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Abstract

This work concerns with the numerical approximation for the stochastic Lotka-Volterra
model originally studied by Mao et al. (2002). The natures of the model including multi-
dimension, super-linearity of both the drift and diffusion coefficients and the positivity
of the solution make most of the existing numerical methods fail. In particular, the
super-linearity of the diffusion coefficient results in the explosion of the 1st moment of the
analytical solution at a finite time. This becomes one of our main technical challenges. As
a result, the convergence framework is to be set up under the θth moment with 0 < θ < 1.
The idea developed in this paper will not only be able to cope with the stochastic Lotka-
Volterra model but also work for a large class of multi-dimensional super-linear SDE
models.

Keywords: Stochastic differential equation, positivity preserving numerical method, multi-dimensional
super-linear Lotka-Volterra model, strong convergence

1 Introduction

In 2002, Mao et al. [17] worked on an n-dimensional Lotka-Volterra model

dx(t) = diag(x1(t), · · · , xn(t))[b+Ax(t)dt+ σx(t)dB(t)], (1.1)

where x(t) = (x1(t), · · · , xn(t))T is the n population sizes at time t, and the parameters b = (b1, · · · , bn)T

∈ Rn, A = (aij)n×n ∈ Rn×n, σ = (σij)n×n ∈ Rn×n and B(t) is a scalar Brownian motion. They re-
vealed that the system explosion can even be controlled by some small external variability. Since then,
the stochastic population analysis has been widely explored.

The non-linearity of model (1.1) makes it hard to express explicitly the analytical solution. In order
to well understand the asymptotic properties of such population model, in addition to the analytical
study as is done in [17], it is a good attempt to develop an efficient and reliable numerical algorithm.
However, owing to model (1.1)’s natures including multi-dimension, super-linearity and positivity of
solution, to the best of our knowledge, an explicit numerical method applicable to (1.1) is hardly
found.
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Recently, numerical methods for stochastic differential equations (SDEs) have been extensively
discussed. Among these, the Euler-Maruyama (EM) is easily implementable and has low computa-
tional cost. However, Hutzenthaler et al. [8] discovered that the EM method is divergent in finite
time for super-linearly growing SDEs. Hence many implicit methods (e.g. [3, 19, 21]) were introduced
to cope with the nonlinear scenario.

However, the classical explicit EM method is of the simplest structure, making it more efficient
in practice. To take advantages of it, many authors have developed various modified EM methods to
handle the SDEs with nonlinear terms, e.g. the tamed EM [9], the truncated EM (TEM) [16], the
tamed Milstein EM [20], the multilevel EM [2] and the adaptive EM [10].

Nevertheless, to the best of our knowledge, the above modified EM methods are still unable to
cope with a large class of well-known SDE systems with super-linear terms, for instance, the stochastic
theta model [7, 12]

dS(t) = φS(t)dt+ σS3/2(t)dB(t),

the more general mean-reverting-theta stochastic volatility model [4, 12]

dS(t) = φ1(α1 − S(t))dt+ σ1V
1/2(t)S3/2(t)dB1(t)

dV (t) = φ2(α2 − V (t))dt+ σ2V
3/2(t)dB2(t),

and the stochastic interest rate model [1, 7]

dR(t) = [α0 − α1R
2(t)]dt+ σR3(t)dB(t).

On the other hand, positivity/non-negativity of the exact solutions has been detected in a large
class of SDE models in mathematical finance and bio-mathematics. To gurantee the reliability of
Monte Carlo simulations for these dynamical systems, another aspect we need to concern about is
how to retain this typical property in the numerical algorithm. Such positivity preserving methods
have been considered by some authors, but so far most are implicit (e.g. [3, 13]). To save time and
cost in practice, an explicit method is in need.

Recently, Mao et al. [18] have proposed a modified TEM approach to cope with the super-linear
terms as well as to ensure the positivity of the numerical solution. However, the method does not
work for our more general type of the Lotka-Volterra model (1.1) where the diffusion term is also of
super-linear growth. Therefore, the main technical challenge is to build up the strong convergence
framework in the super-linear sense while preserving positivity. According to Mao et al. [15, 17], the
quadratic diffusion term makes system (1.1) so sensitive that even the 1st moment of x(t) diverges to
infinity in an finite time interval. This is also revealed and generalised by Li et al. [14]. Therefore,
the convergence theory in this paper is to be established under the θth moment with 0 < θ < 1.

It is worth emphasizing that the scheme developed in this paper is also applicable to a large branch
of popular multi-dimensional super-linear SDE models in various fields including finance, biology,
epidemiology and engineering, for example, the above mentioned stochastic theta process [7, 12], the
mean-reverting-theta stochastic volatility model [4, 12] and the stochastic interest rate model [1, 7]
that are widely used to describe the dynamics of asset price, volatility and other financial quantities.
We will give some details later.

