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Abstract. The sub-optimality of Gauss–Hermite quadrature and the optimality of the trape-
zoidal rule are proved in the weighted Sobolev spaces of square integrable functions of order α, where
the optimality is in the sense of worst-case error. For Gauss–Hermite quadrature, we obtain matching
lower and upper bounds, which turn out to be merely of the order n−α/2 with n function evaluations,
although the optimal rate for the best possible linear quadrature is known to be n−α. Our proof
of the lower bound exploits the structure of the Gauss–Hermite nodes; the bound is independent of
the quadrature weights, and changing the Gauss–Hermite weights cannot improve the rate n−α/2.
In contrast, we show that a suitably truncated trapezoidal rule achieves the optimal rate up to a
logarithmic factor.
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1. Introduction. This paper is concerned with a sub-optimality of Gauss–
Hermite quadrature and an optimality of the trapezoidal rule.

Given a function f : R → R, Gauss–Hermite quadrature is one of the standard
numerical integration methods to compute the integral

(1.1) I(f) :=

∫
R
f(x)

1√
2π

e−x
2/2dx.

It is a Gauss-type quadrature formula, i.e., the quadrature points are the zeros of
the degree n orthogonal polynomial associated with the weight function, and the
corresponding quadrature weights are readily defined. With the weight function
ρ(x) := 1√

2π
e−x

2/2, the orthogonal polynomial we have is the (so-called probabilist’s)

Hermite polynomial.
Gauss–Hermite quadrature is widely used; here, we just mention spectral methods

[27, 32, 10], and applications in aerospace engineering [7, 8], finance [6, 20, 26], and
physics [41, 21]. Nevertheless, the limitation of this method seems to be less known.

We start with numerical results that illustrate this deficiency. Figure 1 shows a
comparison of the Gauss–Hermite rule and a suitably truncated trapezoidal rule on R.
Here the target function in (1.1) is f(x) = |x|p with p ∈ {1, 3, 5}. For the trapezoidal
rule, we integrate f(x)ρ(x) with a suitable cut-off of the domain. We discuss the
setting of this experiment in more detail at the end of Section 4.
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Fig. 1. Absolute integration errors for f(x) = |x|p with p = 1 (left), p = 3 (centre), and p = 5

(right). Gauss–Hermite rule exhibits a slower error decay than the trapezoidal rule does.

What we observe in Figure 1 is that while the trapezoidal rule achieves around
O(n−p−0.8), Gauss–Hermite quadrature achieves only a slower convergence rate al-
most O(n−p/2−0.5), where n is the number of quadrature points. A similar empirical
inefficiency of Gauss–Hermite quadrature is reported in a paper by one of the present
authors and Nuyens [38], also in a recent paper by Trefethen [44] argued that Gauss–
Hermite quadrature converges more slowly than the truncated trapezoidal rule as
n→∞, because its quadrature points are unnecessarily spread out, and in effect not
enough quadrature points are utilised.

In this paper, we prove a sub-optimality of Gauss–Hermite quadrature. More
precisely, we establish a sharp lower bound for the error decay of Gauss–Hermite
quadrature in the sense of worst case error. Moreover, we show that a suitably trun-
cated trapezoidal rule achieves the optimal rate of convergence, up to a logarithmic
factor.

The integrands of our interest are functions with finite smoothness. In this regard,
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we will work under the assumption that the function f lives in the weighted L2-Sobolev
space with smoothness α ∈ N. This function space is widely used; see for example
the books [3, 10, 39] and references therein. For α ∈ N, this space is equivalent to
the so-called Hermite space of finite smoothness, which has been attracting attention
in high-dimensional computations; see [29, 15, 23] for its use in high-dimensional
computations, and see [3, 1.5.4. Proposition] together with Section 2 below for the
equivalence.

In this setting, we prove that the worst case integration error of Gauss–Hermite
quadrature is bounded from below by n−α/2 up to a constant. This rate matches the
upper bound shown by Mastroianni and Monegato [33], and thus cannot be improved.
Moreover, this rate provides a rigorous verification of the numerical findings [15,
Section 4], where the authors computed approximate values of the worst-case error
for Gauss–Hermite quadrature in the Hermite space of finite smoothness, and observed
the rate O(n−α/2) for α = 1, 2, and 3.

In the proof, we exploit the structure of the Gauss–Hermit quadrature points. The
argument is independent of the quadrature weights, and thus tuning them does not
change the result. The proof in particular indicates that, if the spacing of a node set
decreases asymptotically no faster than 1/

√
n, then the corresponding quadrature rule

cannot achieve the worst-case error better than O(n−α/2); see the proof of Lemma 3.1
together with Theorem 3.2.

It turns out that this rate is merely half of the best possible: if we allow n
quadrature-points and weights to be arbitrary, then the best achievable using (linear)
quadrature is of the rate O(n−α); see [15, Theorem 1] for a precise statement. Dick
et al. [15] also show that a class of numerical integration methods based on so-called
(scaled) higher order digital nets achieve the optimal rate O(n−α) up to a logarithmic
factor in the multi-dimensional setting, including the one-dimensional setting as a
special case.

Our results on the trapezoidal rule show that the trapezoidal rule, a method
arguably significantly simpler than one-dimensional higher order digital nets, also
achieves this optimal rate, up to a logarithmic factor, and thus is nearly twice as
fast as the error-decay rate of Gauss–Hermite rule. It is also worth mentioning that
Gauss–Hermite quadrature requires a nontrivial algorithm to generate quadrature
points, whereas for the trapezoidal rule we simply have equispaced points.

For analytic functions, the efficiency of the trapezoidal rule is well known; related
studies date back at least to the paper by Goodwin in 1949 [24], and this accuracy
is not only widely known, but also still actively studied by contemporary numerical
analysts [42, 34, 22, 46, 45, 44]. Our results show that this efficiency extends to
Sobolev class functions, where we do not have tools from complex analysis such as
contour integrals. Our proof uses the strategy recently developed by one of the present
authors and Nuyens [38] for a class of quasi-Monte Carlo methods.

We now mention other error estimates for Gauss–Hermite quadrature in the lit-
erature. Based on results by Freud [19], Smith, Sloan, and Opie [40] showed an upper
bound O(n−α/2) for α-times continuously differentiable functions whose α-th deriv-
ative satisfies a suitable growth condition for α ∈ N. Since the weighted Sobolev
space seems to be more frequently used, our focus is on this class. Della Vecchia and
Mastroianni [13] showed an upper bound O(n−1/6) for ρ-integrable a.e. differentiable
functions whose derivative is also ρ-integrable. Moreover, their result implies a match-
ing lower bound in the sense of worst-case error, and thus in this sense their upper
bound is sharp. It does not seem to be trivial to determine whether their bounds
generalise, for example to the order n−α/6 or to n−α/2+1/3, with the α-times differen-
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tiability of the integrand for α ≥ 2. In contrast, our results show that, by assuming
the square ρ-integrability, the rate improves to O(n−α/2), for general α ∈ N.

