-
eight with b = be3, where b = −t 50 × 106 N/m3 and t ∈ [0, 1]. The beam has a length of 1 m, a height of 0.1 m

nd a width of 0.04 m. The left surface of the beam is fully fixed. Symmetry boundary conditions are imposed on
he right surface. The materials parameters are listed in Table 1. The beam is uniformly discretised into 30 × 5 × 8
etrahedral elements so as to match [55].

The vertical deflection of a point, located at the top of the right edge of the beam and denoted A, with increasing
oad parameter t is shown in Fig. 3. The distribution of plastic strain at the end of the analysis is non-symmetric

ue to the geometric non-linearities inherent in the model. The solution obtained using the multifield formulation

14
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Table 1
Constitutive parameters for the problem of a beam subjected to self-weight.

Parameter Symbol Value

Young’s modulus E 210 × 109 N/m2

Poisson’s ratio ν 0.3
Yield stress σy 250 × 106 N/m2

Hardening modulus H 1 × 106 N/m2

Fig. 3. Comparison between the multifield formulation and (i) a classical approach based on a multiplicative decomposition of the deformation
gradient implemented in AceFEM and (ii,iii) a classical approach based on the logarithmic strain formulation and implemented in the libraries
MoFEM and FEniCS, respectively, for the problem of a beam with self-weight. The vertical deflection of point A with increasing load and
the distribution of the plastic strain magnitude at the final load step are shown.

is compared to (i) a classical approach based on a multiplicative decomposition of the deformation gradient
implemented in the library AceFEM [56], (ii) the MoFEM library with a classical approach based on the logarithmic
strain formulation implemented using the MFront material library [57] and (iii) the FEniCS library [58] with a
logarithmic strain formulation, again provided by MFront [55]. The three sets of results are nearly indistinguishable
except for a minor discrepancy in the hardening response post yield. The distribution of the magnitude of the plastic
strain at the end of the analysis is also shown. The plastic hinge that forms in the vicinity of the fixed boundary is
clearly visible.

6.2. Necking of a rod

This well-studied benchmark problem [see e.g., 7,11,59] concerns the necking of a circular rod of length
3.34 mm and radius 6.4135 mm subject to displacement-controlled loading. A geometrical imperfection, in the
orm a 1.8 % reduction in the central radius of the rod, is introduced to trigger necking. The applied displacement of
4 mm is imposed in equal load steps with the load parameter t ∈ [0, 1]. The linear isotropic hardening model in (3)
s extended to a saturation-type nonlinear isotropic hardening response where β = −Hα−[σ∞

y −σ 0
y ][1−exp[−ωα]].

The constitutive parameters and their definitions are listed in Table 2.
The symmetry of the problem allows for 1/8 of the domain to be simulated. The problem is discretised using

10 390 elements with the mesh finer along the first 8.98 mm of the rod.
The distribution of the plastic strain over the deformed configuration at various stages during the loading process

is shown in Fig. 4. The necking of the central region of the rod, representative of the signature response for this
problem, is clearly visible.

The evolution of the reaction force and the radial contraction due to the applied axial displacement are shown in

Figs. 5(a) and (b), respectively, together with the results from Miehe et al. [7] obtained using a classical approach

15
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Table 2
Constitutive parameters for the necking of a rod problem.

Parameter Symbol Value

Bulk modulus κ 164.206 kN/mm2

Shear modulus µ 80.1938 kN/mm2

Initial yield stress σ 0
y 0.45 kN/mm2

Infinite yield stress σ∞
y 0.715 kN/mm2

Saturation parameter ω 16.93

Fig. 4. The distribution of equivalent plastic strain at various load steps during the necking of a rod. Only half of the domain is shown.

with a logarithmic strain approximation. The multifield formulation is in good overall agreement with the classical
approach. A minor difference in the radial contraction occurs towards the end of the simulation. This can be
attributed to the differences in mesh density and the mesh distortion that occurs at these high levels of deformation.

The robustness and efficiency of the multifield formulation are assessed in Fig. 5 where the number of Newton
iterations per load step is shown. The reaction force at each load step is also indicated. The discrepancy between the
reference and the proposed model is attributed to differences in the element type and the spatial discretisation. The
analysis is characterised by two distinct stages differentiated by the point at which the peak reaction force occurs. In
the first stage, necking has not yet occurred. The number of Newton iterations required for convergence is generally
3 in this stage. At the onset of necking (load step 22) the number of Newton steps increases to 8 but remains below
this thereafter and averages to 6. The convergence behaviour of the Newton scheme at selected load steps is shown
in Fig. 6. An asymptotic quadratic rate of convergence is observed for all load steps, with the difference between
load steps dependent on the behaviour during the initial iterations where the active set can change.