2 Notations and Preliminaries

Let (Ω, {F}, {Ft}t>0,P) be a complete probability space with a filtration {Ft}t>0 satisfying the usual
conditions (i.e. it is right continuous and increasing while F0 contains all P-null sets). Let B(t) be a
scalar Brownian motion defined on the probability space. Let IΩ̄ be the indicator function of a subset
Ω̄ of Ω. We denote by Rn+ the positive cone in Rn, that is, Rn+ = {x ∈ Rn : xi > 0 for 1 6 i 6 n}. If E
is a vector or matrix, its transpose is denoted by ET . If E ∈ Rn, |E| is the Euclidean norm. If E is
a matrix, we let |E| :=

√
trace(ETE) be its trace norm and ‖E‖ := sup{|Ex| : |x| = 1} its operator

norm.
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Throughout this paper, we let the initial value x(0) = x0 ∈ Rn+ be arbitrary and fix two positive
real numbers T and θ ∈ (0, 1). Also, C represents generic positive constants dependent on x0, T and
θ but independent of the real number τ > 0 and the stepsize ∆ which will be introduced later on.

Before carrying on the numerical analysis, it would be useful to sort out some known results on
the exact solution to model (1.1).

Assumption 2.1. The diffusion parameters satisfy{
σii > 0, for i = 1, · · · , n
σij > 0, for i 6= j.

Lemma 2.2. ([17]) Under Assumption 2.1, for any initial value x0 ∈ Rn+, there is a unique global
solution x(t) ∈ Rn+ for all t > 0 almost surely.

For each real number τ > |x0|, define a stopping time

λ = inf{t > 0 : |x(t)| > τ or xi(t) 6 1/τ for some i}. (2.1)

Lemma 2.3. Under Assumption 2.1, for any T > 0,

P(λ 6 T ) 6 C
[(
n−1/4τ1/2 − 1

2
n log τ +

5

4
n log n

)
∧
(
τ−1/2 +

1

2
log τ +

5

4
log n

)]−1
.

This is a direct result from [17].

Lemma 2.4. Let Assumption 2.1 hold. We have

sup
06t<∞

E|x(t)|θ <∞.

This is a direct result from [15]. Please note that the 1st moment of x(t) might explode to infinity
at a finite time as A could be a positive-definite matrix (see, e.g., [17]). Therefore we will establish
our convergence theory under the θth moment with 0 < θ < 1.

3 The Positivity Preserving Numerical Framework

In this section, we will elaborate our scheme. Firstly, we rewrite model (1.1) as

dx(t) = f(x(t))dt+ g(x(t))dB(t) = [f1(x(t)) + f2(x(t))]dt+ g(x(t))dB(t), (3.1)

where

f1(x) := diag(x1, x2, . . . , xn)b, f2(x) := diag(x1, x2, . . . , xn)Ax and g(x) := diag(x1, x2, . . . , xn)σx

in Rn+, and otherwise, f1(x) = f2(x) = g(x) = 0. Notice that f1(·) is of linear growth, that is,

|f1(x)| 6 |b||x| for x ∈ Rn,

while f2(·) and g(·) obey

|f2(x)| 6 ‖A‖|x|2 and |g(x)| 6 ‖σ‖|x|2 for x ∈ Rn.

Therefore the classical EM method is not applicable. One may consider the modified EM methods,
e.g., the truncated EM method (see, e.g., [16]), yet the positivity of the numerical solution is not
guaranteed. Consequently, in this paper the truncated method will be further revised to cope with
SDE models with positive solutions.

We first find a monotonically increasing continuous function η : [1,∞)→ R+ so that

sup
|x|6a

|f2(x)| ∨ |g(x)| 6 η(a).
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Without loss of generality, we choose

η(a) = (‖A‖ ∨ ‖σ‖)a2

for the convenience of further analysis, though not necessary. So the inverse function

η−1(a) =

√
a

η(1)
for a > η(1).

Find a constant K > 1 ∨ η(1) and a strictly decreasing function h : (0, 1]→ [η(1),∞) such that

lim
∆→0

h(∆) =∞ and h3(∆)∆ 6 K for ∆ ∈ (0, 1]. (3.2)

Given a stepsize ∆ ∈ (0, 1], define a mapping χ∆ : Rn → {x ∈ Rn : |x| 6
√

h(∆)
η(1) } by

χ∆(x) =
(
|x| ∧

√
h(∆)

η(1)

) x
|x|

with x/|x| = 0 for x = 0. For any ∆ ∈ (0, 1] and θ ∈ (0, 1), define another mapping ζ∆ : Rn → Rn+ by

ζ∆(x) = (x1 ∨∆1/θ, · · · , xn ∨∆1/θ)T .

