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A mathematical model for the effect of the spatial variation of the local evaporative flux
on the evaporation of and deposition from a thin pinned particle-laden sessile droplet is
formulated and solved. We then analyse the behaviour for a one-parameter family of local
evaporative fluxes with the free parameter n (> −1) that exhibits qualitatively different
behaviours mimicking those that can be obtained by, for example, surrounding the droplet
with a bath of fluid or using a mask with one or more holes in it to achieve a desired
pattern of evaporation enhancement and/or suppression. We show that when −1 < n < 1
(including the special cases n = −1/2 of diffusion-limited evaporation into an unbounded
atmosphere and n = 0 of spatially uniform evaporation), all of the particles are eventually
advected to the contact line, and so the final deposit is a ring deposit at the contact line,
whereas when n > 1 all of the particles are eventually advected to the centre of the droplet,
and so the final deposit is at the centre of the droplet. In particular, the present work
demonstrates that a singular (or even a non-zero) evaporative flux at the contact line is not
an essential requirement for the formation of a ring deposit. In addition, we calculate the
paths of the particles when diffusion is slower than both axial and radial advection, and
show that in this regime all of the particles are captured by the descending free surface
before eventually being deposited onto the substrate.
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1. Introduction

The evaporation of sessile droplets plays a key role in a wide variety of practical contexts,
including agricultural spraying (Tredenick et al. 2021), the preparation of chemical and
biological assays (Garcia-Cordero & Fan 2017) and inkjet printing (Kuang, Wang &
Song 2014). As a consequence, there have been extensive experimental, numerical and
theoretical investigations of this problem in recent years (see for example the books and
review articles by Cazabat & Guéna 2010; Erbil 2012; Routh 2013; Kovalchuk, Trybala
& Starov 2014; Brutin 2015; Lohse & Zhang 2015; Zhong, Crivoi & Duan 2015; Talbot
et al. 2016; Brutin & Starov 2018; Giorgiutti-Dauphiné & Pauchard 2018; Zang et al. 2019;
Brutin & Sefiane 2022; Gelderblom, Diddens &Marin 2022; Wilson & D’Ambrosio 2023
and the many references therein).
In practice, droplets often contain non-volatile solutes and/or small particles in

suspension (hereafter, referred to simply as ‘particles’). In many industrial and scientific
processes, the primary concern is the spatial distribution of the final deposit of particles
left behind on the substrate after a particle-laden droplet has completely evaporated. In
some applications, such as, for example, in DNA chip manufacturing (Dugas, Broutin
& Souteyrand 2005) and inkjet printing (Park & Moon 2006), the desired outcome is a
uniform final deposit. However, in other applications different final deposit shapes are
required, such as, for example, rings in disease diagnostics (Trantum, Wright & Haselton
2012) and for conductive coatings (Layani et al. 2009), multiple or concentric rings in
the production of resonators in optical communications (Hong, Xu & Lin 2006), and
small concentrated deposits in mass spectrometry (Kudina, Eral & Mugele 2016). As a
consequence of both the number of practical applications and the wide variety of possible
final deposit shapes, the deposition from an evaporating droplet has been the subject of
extensive investigation in recent years (see for example the review articles by Kuang
et al. 2014; Larson 2014; Sefiane 2014; Anyfantakis & Baigl 2015; Zhong et al. 2015;
Giorgiutti-Dauphiné & Pauchard 2018; Mampallil & Eral 2018; Parsa, Harmand & Sefiane
2018; Al-Milaji & Zhao 2019; Zang et al. 2019; Kolegov & Barash 2020; Shao et al. 2020;
Yang et al. 2021; Thampi & Basavaraj 2023), much of it building upon the pioneering
work of Deegan et al. (1997, 2000) and Deegan (2000).
Particular attention has been paid to the so-called ‘coffee-stain’ effect (also called the