6.3. Squeezed tube

Considers a circular axisymmetric tube of length 40, inner radius 4 and thickness 1 length units, squeezed in
the middle by two rigid cylindrical tools of radius 5, as depicted in Fig. 7. The problem is similar to that proposed
by Seitz et al. [60], however we assume the contact to be frictionless as the purpose here is to assess the performance
of the multifield algorithm and not the accuracy of the contact model. The tube is fully fixed on both ends. Due to
symmetry, only 1/8 of the problem is considered with the appropriate boundary conditions for the displacements
and contact constraints imposed. The cylinders are initially not in contact with the tube. They are then displaced
inwards by 3 length units towards the centre of the tube, thereby initiating contact. Thereafter they are retracted in
one load step.

A linear isotropic hardening response is assumed. The material parameters are E = 206 900 , ν = 0.29 , σ 0
y =

50 and H = 100 . The tube is meshed using 3447 tetrahedral elements.
Fig. 8 shows the accumulated plastic strain distribution superimposed on the deformed geometry for various tool

isplacements. The predicted deformation is in good agreement with Seitz et al. [60]. The displacement of the tool
ersus the resulting contact force is shown in Fig. 9 and compared to Seitz et al. who accounted for friction at

the contact interface. Given this difference in the contact model, the results of the multifield model are deemed

reasonable and the problem will now be used to assess the computational efficiency of the approach.
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Fig. 5. Comparison of (a) the force versus axial displacement and (b) the radial contraction ∆r versus axial displacement, obtained using
the multifield approach and the classical approach with a logarithmic strain approximation by Miehe et al. [7]. In (c) the number of iterations
per load step is shown together with the corresponding reaction force.

Fig. 6. Value of the residual at each Newton iteration for 6 selected load steps (1, 10, 22, 30 and 50) for the problem of necking of a rod.
17
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Fig. 7. The initial setup for the problem of a tube squeezed by rigid cylindrical tools.

Fig. 8. Deformed configuration of the tube at different stages of squeezing with the accumulated plastic strain distribution superimposed.

Fig. 9. The evolution of the total contact forces and final shape of the squeezed plastic tube.
18



K. Lewandowski, D. Barbera, P. Blackwell et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116101

o
n
a
t
s
p

c
I
a

B
s
w

a
f
d
t

w
p
s
p

Fig. 10. 42 parallel partitions for the scalability study for a mesh of 315 125 tetrahedral elements.

6.4. Scalability of the block solver

6.4.1. Problem setup
The effectiveness and the scalability of the multifield formulation will now be assessed. To assess scalability,

the squeezed tube domain from Section 6.3 is discretised using 315 125 tetrahedral elements. The total number
f degrees of freedom (dofs) is 10 million. Analyses are performed using between 8 and 42 cores on a single
ode of a parallel computer system. The finite element mesh and parallel partitions for the 42-core simulation
re shown in Fig. 10. Three solver configurations are considered with either a direct solver (MUMPS) used
o solve the global problem (29) directly and without exploiting the block structure, or using the block matrix
olver methodology described in Section 5.4 with either block Jacobi (BJacobi) or algebraic multigrid (GAMG)
reconditioners employed for the outer and the inner problems (see Box 5.4.2). The number of GMRES iterations

for each of the outer and inner problems was fixed to 3. Cumulative timings are evaluated for the first 20 load
steps of the analysis indicated in Fig. 9 to ensure that a significant portion of the domain has undergone plastic
deformation.

To better assess the performance of the block matrix solver, the runtime and scalability results are split into the
two significant components, namely assembly and solving. The runtime and scalability for the assembly component
are compared in Figs. 11 and 12, respectively. Linear (ideal) scaling of the assembly process is achieved for all cases.
Assembly for the block matrix solver approach is always more time consuming than when compared to assembling
the global system (29) alone. The choice of preconditioner used in the outer and inner problems influences the
umulative assembly time as a greater number of global Newton iterations are required for BJacobi than GAMG.
mportantly however, the cost of the additional operations associated with the block matrix solver scales linearly
nd has a negligible effect when assembling larger problems, as seen in Fig. 12 where the timings for all approaches

are converging. This matches the general expectation for a finite element implementation where the assembly time
for a large sparse system is relatively small in comparison to the solver time.