Note that

|ζ∆(x)| 6
√

(|x1| ∨∆1/θ)2 + · · ·+ (|xn| ∨∆1/θ)2 6
√
|x|2 + n∆2/θ

and hence

|ζ∆(χ∆(x))| 6

√
h(∆)

η(1)
+ n∆2/θ. (3.3)

Given any stepsize ∆ ∈ (0, 1], we now compute the discrete-time positivity preserving truncated EM
(PPTEM) solutions Xk ≈ x(tk) for tk = k∆ with X̄0 = X0 = x0 and{

X̄k+1 = Xk +
(
f1(Xk) + f2(Xk)

)
∆ + g(Xk)∆Bk,

Xk+1 = ζ∆(χ∆(X̄k+1))
(3.4)

for k = 0, 1, · · · , where ∆Bk = B(tk+1)−B(tk). Let X̄k,j and Xk,j be the jth elements of X̄k and Xk

respectively. Notice that (3.3) implies

|Xk| = |ζ∆(χ∆(X̄k))| 6

√
h(∆)

η(1)
+ n∆2/θ,

and hence

|f2(Xk)| 6 h(∆) + n∆2/θη(1) and |g(Xk)| 6 h(∆) + n∆2/θη(1).

We finally extend X̄k and Xk to the whole t > 0, namely,

X̄(t) := X̄k and X(t) := Xk for t ∈ [tk, tk+1). (3.5)

Similarly, X̄j(t) and Xj(t) represent the jth elements of X̄(t) and X(t) respectively. Clearly, X(t) =
ζ∆

(
χ∆(X̄(t))

)
.
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4 Strong Convergence

In this part, the strong convergence of our scheme is to be discussed under the same parametric
condition as for the exact solution.

Lemma 4.1. Under Assumption 2.1,

sup
0<∆61

sup
06t6T

E|X̄(t)|θ 6 C

and

sup
0<∆61

sup
06t6T

E|X(t)|θ 6 C.

Proof. For any integer k > 0 and j = 1, · · · , n,

X̄2
k+1,j = (Xk,j +

(
f1,j(Xk) + f2,j(Xk)

)
∆ + gj(Xk)∆Bk)

2

= X2
k,j + (f1,j(Xk) + f2,j(Xk))

2∆2 + g2
j (Xk)(∆Bk)

2 + 2Xk,j

(
f1,j(Xk) + f2,j(Xk)

)
∆

+ 2Xk,jgj(Xk)∆Bk + 2
(
f1,j(Xk,j) + f2,j(Xk,j)

)
gj(Xk)∆Bk∆.

Then (
1 + X̄2

k+1,j

)θ/2
=
(
1 +X2

k,j

)θ/2
(1 + γk,j)

θ/2,

where

γk,j =
1

1 +X2
k,j

[
(f1,j(Xk) + f2,j(Xk))

2∆2 + g2
j (Xk)(∆Bk)

2 + 2Xk,j

(
f1,j(Xk) + f2,j(Xk)

)
∆

+ 2Xk,jgj(Xk)∆Bk + 2
(
f1,j(Xk) + f2,j(Xk)

)
gj(Xk)∆Bk∆

]
.

By Taylor’s formula,

(1 + γk,j)
θ/2 6 1 +

θ

2
γk,j +

θ(θ − 2)

8
γ2
k,j +

θ(θ − 2)(θ − 4)

48
γ3
k,j .

Therefore

E
(
(1 + X̄2

k+1,j)
θ/2|Ftk

)
6 (1 +X2

k,j)
θ/2
(

1 +
θ

2
E
(
γk,j |Ftk

)
+
θ(θ − 2)

8
E(γ2

k,j |Ftk)

+
θ(θ − 2)(θ − 4)

48
E(γ3

k,j |Ftk)
)
. (4.1)

Noting that for any integer j > 1,

E
(
(∆Bk)

2j−1|Ftk
)

= 0 and E
(
(∆Bk)

2j |Ftk
)

= (2j − 1)!!∆j

hold and all components of Xk are positive due to (3.4), and bearing (3.2) in mind, compute

E[γk,j |Ftk ] =
1

1 +X2
k,j

[(
2Xk,j

(
f1,j(Xk) + f2,j(Xk)

)
+ g2

j (Xk)
)

∆ + (f1,j(Xk) + f2,j(Xk))
2∆2

]
6

1

1 +X2
k,j

[(
2bjX

2
k,j + 2X2

k,j

n∑
i=1

ajiXk,i +X2
k,j

( n∑
i=1

σjiXk,i

)2)
∆ + 2b2jX

2
k,j∆

2
]

+ 2f2
2,j(Xk)∆

2

6
1

1 +X2
k,j

(
2X2

k,j

n∑
i=1

ajiXk,i +X2
k,j

( n∑
i=1

σjiXk,i

)2)
∆ + 2bj∆ + 2b2j∆

2+

+ 2
(
h(∆) + n∆2/θη(1)

)2
∆2

6
1

1 +X2
k,j

(
2X2

k,j

n∑
i=1

ajiXk,i +X2
k,j

( n∑
i=1

σjiXk,i

)2)
∆ + C∆,
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E[γ2
k,j |Ftk ] =