For analytic functions, the rate exp(−C
√
n) with a constant C > 0 has been

mentioned in the literature for functions with a suitable decay that are analytic in
a strip region. Barrett [2] seems to be the first to have presented this rate; see also
Davis and Rabinowitz [12, Equation (4.6.1.18)]. Note, however, that no explicit proof
or statement is given in either of these references; in particular, the decay condition
for which this rate holds is not given. We are not aware of any reference that gives
an explicit statement with complete assumptions. On the other hand, for the trape-
zoidal rule, Sugihara [42] conducted an extensive research on the integration error
for functions analytic in a strip region with various decay conditions. In particular,
for functions decaying at the rate exp(−C̃|x|ρ) (ρ ≥ 1) on the real axis, under other
suitable assumptions he established the rate exp(−C∗nρ/(ρ+1)), with an explicit con-
stant C∗ > 0; see [42, Theorem 3.1] for a precise statement. Hence, whatever the
decay condition the Gauss–Hermite rule requires to give the rate exp(−C

√
n) may

be, for ρ ≥ 1 the trapezoidal rule attains a faster rate for the function class con-
sidered in [42]. Note that lower bounds for the integration error are also presented
in [42], which shows that the trapezoidal rule is near-optimal in the function class
considered there. Trefethen [44] makes the comparison of the trapezoidal rule and
Gauss–Hermite quadrature explicit. In [44, Theorem 5.1], for the trapezoidal rule
and various other quadrature rules he established the rate exp(−Cn2/3) for a class
of functions that are analytic in a strip region which decays at the rate exp(−x2) on
the real axis. He also presents a numerical result for integrating cos(x3) exp(−x2)
with the physicists’ Gauss–Hermite rule, which supports the rate exp(−C

√
n) for the

Gauss–Hermite rule.
Before moving on, we mention that our results motivate further studies of Gauss–

Hermite based algorithms in high-dimensional problems. Integration problems in high
dimensions arise, for example in computing statistics of solutions of partial differential
equations parametrised by random variables. In particular, integration with respect
to the Gaussian measure has been attracting increasing attention; see for example
[25, 11, 30, 28, 17, 18]. The measure being Gaussian, algorithms that use Gauss–
Hermite quadrature as a building block have gained popularity [11, 17, 18]. The key to
proving error estimates in this context is the regularity of the quantity of interest with
respect to the parameter, and for elliptic and parabolic problems such smoothness,
even an analytic regularity, has been shown [1, 37, 18]. In contrast, the solutions of
parametric hyperbolic systems suffer from limited regularity under mild assumptions
[35, 36]. Hence, our results, which show the sub-optimality of Gauss–Hermite rule for
functions with finite smoothness, caution us and encourage further studies of the use
of algorithms based on Gauss–Hermite rule for this class of problems.

Finally, we note that if we have the weight function e−x
2

instead of e−x
2/2, the

corresponding orthogonal polynomials are called physicist’s Hermite polynomials. Our
results for Gauss–Hermite quadrature can be obtained for these polynomials by simply
rescaling our results by x 7→

√
2x. Likewise, results for physicist’s Hermite polynomials

in the literature, e.g. in [43], are used throughout this paper.
The rest of this paper is organized as follows. In Section 2 we introduce necessary

definitions such as Hermite polynomials, the weighted Sobolev spaces, and the Hermite
spaces. We also discuss the norm equivalence between the weighted Sobolev space and
the Hermite space. In Section 3 the sub-optimality of Gauss–Hermite quadrature is
shown. In particular, we obtain matching lower and upper bounds for the worst-case
error. In Section 4 the optimality of the trapezoidal rule is shown. Section 5 concludes
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this paper.

2. Function spaces with finite smoothness. Throughout this paper, we use
the weighted space L2

ρ := L2
ρ(R), the normed space consisting of the equivalence classes

of Lebesgue measurable functions f : R → R satisfying ‖f‖2L2
ρ

:=
∫
R |f(x)|2ρ(x)dx <

∞, where the equivalence relation is given by f ∼ g if and only if ‖f − g‖L2
ρ

= 0.

2.1. Hermite polynomials. For k ∈ N ∪ {0}, the k-th degree probabilist’s
Hermite polynomial is given by

Hk(x) =
(−1)k√
k!

ex
2/2 dk

dxk
e−x

2/2, x ∈ R,(2.1)

where they are normalised so that ‖Hk‖L2
ρ

= 1 for all k ∈ N ∪ {0}. The polynomials

(Hk)k≥0 form a complete orthonormal system for L2
ρ.

The following properties are used throughout the paper.

H ′k(x) =
√
kHk−1(x), k ≥ 1;(2.2)

dτ

dxτ
(Hk(x)ρ(x)) =

(−1)k√
2πk!

ex
2/2 dk+τ

dxk+τ
e−x

2/2

= (−1)τ
√

(k + τ)!

k!
Hk+τ (x)ρ(x), k ≥ 0, τ ≥ 0.(2.3)

2.2. Weighted Sobolev space. The function space we consider is the Sobolev
space of square integrable functions, the integrability condition of which is imposed
by the Gaussian measure.

Definition 2.1 (Weighted Sobolev space). For α ∈ N, the weighted Sobolev
space Hα(with the weight function ρ) is the class of all functions f ∈ L2

ρ such that f

has weak derivatives satisfying f (τ) ∈ L2
ρ for τ = 1, . . . , α:

Hα :=

{
f ∈ L2

ρ

∣∣∣∣ ‖f‖α :=

( α∑
τ=0

‖f (τ)‖2L2
ρ

)1/2

<∞

}
.

Elements in Hα for α ∈ N are in the standard local Sobolev space W 1,2
loc (R), and thus

admit a continuous representative. In what follows, we always take the continuous
representative of f ∈Hα.

We recall another important class of functions, the so-called Hermite space. For
this space we follow the definition of [15].

Definition 2.2 (Hermite space with finite smoothness). For α ∈ N, the Hermite
space with finite smoothness HHermite

α is given by

HHermite
α :=

{
f ∈ L2

ρ

∣∣∣∣ ‖f‖HHermite
α

:=

( ∞∑
k=0

rα(k)−1
∣∣f̂(k)

∣∣2)1/2

<∞

}
,

where f̂(k) = (f,Hk)L2
ρ

:=
∫
R f(x)Hk(x)ρ(x)dx, and

rα(k) :=

{
1, if k = 0,(∑α

τ=0 βτ (k)
)−1

, if k ≥ 1,
and βτ (k) :=

{
k!

(k−τ)! , if k ≥ τ,
0, otherwise.
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It turns out Hα = HHermite
α , where the equality here means the norm equivalence.

Hence, results established for the Hermite space HHermite
α can be readily translated to

Hα up to a constant, which allows us to compare the results on higher order digital
nets in [15] with ours.

A proof of this equivalence of the norm is outlined in [3, 1.5.4. Proposition]. A
more detailed proof of one direction of the equivalence, f ∈ HHermite

α implying f ∈Hα

with the same α ∈ N, is given in [15, Lemma 6]. Here, for completeness we prove its
converse.

Lemma 2.1. Let f ∈Hα with α ∈ N, then f ∈ HHermite
α with the same smoothness

parameter α.

Proof. We first prove the claim for α = 1. Assume f ∈ H1. Let F (x) :=
f(x) (ρ(x))1/2+ε and G(x) := Hk(x)(ρ(x))1/2−ε for 0 < ε < 1/2. We have∫

R
F ′(x)φ(x)dx = −

∫
R
F (x)φ′(x)dx,

for any function φ in the space of compactly supported infinitely differentiable func-
tions C∞c (R). Since G is in the standard Sobolev space W 1,2(R), there exists a
sequence {φN}N∈N ⊂ C∞c (R) that satisfies

‖G− φN‖2L2(R) + ‖G′ − φ′N‖2L2(R) = ‖G− φN‖2W 1,2(R) ≤ 1/N.