‘coffee-ring’ or ‘ring-stain’ effect) described by Deegan et al. (1997, 2000), in which a
ring-shaped deposit (i.e. the ‘coffee stain’) is formed near the contact line of a pinned
droplet (i.e. a droplet whose contact line does not move) as it evaporates. For a droplet
with strong surface-tension effects, the adjustment of the free surface of the droplet is
quasi-steady, and when the evaporation is diffusion limited (see for example Picknett &
Bexon 1977) it induces a flow within a thin pinned droplet that carries the particles towards
its contact line (see for example Gelderblom et al. 2022). The solutions for the flow within
a thin pinned droplet were given by Hu & Larson (2005) and Boulogne, Ingremeau &
Stone (2017) for diffusion-limited evaporation and by Boulogne et al. (2017) for spatially
uniform evaporation. The solutions for the flow within a non-thin droplet with either a
pinned or an unpinned contact line evaporating according to a modified version of the
diffusion-limited model were given by Masoud & Felske (2009). Further details regarding
the flow within an evaporating droplet with either a pinned or an unpinned contact line are
given in the recent review article by Gelderblom et al. (2022). Under the assumption that
the suspension of particles is sufficiently dilute that the presence of the particles does not
affect the flow, expressions for the mass of particles in a ring deposit from a thin pinned
droplet were given by Deegan et al. (2000) and Boulogne et al. (2017) for diffusion-limited
evaporation and by Boulogne et al. (2017) for spatially uniform evaporation.
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The effect of the spatial variation of the evaporative flux

Boulogne et al. (2017) compared their theoretical predictions for the growth of a ring
deposit with experimental observations for both diffusion-limited and spatially uniform
evaporation, and found good agreement between theory and experiment in both situations.
Many other experimental studies have been conducted to investigate the formation of a ring
deposit, including those by Deegan et al. (1997, 2000), Deegan (2000), Kajiya, Kaneko &
Doi (2008), Bodiguel & Leng (2010), Marín et al. (2011a,b), Berteloot et al. (2012) and
Askounis et al. (2013). In particular, Marín et al. (2011a,b) observed that the well-known
‘rush-hour effect’, i.e. the rapid acceleration of the flow towards the contact line during the
final stages of evaporation, previously discussed by Deegan et al. (2000) and also reported
by Hamamoto, Christy & Sefiane (2011), results in a lack of order of the particles near the
inner boundary of a ring deposit.
Various authors have extended the analysis of Deegan et al. (1997, 2000) to more

complicated situations. For example, Popov (2005) and Zheng (2009) modelled the shape
of a ring deposit, Tarasevich, Vodolazskaya & Isakova (2011), Vodolazskaya & Tarasevich
(2011) and Kaplan & Mahadevan (2015) considered various situations in which the
presence of the particles affects the flow within the droplet, Crivoi & Duan (2013) and
Crivoi, Zhong &Duan (2015) investigated the effect of particle aggregation on the shape of
the final deposit, Sáenz et al. (2017) and Wray & Moore (2023) studied non-axisymmetric
contact-line deposits arising from non-axisymmetric droplets, and Wray, Duffy & Wilson
(2020) and Wray et al. (2021) analysed non-axisymmetric contact-line deposits arising
from multiple interacting droplets. In addition, Moore, Vella & Oliver (2021) analysed
the effects of particle diffusion in a boundary layer near the contact line in which the
concentration of particles becomes large and, in particular, investigated the limitations of
the assumption that the suspension of particles is dilute.
Since the primary concern in many industrial and scientific processes is the spatial

distribution of the final deposit, a variety of ways to control the shape of the final deposit
have been explored in the literature (see for example the review articles by Kuang et al.
2014; Larson 2014; Sefiane 2014; Anyfantakis & Baigl 2015; Zhong et al. 2015; Mampallil
& Eral 2018; Parsa et al. 2018; Al-Milaji & Zhao 2019; Kolegov & Barash 2020; Shao et al.
2020; Yang et al. 2021). Control over deposition can be achieved by influencing the flow
within the droplet through, for example, contact-line de-pinning (see for example Man &
Doi 2016; Patil et al. 2016; Li et al. 2020), the presence of Marangoni flow (see for example
Hu & Larson 2006; Ristenpart et al. 2007; Parsa et al. 2015; Malinowski et al. 2018) or
by imposing an electric field (see for example Eral et al. 2011; Wray et al. 2014), as well
as by promoting particle trapping or gelation through, for example, particle–free-surface,
particle–particle and particle–substrate interactions (see for example Bhardwaj et al. 2010;
Yunker et al. 2011; Anyfantakis et al. 2015; Crivoi et al. 2015; Anyfantakis, Baigl & Binks
2017; Kim et al. 2016; Zigelman & Manor 2018a,b).
Another method commonly used to alter the flow within an evaporating droplet, and