1

(1 +X2
k,j)

2
E
[(

(f1,j(Xk) + f2,j(Xk))
2∆2 + g2

j (Xk)(∆Bk)
2 + 2Xk,j

(
f1,j(Xk) + f2,j(Xk)

)
∆

+ 2Xk,jgj(Xk)∆Bk + 2
(
f1,j(Xk) + f2,j(Xk)

)
gj(Xk)∆Bk∆

)2
|Ftk

]
>

1

(1 +X2
k,j)

2
E
[
4X2

k,jg
2
j (Xk)(∆Bk)

2 + 4Xk,jgj(Xk)∆Bk

(
(f1,j(Xk) + f2,j(Xk))

2∆2

+ g2
j (Xk)(∆Bk)

2 + 2Xk,j

(
f1,j(Xk) + f2,j(Xk)

)
∆ + 2

(
f1,j(Xk) + f2,j(Xk)

)
gj(Xk)∆Bk∆

)
|Ftk

]
>

4

(1 +X2
k,j)

2
X2
k,j

(
Xk,j

n∑
i=1

σjiXk,i

)2
∆− 8

(1 +X2
k,j)

2
Xk,j

(
|f1,j(Xk)|+ |f2,j(Xk)|

)
|gj(Xk)|2∆2

>
4

(1 +X2
k,j)

2
X4
k,j

( n∑
i=1

σjiXk,i

)2
∆− 8

(1 +X2
k,j)

2

(
|bj |X2

k,j

(
h(∆) + n∆2/θη(1)

)2
+Xk,j

(
h(∆) + n∆2/θη(1)

)3)
∆2

>
4

(1 +X2
k,j)

2
X4
k,j

( n∑
i=1

σjiXk,i

)2
∆− C∆

and

E[γ3
k,j |Ftk ] =

1

(1 +X2
k,j)

3
E
[(

(f1,j(Xk) + f2,j(Xk))
2∆2 + g2

j (Xk)(∆Bk)
2 + 2Xk,j

(
f1,j(Xk) + f2,j(Xk)

)
∆

+ 2Xk,jgj(Xk)∆Bk + 2
(
f1,j(Xk) + f2,j(Xk)

)
gj(Xk)∆Bk∆

)3
|Ftk

]
=

1

(1 +X2
k,j)

3
E
[(

2Xk,j

(
f1,j(Xk) + f2,j(Xk)

)
∆ + g2

j (Xk)(∆Bk)
2 + (f1,j(Xk) + f2,j(Xk))

2∆2
)3

+ 3
(

2Xk,j

(
f1,j(Xk) + f2,j(Xk)

)
∆ + g2

j (Xk)(∆Bk)
2 + (f1,j(Xk) + f2,j(Xk))

2∆2
)

·
(

2Xk,jgj(Xk)∆Bk + 2
(
f1,j(Xk) + f2,j(Xk)

)
gj(Xk)∆Bk∆

)2
|Ftk

]
6

1

(1 +X2
k,j)

3
E
[
9 · 23X3

k,j |f1,j(Xk) + f2,j(Xk)|3∆3 + 9|gj(Xk)|6(∆Bk)
6

+ 9|f1,j(Xk) + f2,j(Xk)|6∆6 + 48X3
k,j |f1,j(Xk) + f2,j(Xk)||gj(Xk)|2∆(∆Bk)

2

+ 48Xk,j |f1,j(Xk) + f2,j(Xk)|3|gj(Xk)|2∆3(∆Bk)
2 + 24|gj(Xk)|4X2

k,j(∆Bk)
4

+ 24|gj(Xk)|4|f1,j(Xk) + f2,j(Xk)|2(∆Bk)
4∆2 + 24|f1,j(Xk) + f2,j(Xk)|2X2

k,j |gj(Xk)|2∆2(∆Bk)
2

+ 24|f1,j(Xk) + f2,j(Xk)|4|gj(Xk)|2∆4(∆Bk)
2|Ftk

]
6

C

(1 +X2
k,j)

3

[
X3
k,j |f1,j(Xk)|3∆3 +X3

k,j |f2,j(Xk)|3∆3 + |gj(Xk)|6∆3 + |f1,j(Xk)|6∆6

+ |f2,j(Xk)|6∆6 +X3
k,j |f1,j(Xk)||gj(Xk)|2∆2 +X3

k,j |f2,j(Xk)||gj(Xk)|2∆2

+Xk,j |f1,j(Xk)|3|gj(Xk)|2∆4 +Xk,j |f2,j(Xk)|3|gj(Xk)|2∆4 +X2
k,j |gj(Xk)|4∆2

+ |f1,j(Xk)|2|gj(Xk)|4∆4 + |f2,j(Xk)|2|gj(Xk)|4∆4 +X2
k,j |f1,j(Xk)|2|gj(Xk)|2∆3

+X2
k,j |f2,j(Xk)|2|gj(Xk)|2∆3 + |f1,j(Xk)|4|gj(Xk)|2∆5 + |f2,j(Xk)|4|gj(Xk)|2∆5

]
6

C

(1 +X2
k,j)