Then, letting g ∈ L2(R), the Cauchy–Schwarz inequality implies
∫
R |F (x)g(x)|dx ≤

‖f‖L2
ρ
‖g‖L2(R) <∞, and for F ′(x) = f ′(x)(ρ(x))1/2+ε− (ε+1/2)xf(x)(ρ(x))1/2+ε we

also have∫
R
|F ′(x)g(x)|dx ≤

(∫
R
|f ′(x)|2e−x

2/2dx

)1/2 (∫
R
|g(x)|dx

)1/2

+ sup
t∈R
|(ε+ 1/2)2t2e−εt

2

|
(∫

R
|f(x)|2e−x

2/2dx

)1/2 (∫
R
|g(x)|2dx

)1/2

<∞.

Therefore both 〈F, ·〉 :=
∫
R F (x) · dx and 〈F ′, ·〉 :=

∫
R F
′(x) · dx define a continuous

functional on L2(R). Hence, we have
∫
R F
′(x)G(x)dx = −

∫
R F (x)G′(x)dx and thus∫

R
f ′(x)Hk(x)ρ(x)− (ε+ 1/2)xHk(x)f(x)ρ(x)dx =

∫
R
F ′(x)G(x)dx

=−
∫
R
F (x)G′(x)dx = −

(∫
R
f(x)
√
kHk−1(x)ρ(x)− (−ε+ 1/2)xHk(x)f(x)ρ(x)dx

)
,

which is equivalent to∫
R
f ′(x)Hk(x)ρ(x) = −

∫
R
f(x)
√
kHk−1(x)ρ(x)− xHk(x)f(x)ρ(x)dx(2.4)

= −
∫
R
f(x)(Hk(x)ρ(x))′dx =

∫
R
f(x)
√
k + 1Hk+1(x)ρ(x)dx,

where we used (Hk(x)ρ(x))′ = −
√
k + 1Hk+1(x)ρ(x). Hence we obtain

(f ′, Hk)2
L2
ρ

= (k + 1) (f,Hk+1)2
L2
ρ
,
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and
∞∑
k=0

(k + 1) (f,Hk+1)2
L2
ρ

=

∞∑
k=0

(f ′, Hk)2
L2
ρ

= ‖f ′‖2L2
ρ
<∞.

This implies f ∈ HHermite
1 since r−1

1 (k) = k + 1. For general τ = 1, ..., α, assuming
f ∈ Hτ and by repeating the same argument as above, we have (f (τ), Hk)2

L2
ρ

=

(f,Hk+τ )2
L2
ρ

∏τ
j=1(k + j) for k ≥ 0 and thus

‖f (τ)‖2L2
ρ

=

∞∑
k=0

(f,Hk+τ )2
L2
ρ

τ∏
j=1

(k + j) ≥ 1

τ τ

∞∑
k=0

(f,Hk+τ )2
L2
ρ
(k + τ)τ

=
1

τ τ

∞∑
k=τ

kτ (f,Hk)2
L2
ρ
.

Hence, observing limk→∞ rτ (k) kτ = 1 (see also [15, p. 687]), we conclude f ∈
HHermite
τ .

3. Matching bounds for Gauss–Hermite quadrature. In this section, we
prove the sub-optimality of Gauss–Hermite quadrature. We first introduce the fol-
lowing linear quadrature of general form

Qn(f) =

n∑
j=1

wjf(ξj)(3.1)

with arbitrary n distinct quadrature points on the real line

−∞ < ξ1 < ξ2 < · · · < ξn <∞

and quadrature weights w1, . . . , wn ∈ R. Gauss–Hermite quadrature QGH
n is given

by the points (ξGH
j )j=1,...,n being the roots of Hn and the weights (wj)j=1,...,n being

wj = 1/[H ′n(ξGH
j )]2, see for example [39, Theorem 3.5].

Given a quadrature rule Qn, it is convenient to introduce the notation

ewor(Qn,Hα) := sup
06=f∈Hα

|I(f)−Qn(f)|
‖f‖α

.

The quantity ewor(Qn,Hα) is commonly referred to as the worst-case error of Qn in
Hα; see for example [16]. Now we can state our aim of this section more precisely:
we prove the matching lower and upper bounds on ewor(QGH

n ,Hα) for Gauss–Hermite
quadrature.

3.1. Lower bound. We first derive the following lower bound on ewor(Qn,Hα)
for the general quadrature (3.1).

Lemma 3.1. Let α ∈ N. For n ≥ 2, let

σ :=

{
α if minj=1,...,n−1(ξj+1 − ξj) ≤ 1.

0 otherwise.
(3.2)

Then, there exists a constant cα > 0, which depends only on α, such that the worst-
case error ewor(Qn,Hα) of a general function-value based linear quadrature (3.1) in
the weighted Sobolev space Hα is bounded below by

ewor(Qn,Hα) ≥ cα min
i=1,...,n−1

(ξi+1 − ξi)σ+1/2
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×
n−1∑
j=1

e−max(ξ2j ,ξ
2
j+1)/2

(
n−1∑
k=1

e−1≥0(ξkξk+1) min(ξ2k,ξ
2
k+1)/2

)−1/2

,

where 1≥0(x) is equal to 1 if x ≥ 0 and 0 otherwise.

Proof. The heart of the matter is to construct a function 0 6= hn ∈Hα such that
hn(ξj) = 0 for all 1 ≤ j ≤ n, resulting in Qn(hn) = 0, and that ‖hn‖α is small but
I(hn) is large. Define a function h : R→ R by

h(x) := hn(x) :=


(

x− ξj
ξj+1 − ξj

)α(
1− x− ξj

ξj+1 − ξj

)α
if there exists j∈{1, . . . , n− 1}
such that x ∈ [ξj , ξj+1],

0 otherwise.

Then, h turns out to fulfill our purpose. This type of fooling function used to prove
lower bounds for the worst-case error is called bump function (of finite smoothness),
in quasi-Monte Carlo theory; see, for instance, [14, Section 2.7].

First we show h ∈Hα. It follows from(
x− ξj
ξj+1 − ξj

)α(
1− x− ξj

ξj+1 − ξj

)α
=

α∑
`=0

(−1)`
(
α

`

)(
x− ξj
ξj+1 − ξj

)α+`

that we have

h(τ)(x) =
1

(ξj+1 − ξj)τ
α∑
`=0

(−1)`
(
α

`

)
(α+ `)!

(α+ `− τ)!

(
x− ξj
ξj+1 − ξj

)α+`−τ

for τ = 0, 1, . . . , α and any ξj < x < ξj+1. As we have h(τ)(ξj) = h(τ)(ξj+1) = 0 for
τ = 0, 1, . . . , α− 1, the function h is (α− 1)-times continuously differentiable. More-
over, h(α−1) is continuous piecewise polynomial and thus weakly differentiable. Also,
noting that 1≥0(ξjξj+1) = 0 only when ξj < 0 < ξj+1 and otherwise 1≥0(ξjξj+1) = 1,
we have∫ ξj+1

ξj

|h(τ)(x)|2ρ(x)dx

≤ e−1≥0(ξjξj+1) min(ξ2j ,ξ
2
j+1)/2

√
2π

∫ ξj+1

ξj

|h(τ)(x)|2dx

=
e−1≥0(ξjξj+1) min(ξ2j ,ξ

2
j+1)/2

√
2π(ξj+1 − ξj)2τ

×
α∑

`1,`2=0

(−1)`1+`2

(
α

`1

)(
α

`2

)
(α+ `1)!