Most of the computational effort is expended in the solution process. Here the block matrix solver approach
demonstrates its superior performance, as shown in Fig. 13. For 42 cores, GAMG is almost 3 times faster, and

Jacobi is almost 10 times faster, than MUMPS on the entire system. The block matrix solver also requires
ignificantly less memory. For the 42-core case, the total virtual memory usage for MUMPS, BJacobi and GAMG
as 191.2 GB, 44.9 GB and 72.2 GB, respectively.
The speedup comparison shown in Fig. 14 indicates that the overall efficiency of the block matrix solvers is

pproximately a factor of 1.5 below optimal for 42 cores. Note however that the direct solver (MUMPS) saturates
ully at 32 cores whereafter the addition of more cores slows the analysis. The block matrix solver would still
emonstrate speedup beyond 42 cores, albeit with diminishing returns as the work allocated to each core becomes
oo small to overcome the communication cost.

The numerical results presented in this section demonstrate that the proposed multifield approach for plasticity
ill allow for the solution of very large problems in a reasonable amount of time, utilising a large number of
rocessors. The overhead due to the introduction of the additional fields is mitigated by applying efficient iterative
olvers and exploiting the block matrix structure. Overall, the results show that tailored solvers offer a significant
erformance gain.
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Fig. 11. Comparison of the cumulative runtime for the assembly component for the first load 20 steps. Global — MUMPS refers to the direct
assembly of the global problem. Block refers to assembly using the block matrix solver methodology with either block Jacobi (BJacobi) or
algebraic multigrid (GAMG) preconditioners employed for the outer and the inner problems.

Fig. 12. Comparison of the assembly speedup for the first 20 load steps. The dashed line represents ideal speedup. Global — MUMPS
refers to the direct assembly of the global problem. Block refers to assembly using the block matrix solver methodology with either block
Jacobi (BJacobi) or algebraic multigrid (GAMG) preconditioners employed for the outer and the inner problems.

6.5. Comparison with classical computational plasticity

The multifield formulation circumvents the return mapping algorithm that is typically performed at the quadrature
points of each finite element in classical computational plasticity [see e.g., 1,2, and the references therein]. This
significantly reduces the complexity of the implementation at the cost of generating a significantly larger linear
system of equations. In this section, a scalability study is performed to compare classical and multifield plasticity.
The number of degrees of freedom in the multifield approach is approximately 7 times that of the classical approach.

To aid comparison, the classical scheme is implemented in the MoFEM library as a separate user module using
the MFront library [61]. The constitutive model provided by MFront uses the same logarithmic strain framework
for elastoplastic problems as implemented in the multifield framework. The MUMPS direct solver was used for
both the classical scheme and for the solution of the linear problem associated with KS2 in the block matrix solver

for the multifield approach — see Box 5.4.2 - as these problems are of identical size as indicated in Fig. 2 and

20



K. Lewandowski, D. Barbera, P. Blackwell et al. Computer Methods in Applied Mechanics and Engineering 414 (2023) 116101

o

t
d

Fig. 13. Cumulative runtime for the solvers for the first 20 steps. Global — MUMPS refers to the direct solution of the global problem.
Block refers to solution using the block matrix solver methodology with either block Jacobi (BJacobi) or algebraic multigrid (GAMG)
preconditioners employed for the outer and the inner problems.

Fig. 14. Solver speedup for the first 20 steps. The dashed line represents ideal speedup. Global — MUMPS refers to the direct solution
of the global problem. Block refers to solution using the block matrix solver methodology with either block Jacobi (BJacobi) or algebraic
multigrid (GAMG) preconditioners employed for the outer and the inner problems.

therefore makes for a fair comparison of computational expense. The GMRES solver with BJacobi preconditioner
was used for the remaining inner and outer computations in the block matrix solver.

The scalability tests are performed using 24 cores and varying the mesh density. The resulting plastic deformation
btained using the two approaches is identical. As indicated in Fig. 15, the performance of the multifield approach

is less efficient for smaller problems. The performance gap between the approaches decreases as the problem size
increases. At around 100 000 elements and above, both approaches perform similarly, i.e., the total execution time
is almost identical. The multifield approach scales well and for large problems performs no worse than the classical
methods for plasticity. When comparing the two approaches using CPU computing hardware, such performance is
the optimal that could be expected from the multifield approach. That is, the total amount of time needed to resolve
the remaining sub-problems outlined in Box. 5.4.2 is negligible compared to the solution of the KS2 sub-problem
hat is equal in size and sparsity with that of the classical approach. The negligible cost follows from the block

iagonal structure of the sub-problems, as discussed in Section 5.4, with linear time complexity with respect to their
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Fig. 15. Scalability comparison for the classical and multifield approaches based on the wall time, which represents the combined duration
in seconds of the solver and assembly stages of the analysis.

size. A sparsity equivalent to the KS2 sub-problem will scale with higher than linear time complexity. As already
discussed, the proposed approach is expected to perform better than the classical one when using next-generation
architectures where the overhead generated by the memory required for the nested return mapping algorithms
becomes a significant computational bottleneck.