3

[
|bj |3X6

k,j∆
3 + h3(∆)X3

k,j∆
3 + h6(∆)∆3 + |bj |6X6

k,j∆
6 + h6(∆)∆6

+ |bj |h2(∆)X4
k,j∆

2 + h3(∆)X3
k,j∆

2 + |bj |3h2(∆)X4
k,j∆

4 +Xk,jh
5(∆)∆4 + h4(∆)X2

k,j∆
2

+ |bj |2h4(∆)X2
k,j∆

4 + h6(∆)∆4 + |bj |2h2(∆)X4
k,j∆

3 + h4(∆)X2
k,j∆

3 + |bj |4h2(∆)X4
k,j∆

5

+ h6(∆)∆5 + ∆
]

6 C∆.
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Substituting the above three inequalities in (4.1) infers

E
[ n∑
j=1

(
1 + X̄2

k+1,j

)θ/2|Ftk] 6 n∑
j=1

(
1 +X2

k,j

)θ/2
+ ∆θ

n∑
j=1

(
1 +X2

k,j

)θ/2−2
Hj(Xk),

where

Hj(Xk) = C(1 +X2
k,j)

2 + (1 +X2
k,j)X

2
k,j

n∑
i=1

ajiXk,i +
1

2
(1 +X2

k,j)X
2
k,j

( n∑
i=1

σjiXk,i

)2
− 1

2
(2− θ)X4

k,j

( n∑
i=1

σjiXk,i

)2
= C(1 +X2

k,j)
2 + (1 +X2

k,j)X
2
k,j

n∑
i=1

ajiXk,i +
1

2
X2
k,j

( n∑
i=1

σjiXk,i

)2
− 1

2
(1− θ)X4

k,j

( n∑
i=1

σjiXk,i

)2
.

Notice that

n∑
j=1

(
1 +X2

k,j

)θ/2−2
Hj(Xk)

6 C
n∑
j=1

(1 +X2
k,j)

2 +
n∑
j=1

n∑
i=1

(1 +X2
k,j)X

2
k,jajiXk,i +

1

2

n∑
j=1

X2
k,j

( n∑
i=1

σjiXk,i

)2
− 1

2
(1− θ)

n∑
j=1

X4
k,j

( n∑
i=1

σjiXk,i

)2
6 C

n∑
j=1

(1 +X2
k,j)

2 +
4

5
n

n∑
j=1

(1 +X2
k,j)

5/4X
5/2
k,j +

1

5

n∑
j=1

n∑
i=1

|aji|5X5
k,i

+
1

2
n|σ|2

n∑
j=1

X4
k,j −

1

2
(1− θ)

n∑
j=1

σ2
jjX

6
k,j

6 C

under Assumption 2.1. Here, note that the last term is dominant for large Xk,j and it is negative. We
thus conclude

E
[ n∑
j=1

(
1 + X̄2

k+1,j

)θ/2|Ftk] 6 n∑
j=1

(
1 +X2

k,j

)θ/2
+ C∆.
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It then follows by iteration that

E
[ n∑
j=1

(
1 +X2

k,j

)θ/2]
6 E

[ n∑
j=1

(
1 + X̄2

k,j + ∆2/θ
)θ/2]

6 E
[ n∑
j=1

(
1 + X̄2

k,j

)θ/2]
+ n∆

= E
[
E
( n∑
j=1

(
1 + X̄2

k,j

)θ/2|Ftk−1

)]
+ n∆

6 E
[ n∑
j=1

(1 +X2
k−1,j)

θ/2
]

+ C∆

6
n∑
j=1

(1 + x2
0,j)

θ/2 + Ck∆

6 C + CT.

Finally, we have

sup
0<∆61

sup
06t6T

E|X̄(t)|θ = sup
0<∆61

sup
06k∆6T

E|X̄k|θ

6 sup
0<∆61

sup
06k∆6T

n∑
j=1

E
(
1 + X̄2

k,j

)θ/2
6 C

and similarly, the other assertion also follows. �

To explore the strong convergence of our method, let us first consider the SDE

dψ(t) = fτ (ψ(t))dt+ gτ (ψ(t))dB(t) (4.2)

on t > 0 with initial value ψ(0) = x0, where

fτ (ψ) = f(ζ̄τ (χ̄τ (ψ))) and gτ (ψ) = g(ζ̄τ (χ̄τ (ψ))),

with

χ̄τ (ψ) =
(
|ψ| ∧

(
τ +

1

2τ

)) ψ
|ψ|

and

ζ̄τ (ψ) =
(
ψ1 ∨

1

2τ
, · · · , ψn ∨

1

2τ

)T
are analogues of χ∆(·) and ζ∆(·) defined in Section 3 respectively.