(α+ `1 − τ)!

(α+ `2)!

(α+ `2 − τ)!

∫ ξj+1

ξj

( x− ξj
ξj+1 − ξj

)2(α−τ)+`1+`2
dx

=
e−1≥0(ξjξj+1) min(ξ2j ,ξ

2
j+1)/2

√
2π(ξj+1 − ξj)2τ−1

×
α∑

`1,`2=0

(−1)`1+`2

2(α− τ) + `1 + `2 + 1

(
α

`1

)(
α

`2

)
(α+ `1)!

(α+ `1 − τ)!

(α+ `2)!

(α+ `2 − τ)!
,
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for τ = 0, 1, . . . , α. The last sum over `1 and `2 does not depend on j. Denoting this
sum by Sα,τ , we obtain

‖h‖2α =

α∑
τ=0

∫
R
|h(τ)(x)|2ρ(x)dx =

α∑
τ=0

n−1∑
j=1

∫ ξj+1

ξj

|h(τ)(x)|2ρ(x)dx

≤ 1√
2π

α∑
τ=0

Sα,τ

n−1∑
j=1

e−1≥0(ξjξj+1) min(ξ2j ,ξ
2
j+1)/2

(ξj+1 − ξj)2τ−1

≤ 1√
2π

α∑
τ=0

Sα,τ
min1≤i≤n−1(ξi+1 − ξi)2τ−1

n−1∑
j=1

e−1≥0(ξjξj+1) min(ξ2j ,ξ
2
j+1)/2

≤ 1√
2πmin1≤i≤n−1(ξi+1 − ξi)2σ−1

α∑
τ=0

Sα,τ

n−1∑
j=1

e−1≥0(ξjξj+1) min(ξ2j ,ξ
2
j+1)/2 <∞.

This proves h ∈Hα.
By definition of h, we have h(ξj) = 0 for all j = 1, . . . , n, and thus

Qn(h) = 0.

Moreover, we have

I(h) =

∫
R
h(x)ρ(x)dx =

n−1∑
j=1

∫ ξj+1

ξj

h(x)ρ(x)dx

≥ 1√
2π

n−1∑
j=1

e−max(ξ2j ,ξ
2
j+1)/2

∫ ξj+1

ξj

(
x− ξj
ξj+1 − ξj

)α(
1− x− ξj

ξj+1 − ξj

)α
dx

=
1√
2π

n−1∑
j=1

e−max(ξ2j ,ξ
2
j+1)/2(ξj+1 − ξj)

∫ 1

0

xα (1− x)
α

dx

=
(α!)2

(2α+ 1)!
√

2π

n−1∑
j=1

e−max(ξ2j ,ξ
2
j+1)/2(ξj+1 − ξj)

≥ (α!)2

(2α+ 1)!
√

2π
min

1≤i≤n−1
(ξi+1 − ξi)

n−1∑
j=1

e−max(ξ2j ,ξ
2
j+1)/2.

Using the above results, we obtain

ewor(Qn,Hα) ≥ |I(h)−Qn(h)|
‖h‖α

≥ (α!)2

(2α+ 1)!(2π)1/4

(
α∑
τ=0

Sα,τ

)−1/2

min
1≤i≤n−1

(ξi+1 − ξi)σ+1/2

×
n−1∑
j=1

e−max(ξ2j ,ξ
2
j+1)/2

(
n−1∑
k=1

e−1≥0(ξkξk+1) min(ξ2k,ξ
2
k+1)/2

)−1/2

.

Now the proof is complete.

Using the general lower bound in Lemma 3.1, we obtain the following lower bound on
the worst-case error for Gauss–Hermite quadrature.
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Theorem 3.2. Let α ∈ N. For any n ≥ 2, the worst-case error of the Gauss–
Hermite quadrature in the weighted Sobolev space Hα is bounded from below as

ewor(QGH
n ,Hα) ≥ Cαn−α/2

with a constant Cα > 0 that depends on α but independent of n.

Proof. Let ξGH
j , j = 1, . . . , n, be the roots of Hn. For any n ≥ 2, it holds that

π√
n+ 1/2

< min
j=1,...,n−1

(ξGH
j+1 − ξGH

j ) ≤
√

21/2√
n+ 1/2

;(3.3)

see, for instance, [43, Eq. (6.31.22)]. Thus, to invoke Lemma 3.1 we let

σ :=

{
α for n ≥ 10,

0 for 2 ≤ n < 10,

so that the conditions in (3.2) are satisfied. Also, each node ξGH
j is bounded below and

above as follows; see, for instance, [43, Eq. (6.31.19)]: for n odd, we have ξGH
(n+1)/2 = 0

with the positive zeros satisfying

jπ√
n+ 1/2

< ξGH
(n+1)/2+j <

4j + 3√
n+ 1/2

for j = 1, . . . , (n− 1)/2,(3.4)

and for n even,

(j − 1/2)π√
n+ 1/2

< ξGH
n/2+j <

4j + 1√
n+ 1/2

for j = 1, . . . , n/2,(3.5)

with symmetricity ξGH
j = −ξGH

n+1−j , 1 ≤ j ≤ n for n ≥ 2 odd and even.
Let n be odd. Using the result in Lemma 3.1, equations (3.3), and (3.4), together

with the symmetricity of the Hermite zeros, we obtain

ewor(QGH
n ,Hα)

≥ 2cα

(
π2

n+ 1/2

)σ/2+1/4 (n−1)/2∑
j=1

e−(ξGH
(n+1)/2+j)

2/2

2

(n−1)/2∑
k=1

e−(ξGH
(n+1)/2+k−1)2/2

−1/2

≥ 2cα

(
π2

n+ 1/2

)σ/2+1/4 (n−1)/2∑
j=1

e−(4j+3)2/(2n+1)

2 + 2

(n−1)/2∑
k=2

e−π
2(k−1)2/(2n+1)

−1/2

.

The sum over j is further bounded below by

(n−1)/2∑
j=1

e−(4j+3)2/(2n+1) ≥
∫ (n−1)/2+1

1

e−(4x+3)2/(2n+1)dx

=

√
n+ 1/2

4

∫ (2n+5)/
√
n+1/2

7/
√
n+1/2

e−x
2/2dx

≥
√
n+ 1/2

4

∫ 11
√

2/
√

7

√
14

e−x
2/2dx
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=

√
π(n+ 1/2)

4
√

2

(
erf(11/

√
7)− erf(

√
7)
)
,

where erf denotes the error function, and the last inequality holds for any odd n ≥ 3.
The sum over k is further bounded above by

(n−1)/2∑
k=2

e−π
2(k−1)2/(2n+1) ≤

∫ (n−1)/2

1

e−π
2(x−1)2/(2n+1)dx

≤
√
n+ 1/2

∫ ∞
0

e−π
2x2/2dx =

√
n+ 1/2

2π
.

Using these bounds, we have

ewor(QGH
n ,Hα) ≥ 2cα

(
π2

n+ 1/2

)σ/2+1/4 √
π(n+ 1/2)

4
√

2

(
erf(11/

√
7)− erf(

√
7)
)

×

(
2 + 2

√
n+ 1/2

2π

)−1/2

≥ cαπσ+1/4 erf(11/
√

7)− erf(
√

7)

2
√

2
√

2 +
√

2

1

(n+ 1/2)σ/2

≥ cαπ1/4 erf(11/
√

7)− erf(
√

7)

2(α+5)/2

1

nα/2
.