7. Conclusion

A novel multifield formulation of plasticity at finite strains has been presented. The formulation has been validated
using a series of benchmark problems. The competitive scalability of the block matrix solver has been demonstrated.
Various choices of preconditioner for the inner and outer problems have been explored. The multifield approach
has been shown to produce near-identical results as the classical formulation. In addition, the multifield formulation
is no more expensive for large problems due to the ability of the block matrix solver to exploit the underlying
structure of the various fields.

The present work will facilitate the efficient utilisation of computational elastoplasticity algorithms with implicit
solvers in the next generation of computing hardware architectures. Implicit solution schemes are important for
many crucial engineering applications, such as metal forming processes and structural stability problems. Critically,
multifield approaches also provide a means for error control. The multifield formulation presented allows for future
exploitation using fast matrix-free algorithms. The formation of the kernel for matrix-free methods enables greatly
reduced memory bandwidth requirements at the cost of increasing the number of floating-point operations. This
makes these methods well suited for accelerated hardware like GPUs and the utilisation of optimised sparse iterative
solvers. This new performance model enables significantly faster and cheaper simulations at engineering tolerances.
The classical approach, with its local integration of the elastoplastic model, makes it almost impossible to form
an efficient kernel suitable for GPUs. To the best of the authors’ knowledge, the implementation of elastoplasticity
with implicit solvers for accelerated hardware remains an open challenge.

The proposed formulation is expected to be well suited for any flow relation with a smooth yield surface. Further
research is required to extend the approach to non-smooth yield surfaces, such as for the Mohr–Coulomb constitutive
model. Moreover, the formulation negates the need for solving for internal variables at the quadrature point level, as
the plastic strain and the plastic multiplier are now unknown fields; these are solved at the global level making the
method well suited for the development and assessment of a posteriori error indicators to guide mesh adaptivity.
This will be explored in future work together with the extension to Arbitrary Lagrangian–Eulerian formulations.
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Appendix. Implementation of block matrix solver within PETSc

The inverses in the inner and outer levels of the block matrix solver are computed with either a direct solver or
approximated using iterative methods via PETSc’s FieldSplit class of preconditioners [62]. A standard parameter
setup for the preconditioners and solvers is provided in Box A. The following conventions for PETSc run-time
options are adopted. Each linear solver or sub-solver has two parts: the preconditioner (indicated by -pc_type)
and the Krylov accelerator (indicated by -ksp_type). A single application of the preconditioner is denoted by
-ksp_type preonly, while -ksp_type gmres denotes applying the preconditioner until a sufficient reduction in
the residual norm or a certain number of iterations is achieved using the Generalised Minimal Residual method.
For example, -ksp_type gmres -pc_type bjacobi -ksp_max_it 3 indicates three iterations of Block-Jacobi.
The solvers for sub-problems are prefixed (e.g., _ep, _lambda) to distinguish them.

Box. Appendix: PETSc preconditioners input parameters

# entire matrix K
-pc_type fieldsplit

-ksp_type preonly

-pc_fieldsplit_type schur

# for evaluation of inverse of block matrix KEpEp

-fieldsplit_ep_ksp_type gmres

-fieldsplit_ep_ksp_max_it 3

-fieldsplit_ep_pc_type bjacobi

# for evaluation of inverse of block matrix KS1

-fieldsplit_ulambda_ksp_type preonly

-fieldsplit_ulambda_pc_fieldsplit_type schur

-fieldsplit_ulambda_pc_type fieldsplit

# for evaluation of inverse of block matrix Sλλ
-fieldsplit_ulambda_fieldsplit_lambda_ksp_type gmres

-fieldsplit_ulambda_fieldsplit_lambda_ksp_max_it 3

-fieldsplit_ulambda_fieldsplit_lmabda_pc_type bjacobi

# for evaluation of inverse of block matrix KS2

-fieldsplit_ulambda_fieldsplit_u_ksp_type preonly

-fieldsplit_ulambda_fieldsplit_u_pc_type lu

-fieldsplit_ulambda_fieldsplit_u_pc_factor_mat_solver_type mumps
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