Clearly, SDE (4.2) is with global Lipschitz coefficients fτ (·) and gτ (·). So SDE (4.2) has a unique
global positive solution on t > 0.

For each stepsize ∆ ∈ (0, 1], apply EM method to (4.2) by computing the EM solution Ψk ≈ ψ(tk)
for tk = k∆ with Ψ0 = x0 and

Ψk+1 = Ψk + fτ (Ψk)∆ + gτ (Ψk)∆Bk for k = 0, 1, · · · . (4.3)

Then we define

Ψ(t) =
∞∑
k=0

ΨkI[tk,tk+1)(t)

and the Itô process

Ψ̂(t) = x0 +

∫ t

0
fτ (Ψ(s))ds+

∫ t

0
gτ (Ψ(s))dB(s).
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It is known [11] that

E
(

sup
06t6T

|Ψ̂(t)− ψ(t)|θ
)
6 Cτ∆θ/2, (4.4)

where Cτ is a positive constant dependent on τ and T but independent of ∆.

Lemma 4.2. Let j > 1 be an integer large enough for( 2j

2j − 1

)θ
(T + 1)θ/2j 6 2.

Then

E
(

sup
06t6T

|Ψ̂(t)−Ψ(t)|θ
)
6 Cτ∆θ(j−1)/2j .

Proof. Let d be the integer part of T/∆. By the Hölder inequality, we see

E
(

sup
06t6T

|Ψ̂(t)−Ψ(t)|θ
)

6 E
(

max
06i6d

sup
ti6t6ti+1

|fτ (Ψi)(t− ti) + gτ (Ψi)(B(t)−B(ti))|θ
)

6 Cτ∆θ + CτE
(

max
06i6d

sup
ti6t6ti+1

|B(t)−B(ti)|θ
)

6 Cτ∆θ + Cτ

[
E
(

max
06i6d

sup
ti6t6ti+1

|B(t)−B(ti)|2j
)]θ/2j

.

By the Doob martingale inequality, we further deduce

E
(

max
06i6d

sup
ti6t6ti+1

|B(t)−B(ti)|2j
)

6
d∑
i=0

E
(

sup
ti6t6ti+1

|B(t)−B(ti)|2j
)
6
( 2j

2j − 1

)2j
d∑
i=0

E|B(ti+1)−B(ti)|2j

6
( 2j

2j − 1

)2j
d∑
i=0

(2j − 1)!!∆j 6
( 2j

2j − 1

)2j
(2j − 1)!!(T + 1)∆j−1.

Substituting this back yields

E
(

sup
06t6T

|Ψ(t)− Ψ̂(t)|θ
)

6 Cτ∆θ + Cτ

[( 2j

2j − 1

)2j
(2j − 1)!!(T + 1)∆j−1

]θ/2j
6 Cτ∆θ + Cτ j

θ/2∆θ(j−1)/2j ,

where the inequality

[(2j − 1)!!]1/j 6
1

j

j∑
i=1

(2i− 1) = j

is used in the last step. The required assertion hence follows. �

Theorem 4.3. Let Assumption 2.1 hold. For any T > 0,

lim
∆→0

E|X(T )− x(T )|θ = 0.
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Proof. Let ε ∈ (0, 1). Define

Ω1 = {λ > T}.

According to Lemma 2.3, one can choose a τ = τ(ε) sufficiently large for

P(Ωc
1) = P(λ 6 T ) 6 ε/2,

i.e.

P(Ω1) > 1− ε/2.

With this τ , notice that for any ω ∈ Ω1,

x(t) = ψ(t), t ∈ [0, T ].

We hence see from (4.4) that

E
(

sup
06t6T

|Ψ̂(t)− x(t)|θIΩ1(ω)
)
6 Cτ∆θ/2. (4.5)

Recall that Cτ is a positive constant dependent on τ and T but independent of ∆. This and the
Chebyshev inequality give

P
(

sup
06t6T

|Ψ̂(t)− x(t)|IΩ1(ω) >
1

2τ

)
6 (2τ)θCτ∆θ/2, ∀∆ ∈ (0, 1],

Letting

Ω2 :=
{

sup
06t6T

|Ψ̂(t)− x(t)| < 1

2τ

}
∩ Ω1,

one can thus find a ∆1 ∈ (0, 1] sufficiently small for

P(Ω2) > 1− ε, ∆ ∈ (0,∆1].

Given any ω ∈ Ω2 and ∆ ∈ (0,∆1], we observe

sup
06t6T

|Ψ(t)| 6 sup
06t6T

|Ψ̂(t)| 6 sup
06t6T

|x(t)|+ sup
06t6T

|Ψ̂(t)− x(t)| < τ +
1

2τ
(4.6)

and

inf
06t6T

Ψi(t) > inf
06t6T

Ψ̂i(t) > inf
06t6T

xi(t)− sup
06t6T

|xi(t)− Ψ̂i(t)|

> inf
06t6T

xi(t)− sup
06t6T

|x(t)− Ψ̂(t)| > 1

τ
− 1

2τ
=

1

2τ
. (4.7)

Now choose ∆∗ ∈ (0,∆1] so small that

η−1(h(∆∗)) > τ +
1

2τ
and ∆∗1/θ 6

1

2τ
.