Let n be even. As in the odd case, but now using (3.5) instead of (3.4), we obtain

ewor(QGH
n ,Hα)

≥ cα
(

π2

n+ 1/2

)σ/2+1/4

×

(
e−(ξGH

n/2+1)2/2 + 2

n/2∑
j=2

e−(ξGH
n/2+j)

2/2

)(
1 + 2

n/2∑
k=2

e−(ξGH
n/2+k−1)2/2

)−1/2

≥ cα
(

π2

n+ 1/2

)σ/2+1/4

×

(
e−52/(2n+1) + 2

n/2∑
j=2

e−(4j+1)2/(2n+1)

)(
1 + 2

n/2∑
k=2

e−π
2(k−3/2)2/(2n+1)

)−1/2

.

The sum over j is equal to 0 for n = 2 and is bounded below by

n/2∑
j=2

e−(4j+1)2/(2n+1) ≥
∫ n/2+1

2

e−(4x+1)2/(2n+1)dx

=

√
n+ 1/2

4

∫ (2n+5)/
√
n+1/2

9/
√
n+1/2

e−x
2/2dx

≥
√
n+ 1/2

4

∫ 13
√

2/3

3
√

2

e−x
2/2dx =

√
π(n+ 1/2)

4
√

2
(erf(13/3)− erf(3)) ,
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for n ≥ 4. Noting that we have e−5 ≥
√

5π (erf(13/3)− erf(3)) /4, it holds that

e−52/(2n+1) + 2

n/2∑
j=2

e−(4j+1)2/(2n+1) ≥
√
π(n+ 1/2)

2
√

2
(erf(13/3)− erf(3)) ,

for any even n. The sum over k is again equal to 0 for n = 2 and is bounded above
by

n/2∑
k=2

e−π
2(k−3/2)2/(2n+1) =

n/2−1∑
k=1

e−π
2(k−1/2)2/(2n+1) ≤

∫ n/2−1

0

e−π
2(x−1/2)2/(2n+1)dx

≤
√
n+ 1/2

∫ ∞
−∞

e−π
2x2/2dx =

√
2n+ 1

π
.

It follows from these bounds on the sums that

ewor(QGH
n ,Hα) ≥ cα

(
π2

n+ 1/2

)σ/2+1/4 √
π(n+ 1/2)

2
√

2

×
(
erf(13/3)− erf(3)

)(
1 + 2

√
2n+ 1

π

)−1/2

≥ cαπσ+1/4 erf(13/3)− erf(3)

2
√

2
√

2
√

2 + 2

1

(n+ 1/2)σ/2

≥ cαπ1/4 erf(13/3)− erf(3)

2(α+6)/2

1

nα/2
.

Altogether, we obtain a lower bound for the worst-case error

ewor(QGH
n ,Hα) ≥ Cαn−α/2

with

Cα = cαπ
1/4 min

{
erf(11/

√
7)− erf(

√
7)

2(α+5)/2
,

erf(13/3)− erf(3)

2(α+6)/2

}

= cαπ
1/4 erf(13/3)− erf(3)

2(α+6)/2
,

which holds for all n ≥ 2.

The general lower bound in Lemma 3.1 depends on the set of quadrature points but
not on the set of weights. Because the lower bound for Gauss–Hermite quadrature in
Theorem 3.2 is built up on Lemma 3.1, the sub-optimality of Gauss–Hermite quadra-
ture holds irrespective of the choice of the quadrature weights.

The proof of Lemma 3.1 in particular indicates that, if the spacing of a node
set decreases asymptotically no faster than 1/

√
n, then the corresponding quadrature

rule cannot achieve the worst-case error better than O(n−α/2). To elaborate this
point, we present the following less tight but more general result, which implies that
any function-value based quadrature rule that does not have a quadrature point in
[0, n−1/2], say, cannot have a worst-case error better than O(n−α/2−1/4).
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Corollary 3.3. For f ∈ Hα with α ∈ N, let Qn(f) be a quadrature of the
form (3.1). Take a positive number δ = δ(n) ∈ (0, 1] such that no quadrature point is
in (0, δ). Then, we have

ewor(Qn,Hα) ≥ Cαδα+1/2,

where the constant Cα > 0 is independent of δ. In particular, if Qn does not have any
quadrature point in (0, n−r), r > 0, then we have ewor(Qn,Hα) ≥ Cαn−rα−r/2.

Proof. Consider a function fδ,α defined by fδ,α(x) := (x/δ)α(1 − x/δ)α1[0,δ](x),
x ∈ R. Then, following the proof of Lemma 3.1, analogous calculations show that we
have |I(fδ,α)−Qn(fδ,α)| = |I(fδ,α)| ≥ Cα‖fδ,α‖αδα+1/2 for a constant Cα > 0. This
completes the proof.

In passing, we note that the Theroem 3.2 also gives a lower bound for the in-
terpolation L1

ρ-error. Given a function f : R → R, let Λnf be the polynomial in-
terpolant defined by the zeros of Hn. Then, like other interpolatory quadratures,
Gauss–Hermite quadrature satisfies 1√

2π

∫
R Λnf(x) e−x

2/2dx =
∑n
j=1 wjf(xj). There-

fore, with ‖f − Λnf‖L1
ρ(R) :=

∫
R
∣∣f(x) − Λnf(x)

∣∣ ρ(x)dx denoting the interpolation

L1
ρ-error, we have

|I(f)−QGH
n (f)| =

∣∣∣∫
R

[
f(x)− Λnf(x)

]
ρ(x)dx

∣∣∣ ≤ ‖f − Λnf‖L1
ρ(R),

and thus sup06=f∈Hα

‖f−Λnf‖L1
ρ(R)

‖f‖α ≥ Cαn−α/2.

3.2. Upper bound. In the previous section, we showed a lower bound for the
worst-case error of the rate n−α/2. A matching upper bound has been shown by
Mastroianni and Monegato, the result of whom we adapt to our setting.

Proposition 3.4 ([33]). Let α ∈ N and n ∈ N. For f ∈ Hα, let QGH
n (f) be the

Gauss–Hermite approximation to I(f). Then, we have

|I(f)−QGH
n (f)| ≤ Cn−α/2‖f‖α,

where C > 0 is a constant independent of n and f .

Proof. First, f ∈ Hα implies f (τ) ∈ W 1,2
loc (R) and thus f (τ) admits a locally

absolutely continuous representative for τ = 0, . . . , α − 1. Moreover, from f ∈ Hα,
for any 0 < ε < 1/2 we have∫
R

eεx
2/2|f (α)(x)|e−x

2/2dx ≤
(∫

R
|f (α)(x)|2e−x

2/2dx
)1/2(∫

R
e−x

2(1/2−ε)dx
)1/2

<∞.

Thus, from [33, Theorem 2], the statement follows.

4. Optimality of the trapezoidal rule. In this section, we prove the optimal-
ity of trapezoidal rules in Hα. More precisely, we consider the following quadrature
with n equispaced points

Q∗n,T (g) :=
2T

n

n−1∑
j=0

g(ξ∗j ), with ξ∗j :=
2T

n
j − T, j = 0, . . . , n− 1.(4.1)

Here, T > 0 is a parameter that controls the cut-off of the integration domain from
R to [−T, T ].
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We call Q∗n,T a trapezoidal rule: indeed, for n even, Q∗n,T (g) is nothing but the
standard truncated trapezoidal rule for functions on R with mesh size ∆x

Q∗n,T (g) = ∆x

n/2−1∑
`=−n/2

g(`∆x),

with ∆x = 2T/n, while for n odd we have the trapezoidal rule only shifted by − 1
2∆x:

Q∗n,T (g) = ∆x

(n−1)/2∑
`=−(n−1)/2

g
((
`− 1

2

)
∆x
)
.

Our proof strategy is based on the approach by Nuyens and Suzuki [38], where a
multidimensional integration problem with respect to the Lebesgue measure using a
quasi-Monte Carlo method called rank-1 lattice rule was considered. Following [38],
we consider the bound∣∣∣∣∫

R
g(x)dx−Q∗n,T (g)

∣∣∣∣ ≤ ∣∣∣∣∫
R
g(x)dx−

∫ T

−T
g(x)dx

∣∣∣∣+

∣∣∣∣∫ T

−T
g(x)dx−Q∗n,T (g)

∣∣∣∣.(4.2)

We will let g = fρ with f ∈Hα later in Theorem 4.5.
The first term of the right hand side in (4.2) can be bounded as in [38, Proposi-

tion 8]; we provide a proof adapted to our setting below in Proposition 4.2. To bound
the second term, we now derive what corresponds to [38, Lemma 5 and Proposition 7].

Lemma 4.1. Let T > 0, α ∈ N, and n ∈ N be given. Suppose that g(τ) : R→ R is
absolutely continuous on any compact interval for τ = 0, . . . , α − 1, and that g(α) is
in L2(R). Suppose further that g satisfies

(4.3) ‖g‖α,[−T,T ] :=

α−1∑
τ=0

(∫ T

−T
g(τ)(x)dx

)2

+

∫ T

−T
|g(α)(x)|2dx

1/2

<∞

and

‖g‖α,decay := sup
x∈R

τ∈{0,...,α−1}

∣∣∣e(1−ε)x2/2 g(τ)(x)
∣∣∣ <∞, for some ε ∈ (0, 1).(4.4)

Then the error of the n-point trapezoidal rule on the interval [−T, T ] defined in (4.1)
is bounded by∣∣∣∣∣

∫ T

−T
g(x)dx−Q∗n,T (g)

∣∣∣∣∣ ≤ Cα‖g‖α,[−T,T ]T
α+1/2 1

nα

+ αmax{1, (2T )α−1}‖g‖α,decaye−(1−ε)T 2/2,(4.5)

with Cα := 2
√
ζ(2α)/πα, where ζ(2α) :=

∑∞
m=1m

−2α <∞.

Proof. With a suitable auxiliary function G = G[−T,T ] periodic on [−T, T ] satis-

fying
∫ T
−T G(x)dx =

∫ T
−T g(x)dx, we consider the following bound:∣∣∣∣∣

∫ T

−T
g(x)dx−Q∗n,T (g)

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

−T
G(x)dx−Q∗n,T (G)

∣∣∣∣∣+
∣∣Q∗n,T (g −G)

∣∣ .(4.6)
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Choosing

G(x) := g(x)−
α∑
τ=1

B
[−T,T ]
τ (x)

τ !

(∫ T

−T
g(τ)(s)ds

)
for x ∈ [−T − δ, T + δ],

for an arbitrarily fixed small δ ∈ (0, 1) turns out to be convenient, as we now explain.

Here, B
[−T,T ]
τ (x) is the scaled Bernoulli polynomial of degree τ on [−T, T ], namely

B[−T,T ]
τ (x) = (2T )τ−1Bτ

(
x+ T

2T

)
with Bτ being the standard Bernoulli polynomial of degree τ . We have

∫ T
−T G(x)dx =∫ T

−T g(x)dx by simply noticing that
∫ 1

0
Bτ (x)dx = 0 for τ ≥ 1.

The function G is (α − 1)-times differentiable on (−T − δ, T + δ) with G(α−1)

being absolutely continuous on [−T, T ]. Moreover, we have∫ T

−T
G(τ)(x)dx =

∫ T

−T
g(τ)(x)dx−

(∫ T

−T
B

[−T,T ]
0 (x)dx

)(∫ T

−T
g(τ)(s)ds

)
= 0,

for τ = 1, . . . , α, and thus the fundamental theorem of calculus tells us

G(τ)(−T ) = G(τ)(T ), for τ = 0, . . . , α− 1.

These properties of G imply the following two Fourier series representations.
First, from the periodicity and the absolute continuity of G on [−T, T ], we have
the pointwise-convergent Fourier series expansion

G(x) =
∑
m∈Z

Ĝ(m)φ[−T,T ]
m (x),

where φ
[−T,T ]
m (x) := exp( 2πim(x+T )

2T )/
√

2T , m ∈ Z are the orthonormal Fourier basis

on L2([−T, T ]) and Ĝ(m) :=
∫ T
−T G(x) exp(−2πim(x+T )

2T )/
√

2T dx, m ∈ Z are the

Fourier coefficients. Second, from the square integrability of G(α), we have the L2-
convergent Fourier series representation

(G(x))
(α)

=
∑
m∈Z

Ĝ(α)(m)φ[−T,T ]
m (x) =

∑
m∈Z

(
2πim

2T

)α
Ĝ(m)φ[−T,T ]

m (x),

where in the second equality we repeatedly used the integration by parts.
Using these representations, we obtain∣∣∣∣Q∗n,T (G)−

∫ T

−T
G(x)dx

∣∣∣∣ =

∣∣∣∣2Tn
n−1∑
j=0

∑
m∈Z

Ĝ(m)φ[−T,T ]
m (ξ∗j )−

√
2TĜ(0)

∣∣∣∣
=

∣∣∣∣∣√2T
∑

m∈Z\{0}

Ĝ(mn)

∣∣∣∣∣
≤
√

2T

( ∑
m∈Z\{0}

|Ĝ(mn)|2
(

2πmn

2T

)2α
)1/2( ∑

m∈Z\{0}

(
2T

2πmn

)2α
)1/2
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≤
√

2T‖G‖α,[−T,T ]

√
2ζ(2α)

(
T

πn

)α
=: Cα‖G‖α,[−T,T ]T

α+1/2 1

nα
,(4.7)

where in the first to second lines we used the pointwise convergence of the series and

2T

n

n−1∑
j=0

φ[−T,T ]
m (ξ∗j ) =

√
2T

n

n−1∑
j=0

exp(2πimj/n) =

{√
2T if m ≡ 0 (mod n),

0 otherwise,

while in the fourth line we used the Parseval identity. The equation (4.7) is further
bounded by Cα‖g‖α,[−T,T ]T

α+1/2 1
nα since

‖G‖α,[−T,T ] =

(∫ T

−T
G(x)dx

)2

+

∫ T

−T
| (G)

(α)
(x)|2dx

1/2

=

(∫ T

−T
g(x)dx

)2

+

∫ T

−T
|g(α)(x)|2dx− 1

2T

(∫ T

−T
g(α)(y)dy

)2
1/2

≤ ‖g‖α,[−T,T ].

Now we bound the the second term of the right hand side in (4.6):

∣∣Q∗n,T (g −G)
∣∣ =

∣∣∣∣∣ 1n
n−1∑
j=0

α∑
τ=1

B
[−T,T ]
τ (ξ∗j )

τ !

(∫ T

−T
g(τ)(s)ds

)∣∣∣∣∣
≤

α∑
τ=1

∣∣∣∣∣ 1n
n−1∑
j=0

B
[−T,T ]
τ (ξ∗j )

τ !