For any ω ∈ Ω2 and ∆ ∈ (0,∆∗] , (4.6) and (4.7) imply

Ψ(t) = X(t) = X̄(t), ∀t ∈ [0, T ].

Making use of this, we derive

E
(

sup
06t6T

|X(t)− x(t)|θIΩ2

)
= E

(
sup

06t6T
|Ψ(t)− x(t)|θIΩ2

)
6 E

(
sup

06t6T
|Ψ(t)− Ψ̂(t)|θ

)
+ E

(
sup

06t6T
|Ψ̂(t)− x(t)|θIΩ1

)
.
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It then follows from Lemma 4.2 with any j > 3 and (4.5) that

E
(

sup
06t6T

|X(t)− x(t)|θIΩ2

)
6 Cτ∆θ/3, ∆ ∈ (0,∆∗]. (4.8)

On the other hand, choose a number θ̄ ∈ (θ, 1), compute

E
(
|X(T )− x(T )|θIΩc

2

)
6
(
P(Ωc

2)
)1−θ/θ̄(E|X(T )− x(T )|θ̄

)θ/θ̄
6 Cε1−θ/θ̄, ∀∆ ∈ (0,∆∗]

by Lemmas 2.4 and 4.1. Combining this and (4.8), we derive

E|X(T )− x(T )|θ 6 Cτ∆θ/3 + Cε1−θ/θ̄, ∀∆ ∈ (0,∆∗].

Consequently,

lim
∆→0

E|X(T )− x(T )|θ 6 Cε1−θ/θ̄.

This leads to the required assertion as ε is arbitrary.
�

5 Examples

We will highlight in this part the advantages of our method in retaining the true behaviours of SDE
models with positive solutions such as system (1.1). This is done by comparing the behaviours of our
scheme with the EM and the TEM. Moreover, the reliability of the PPTEM will also be illustrated.

With the following system parameters

b =

(
50
12

)
, A =

(
0.6 3
2 4

)
and σ =

(
2 1
1 2

)
, (5.1)

a two-dimensional cooperative Lotka-Volterra system

dx(t) = [f1(x(t)) + f2(x(t))]dt+ g(x(t))dB(t) (5.2)

is formulated, where

f1(x) =

(
50x1

12x2

)
, f2(x) =

(
0.6x2

1 + 3x1x2

2x1x2 + 4x2
2

)
and

g(x) =

(
2x2

1 + x1x2

x1x2 + 2x2
2

)
in R2

+, and f1(x) = f2(x) = g(x) = 0 for x /∈ R2
+.

Define η : [1,∞)→ R+ by
η(a) = 6a2

such that
sup

x∈R2,|x|6a
|f2(x)| ∨ |g(x)| 6

(
‖A‖ ∨ ‖σ‖

)
a 6 6a2 = η(a),

and hence the inverse function
η−1(a) =

√
a/6.

Let h : (0, 1]→ [η(1),∞) be
h(∆) = 105∆−1/3.

11

Positivity preserving truncated scheme for the stochastic Lotka–Volterra model with small moment convergence



Figure 1: Computer simulations of system (5.2) by the EM, TEM and PPTEM, each with a
stepsize ∆ = 10−5 and the initial value x0 = (2, 1)T .
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Figure 2: Computer simulations of system (5.2) by the TEM and the PPTEM, both with a
stepsize ∆ = 10−6 and the initial value x0 = (2, 1)T .

The mapping ζ∆(χ∆(x)) : R2 →
{
x ∈ R2

+ : |x| 6
√

105

6 ∆−1/3 + 2∆2/θ
}

is of the form

ζ∆(χ∆(x)) =
((
x1 ∧

√
105

6
∆−1/6 x1

|x|
)
∨∆1/θ,

(
x2 ∧

√
105

6
∆−1/6 x2

|x|
)
∨∆1/θ

)
for x ∈ R2.

We then formulate the PPTEM solution X(t) via (3.4) and then (3.5). According to Theorem 4.3,

lim
∆→0

E|X(T )− x(T )|θ = 0 (5.3)

for any T > 0 and θ ∈ (0, 1) under Assumption 2.1. Let us set θ = 1/2 and T = 1 from now on.
We are now ready to compare our PPTEM with the EM [15] and the TEM method [16]. The

EM scheme is well-known so is omitted here. The TEM applied to SDE (5.2) is to compute the
discrete-time TEM solution Wk ≈ x(tk) with W0 = x0 and

Wk+1 = Wk + [f1(Wk) + f2(χ∆(Wk))]∆ + g(χ∆(Wk))∆Bk.