∣∣∣∣∣∣∣g(τ−1)(T )− g(τ−1)(−T )
∣∣

≤
α∑
τ=1

(2T )τ−1

2
(2‖g‖α,decay) e−(1−ε)T 2/2

≤ αmax{1, (2T )α−1}‖g‖α,decay e−(1−ε)T 2/2,

where in the penultimate line we used |B
[−T,T ]
τ (x)
τ ! | ≤ (2T )τ−1

2 for x ∈ [−T, T ]; see [38,
Equation (6)] or [31]. Together with (4.7), the statement follows.

Now, what remains in the bound (4.2) is the error due to chopping the real line
to the interval [−T, T ]. The following result tells us how to choose T to obtain a total
error bounded by O(n−α) up to a logarithmic factor.

Proposition 4.2. Let α ∈ N. Suppose that the function g(τ) : R → R is abso-
lutely continuous on any compact interval for τ = 0, . . . , α − 1, and that g(α) is in
L2(R). Suppose further that g satisfies

‖g‖∗α := sup
I⊂R
|I|<∞

‖g‖α,I := sup
I⊂R
|I|<∞

((
α−1∑
τ=0

(∫
I

g(τ)(x)dx

)2

+

∫
I

|g(α)(x)|2dx

))1/2

<∞

(4.8)

and

‖g‖α,decay := sup
x∈R

τ∈{0,...,α−1}

∣∣∣e(1−ε)x2/2 g(τ)(x)
∣∣∣ <∞, for some ε ∈ (0, 1).(4.9)
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Then, for any integer n ≥ 2, the error for the n-point trapezoidal rule Q∗n,T as in
(4.1) with the cut-off interval [−T, T ] given by

T =

√
2

(1− ε)
α ln(n),(4.10)

can be bounded by∣∣∣∣∫
R
g(x)dx−Q∗n,T (g)

∣∣∣∣ ≤ C (‖g‖∗α + ‖g‖α,decay)
(lnn)(α/2+1/4)

nα
,(4.11)

where the constant C is independent of n and g but depends on α and ε.

Proof. Consider the bound (4.2). The error due to cutting off the integration
domain is bounded by∣∣∣∣∣
∫
R
g(x)dx−

∫ T

−T
g(x)dx

∣∣∣∣∣ ≤ 2‖g‖α,decay

∫ ∞
T

e−(1−ε)x2/2dx

≤ 2‖g‖α,decay

(1− ε)T

∫ ∞
T

(1− ε)xe−(1−ε)x2/2dx

=
2‖g‖α,decay

(1− ε)T
e−(1−ε)T 2/2 =

√
2‖g‖α,decay√
α(1− ε)

n−α(ln(n))−1/2.

Noting that n ≥ 2 and (4.10) imply 2T > 1 so that max{1, (2T )α−1} = (2T )α−1, from
Lemma 4.1 we have∣∣∣∣∫

R
g(x)dx−Q∗n,T (g)

∣∣∣∣ ≤ √2‖g‖α,decay√
α(1− ε)

(ln(n))−1/2 n−α

+ C1 ‖g‖∗α (ln(n))(α/2+1/4) n−α

+ C2 ‖g‖α,decay (ln(n))(α/2−1/2) n−α

≤ C (‖g‖∗α + ‖g‖α,decay) (lnn)(α/2+1/4) n−α,

where the constants C1, C2 and C are independent of n and g but depend on α and
ε. Thus the claim is proved.

Remark 4.3. The result [38, Theorem 2] by Nuyens and Suzuki obtained for a
class of quasi-Monte Carlo methods called good lattice rules can be seen as a multi-
dimensional counterpart of Proposition 4.2. Indeed, it can be checked that the trape-
zoidal rule is a good lattice, and thus under the same assumption as Proposition 4.2,
the result therein is immediately applicable to the trapezoidal rule. However, we ob-
tained a better bound by exploiting our one-dimensional setting in Proposition 4.2.
Compare this result with [38, Theorem 2] with the parameters therein being d = 1,
β = (1− ε)/2 and p = q = 2 to see the improvement.

Our results offer several insights to interpret results available in the literature.
In the context of spectral methods, Boyd [4, 5] pointed out that the

Gauss–Hermite points are distributed roughly uniformly over the interval
[O(−n1/2), O(n1/2)], and thus, the total number of point being n, the spacing be-
tween adjacent points decreases only as O(n−1/2); see for example [4, Chapter 17]
and [5, Fig. 6]. The proof of Theorem 3.2 (see also Corollary 3.3) shows that it is this
slow decrease of the spacing that causes the sub-optimal convergence rate.
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In [44, Section 5], Trefethen compared Gausss–Hermite quadrature and various
quadrature formulas, including the trapezoidal rule. Although the focus there was
analytic integrands, the author also discusses the nonanalytic case. On page 142, he
seems to have reasoned that 1 for the nonanalytic functions on R decaying at a suitable
rate (presumably at the rate exp(−x2) as x → ∞ including derivatives) the right
choice of the cut-off of the domain that balances domain-truncation and quadrature
errors should be logarithmic in n, while the Gauss–Hermite rule distributes quadrature
points to unnecessarily wide intervals [O(−n1/2)),O(n1/2))]. Proposition 4.2 supports
this point for the trapezoidal rule. Indeed, under the exponential decay condition
(4.9), we cut off the integration domain logarithmically (4.11), and we achieve the
optimal rate O(n−α) up to a logarithmic factor. Note, however, that for polynomially
decaying finitely smooth functions, we expect the right choice of the domain cut-off
to grow algebraically; see [38, Theorem 2 (ii)] for a related result.

In Proposition 4.2, the choice of the cut-off interval (4.10) requires the smoothness
parameter α, which might not be known in practice. Replacing α in (4.10) with any
slowly increasing function γ(n), such as max{ln(ln(n)), 0}, yields a less tight bound
for the trapezoidal rule, but with an α-free construction, still achieving the optimal
rate up to a factor of (γ(n) lnn)(α/2+1/4).

Corollary 4.4. Suppose that assumptions in Proposition 4.2 are satisfied. Let
γ(n) : N → [0,∞) be a non-decreasing function satisfying limn→∞ γ(n) = ∞. Then,
for any integer n ≥ γ−1(α) := min{m ∈ N | γ(m) ≥ α}, the error for Q∗

n,T̃
as in (4.1)

with

T̃ =

√
2

(1− ε)
γ(n) ln(n)

can be bounded by∣∣∣∣∫
R
g(x)dx−Q∗

n,T̃
(g)

∣∣∣∣ ≤ C (‖g‖∗α + ‖g‖α,decay)
(γ(n) lnn)(α/2+1/4)

nα
,(4.12)

where the constant C is independent of n and g but depends on α and ε.

Now we are going to show that Proposition 4.2 is applicable to the weighted
Sobolev space Hα. In view of the optimal rate in [15, Theorem 1] for the Hermite
space HHermite

α and the characterisation of HHermite
α with Hα discussed in Section 2,

the resulting rate below establishes the optimality, up to a logarithmic factor, of our
trapezoidal rule.

Theorem 4.5. Fix ε ∈ (1/2, 1) arbitrarily. For f ∈ Hα with α ∈ N, consider

Q∗n,T (fρ) as in (4.1) with T =
√

2
1−εα ln(n). Then, we have

|I(f)−Q∗n,T (fρ)| ≤ C‖f‖α
(lnn)(α/2+1/4)

nα

for any integer n ≥ 2, where the constant C is independent of n and f but depends
on α and ε.