Also let Wk,j be the jth element of Wk. We then extend Wk to the whole t > 0 that is denoted by
W (t). Mao [16] shows

lim
∆→0

E|W (T )− x(T )|θ = 0 for any T > 0. (5.4)

Figure 1 performs the computer simulations using the EM, TEM and the PPTEM, each with the
initial value x0 = (2, 1)T and the stepsize ∆ = 10−5. Although Mao et al. [17] have proved the
existence and uniqueness of a global positive solution to this system under Assumption 2.1, it is not
surprising that both the EM and TEM paths drop below 0 at around t = 0.22. In contrast, we see the
PPTEM prevents the paths from hitting 0 during time interval [0, 1]. This reflects that the typical
feature - the positivity of the true solution has been retained by the PPTEM.

Furthermore, to demonstrate the convergence of the PPTEM, a TEM simulation is generated with
the stepsize ∆ = 10−6 for time interval [0, 1]. We regard this as a reliable sample of the analytical
solution. With the same stepsize, the PPTEM solution is also sketched. From Figure 2, the two paths
are so close to each other that no difference can be detected by eyes.

As a conjecture of the convergence rate, we then do the following investigation. Firstly, a simulated
path {Wk, k = 1, · · · , 108} by TEM is performed with stepsize ∆ = 10−8, representing the true solution
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Figure 3: The mean residuals by the PPTEM with stepsize ∆ = 10−7, 10−6, 10−5 and 10−4

respectively.

of SDE (5.2). Next, four simulations by our PPTEM are produced with stepsize ∆ = 10−7, 10−6, 10−5

and 10−4 respectively for a duration of 1. We do the above for 100 times and compute the mean
residuals by [ 100∑

m=1

(
(Xm

107,1 −W
m
108,1)2 + (Xm

107,2 −W
m
108,2)2

)1/4/
100
]2

for ∆ = 10−7 and [ 100∑
m=1

(
(Xm

106,1 −W
m
108,1)2 + (Xm

106,2 −W
m
108,2)2

)1/4/
100
]2

for ∆ = 10−6, etc. Figure 3 suggests a convergence rate of order close to 1/2, though it has not been
proved theoretically. We leave it as a future work.

The three studies suggest that, when the stepsize is not small enough that both the EM and
TEM get into trouble approximating the exact solution, the PPTEM produces a plausible simulation
that retains the positivity. On the other hand, when the stepsize is small enough, our PPTEM is
close enough to the exact solution, reflecting the convergence of the PPTEM scheme. In conclusion,
compared to most of the existing well-known numerical methods, the PPTEM is able to handle the
super-linear SDE systems with positive solutions, in the sense of not only the convergence performance,
but meanwhile the positivity preserving.

6 Discussion

In this paper, we mainly interpret our positivity preserving numerical method using the n-dimensional
Lotka-Volterra system (1.1). However, not limited to (1.1), the principle of the PPTEM is also
applicable to various multi-dimensional super-linear SDE models. For instance, consider the stochastic
theta process [7, 12]

dS(t) = φS(t)dt+ σSκ(t)dB(t), (6.1)

and more generally, the two-dimensional mean-reverting-theta stochastic volatility model [4, 12]

dS(t) = φ1(α1 − S(t))dt+ σ1

√
V (t)Sκ1(t)dB1(t)

dV (t) = φ2(α2 − V (t))dt+ σ2V
κ2(t)dB2(t).

(6.2)
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It has been proved that (6.1) has a unique global non-negative/positive solution for any initial value
S(0) > 0 for κ > 0.5 [5, 6, 15], and so does (6.2) for κ1, κ2 > 0.5 [4]. Following the theory proposed in
this paper, one can justify that our PPTEM is a strong convergence to SDE (6.1) when κ > 1, and
to SDE (6.2) when κ1, κ2 > 1, while one may refer to [6] for the case when κ ∈ [0.5, 1]. Note that
Baduraliya and Mao [4] have investigated the convergence in probability of EM to model (6.2). While
with the PPTEM, we have not only achieved strong convergence but also ensured positivity. Next
consider the stochastic interest rate model [1, 7]

dR(t) = [α0 − α1R
κ3(t)]dt+ σRκ4(t)dB(t), (6.3)

where the presence of a positive global solution has been verified for κ3, κ4 > 1. One can show in the
same way that the PPTEM works for (6.3) for κ3, κ4 > 1. Consequently, this work is not trivial and
essentially of full value.

7 Conclusion

This paper concerns about a positivity preserving numerical method for SDEs with positive solutions.
A significant advantage of this method is that it works for the multi-dimensional scenario and allows
the SDEs of super-linearly growing coefficients. Therefore our theory has covered a wide range of SDEs.
The strong convergence is established in the super-linear sense, while the positivity is preserved. The
advantages of this method were fully demonstrated by the numerical examples.
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