1“The ratio increases to nearly order n1/2 for nonanalytic functions f , where intervals growing
just logarithmically rather than algebraically with n are appropriate for balancing domain-truncation
and discretization errors.” [44, p. 142].
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Proof. Let g := fρ. In view of Proposition 4.2, it suffices to show ‖g‖∗α +
‖g‖α,decay ≤ C‖f‖α for some constant C > 0, where ‖g‖∗α and ‖g‖α,decay are as
in (4.8) and (4.9) with ε ∈ (1/2, 1), respectively.

We first show ‖g‖∗α ≤ C‖f‖α. We have

(‖g‖∗α)2 ≤
α−1∑
τ=0

(∫
R
|g(τ)(x)|dx

)2

+

∫
R
|g(α)(x)|2dx,

but using (2.1) and the chain rule, for τ = 0, . . . , α− 1 we have

‖g(τ)‖L1(R) ≤
τ∑
`=0

(
τ

`

)
‖f (τ−`)(x)ρ(`)(x)‖L1(R)

=

τ∑
`=0

(
τ

`

)(∫
R

∣∣∣ρ(x)f (τ−`)(x)
√
`!(−1)`H`(x)

∣∣∣ dx)

≤
τ∑
`=0

(
τ

`

)√
`!

(∫
R

∣∣∣f (τ−`)(x)
∣∣∣2 ρ(x)dx

)1/2(∫
R
|H`(x)|2 ρ(x)dx

)1/2

<∞,

while for τ = α we have

‖g(α)(x)‖L2(R) ≤
α∑
`=0

(
α

`

)
‖f (α−`)(x)ρ(`)(x)‖L2(R)

=

α∑
`=0

(
α

`

)(∫
R

∣∣∣ρ(x)f (α−`)(x)
√
`!(−1)`H`(x)

∣∣∣2 dx

)1/2

≤
α∑
`=0

(
α

`

)(
sup
t∈R

(
H2
` (t)ρ(t)

) ∫
R
ρ(x)

∣∣f (α−`)(x)
∣∣2`!dx)1/2

<∞.

Hence, ‖g‖∗α ≤ C‖f‖α holds.
To show ‖g‖α,decay ≤ C‖f‖α, let hτ := ρε−1g(τ) for τ = 0, . . . , α − 1. Then, we

have

‖hτ‖L2(R) ≤
τ∑
`=0

(
τ

`

)
‖ρε−1(x)f (τ−`)(x)ρ(`)(x)‖L2(R)

=

τ∑
`=0

(
τ

`

)(∫
R

∣∣∣ρε(x)f (τ−`)(x)
√
`!(−1)`H`(x)

∣∣∣2 dx

)1/2

≤
τ∑
`=0

(
τ

`

)(
sup
t∈R

(
H2
` (t)ρ2ε−1(t)

) ∫
R
ρ(x)

∣∣∣f (τ−`)(x)
∣∣∣2 `!dx)1/2

<∞

and

‖h′τ (x)‖L2(R) ≤ ‖(1− ε)xg(τ)(x)ρε−1(x)‖L2(R) + ‖g(τ+1)(x)ρε−1(x)‖L2(R)

≤
τ∑
`=0

(
τ

`

)(∫
R

∣∣∣(1− ε)xρε(x)f (τ−`)(x)
√
`!(−1)`H`(x)

∣∣∣2 dx

)1/2

+

τ+1∑
`=0

(
τ + 1

`

)(∫
R

∣∣∣ρε(x)f (τ+1−`)(x)
√
`!(−1)`H`(x)

∣∣∣2 dx

)1/2
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≤
τ∑
`=0

(
τ

`

)(
sup
t∈R

∣∣ρ2ε−1(t)(1− ε)2t2H2
` (t)

∣∣ ∫
R
|f (τ−`)(x)|2ρ(x)`!dx

)1/2

+

τ+1∑
`=0

(
τ + 1

`

)(
sup
t∈R

∣∣ρ2ε−1(t)H2
` (t)

∣∣ ∫
R
|f (τ+1−`)(x)|2`!ρ(x)dx

)1/2

<∞.

Thus, from the Sobolev inequality, e.g., [9, Theorem 8.8], for τ = 0, . . . , α−1 we have
‖hτ‖∞ ≤ C‖hτ‖W 1,2(R) <∞. This completes the proof.

Theorem 4.5 is an application of Proposition 4.2 to g = fρ with f ∈ Hα. Similarly,
applying Corollary 4.4 to g = fρ yields a trapezoidal rule whose construction is inde-
pendent of α with the optimal convergence rate up to a factor of (γ(n) lnn)(α/2+1/4)

for functions in Hα. Since the argument is straightforward from Corollary 4.4 and
Theorem 4.5, we omit the details.

Details of Figure 1. Now we are ready to discuss the details of Figure 1 in

Section 1. The trapezoidal rule used there is Q∗n,T as in (4.1) with T =
√

2
1−εα ln(n)

and ε = 0.51. Here, we chose α = p, since f(x) = |x|p is in Hp but not in Hp+1. The
number of points n is chosen to be odd for the trapezoidal rule and even for Gauss–
Hermite quadrature, so that both quadrature rules do not evaluate at the origin x = 0
where the integrand is not smooth.

The rate around O(n−p/2−0.5) we observe for Gauss–Hermite quadrature is con-
sistent with the matching bounds of the of order n−α/2 = n−p/2 in the sense of
worst-case error, since f(x) = |x|p is a specific element from Hp; the rate around
O(n−p−0.8) we observe for the trapezoidal rule also supports our results, according to
which we expect to see at least O(n−p) for any function in Hp.

5. Conclusions. In this paper, we proved the sub-optimality of Gauss–Hermite
quadrature and the optimality of the trapezoidal rule for functions with finite smooth-
ness, in the sense of worst-case error. The lower bound presented for Gauss–Hermite
quadrature is sharp, and the upper bound presented for the trapezoidal rule is also
sharp, up to a logarithmic factor.

To establish the lower bound for Gauss–Hermite rule, we constructed a sequence
of fooling functions. This strategy also demonstrated that what causes this lower
bound is the placement of quadrature points, and thus tuning the quadrature weights
does not improve the bound.

A key for showing the optimality of the trapezoidal rule was the auxiliary periodic
function in Lemma 4.1. The function used there is in fact an orthogonal projection in a
suitable sense; for details, we refer to [38]. Needless to say, upon the domain truncation
[−T, T ], other quadrature rules on the finite interval, such as Clenshaw–Curtis or
Gauss–Legendre quadratures, can also be used. For these quadrature rules, analogous
upper bounds should be able to be derived, without the necessity of introducing
the aforementioned periodic function. Since these quadratures are arguably more
complicated to use than the trapezoidal rule, and the error analysis should be less
involved, we had left them out from the scope of this paper.

Our results suggest that the truncated trapezoidal rule may be also promising
for high-dimensional problems. One generalisation of the trapezoidal rule to the
multidimensional setting is the lattice rule. Nuyens and Suzuki [38] studied this
method for the integration problem on Rd with respect to the Lebesgue measure. To
verify if it works well for the Gaussian measure in a high-dimensional setting is kept
for future works.
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Another generalisation to high-dimensional settings is by the Smolyak-type algo-
rithms. As mentioned in Section 1, this type of methods based on Gauss–Hermite
points is widely used. In light of the results presented in this paper, especially when
the target function is expected to have limited smoothness, the trapezoidal rule may
be a better choice. Investigating these speculations is also kept for future works.
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