hence to control the shape of the final deposit, is to alter the environment surrounding
the droplet, and hence the local and total evaporative fluxes from it. In particular, several
authors have performed experimental studies in which they were able to change the shape
of the final deposit by surrounding the droplet with a bath of fluid such that the level
of the bath coincided with the base of the droplet and/or confining the droplet within
a chamber to suppress evaporation near the contact line (see for example Deegan et al.
2000; Kajiya et al. 2008), ‘masking’, i.e. placing the droplet underneath a mask with holes
in it in order to achieve a desired pattern of evaporation enhancement and/or suppression
(see for example Harris et al. 2007; Harris & Lewis 2008; Harris, Conrad & Lewis
2009), increasing the relative humidity of the atmosphere to decrease the evaporation
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from the droplet (see for example Chhasatia, Joshi & Sun 2010; Bou Zeid & Brutin 2013),
reducing the ambient pressure to increase the evaporation from the droplet (see for example
Askounis et al. 2014), and using an imposed airflow in the atmosphere to enhance the
evaporation from the centre of the droplet (see for example Yang et al. 2021).
The concept of masking as a simple way of controlling the deposition process was

first explored by Routh & Russel (1998) for evaporating thin films, and subsequently
by Deegan et al. (2000) for evaporating droplets. In particular, Deegan et al. (2000)
carried out pioneering experiments involving a droplet evaporating under different
ambient conditions. They found that when a pinned droplet evaporates into an effectively
unbounded atmosphere and when it is surrounded by a bath of fluid, corresponding to
diffusion-limited and approximately spatially uniform evaporation, respectively, a ring
deposit forms near the contact line. However, rather more unexpectedly, they also found
that when a droplet is confined within a chamber with a hole at its centre, resulting
in a local evaporative flux that is approximately proportional to the rate of decrease of
the height of the droplet, the evaporation ‘produced little redistribution of the solute’.
Motivated by this work, Fischer (2002) numerically investigated the effect of three
qualitatively different local evaporative fluxes on the final deposit. In particular, they found
that while evaporation that was either strongest near the contact line or approximately
spatially uniform produced a ring deposit near the contact line, evaporation that was
strongest at the centre of the droplet produced a deposit near the centre of the droplet.
Subsequently, Harris et al. (2007) investigated the effect of manipulating the spatial
variation of the local evaporative flux by evaporating droplets under a mask with multiple
holes. The mask induced periodic variations in the local evaporative flux and produced
final deposits that were concentrated below the holes in the mask, i.e. the mask provided a
template for the shape of the final deposit. Tarasevich, Vodolazskaya & Sakharova (2016)
developed a theoretical model using an idealised local evaporative flux to mimic the
influence of a mask with three or four circular holes above the droplet in order to simulate
the behaviour observed experimentally by Harris et al. (2007). Vodolazskaya & Tarasevich
(2017) generalised this model to account for the diffusion of vapour in the atmosphere,
used this model to calculate the local evaporative flux numerically, and investigated the
effects of the distance between the mask and the droplet, the radius of the holes in the
mask and the spacing between the holes, on both the local evaporative flux and the shape
of the final deposit. One restriction on the practical use of masking is that it typically
reduces the overall evaporation rate from the droplets and therefore typically lengthens the
total drying time (see for example Kajiya et al. 2008; Georgiadis et al. 2013).
Motivated by the continuing interest in controlling the deposition from an evaporating

droplet, in the present work we analyse the effect of the spatial variation of the
local evaporative flux on the deposition from a pinned particle-laden sessile droplet.
Specifically, in §§ 2–6 we formulate and solve a mathematical model for the evolution
of a thin sessile droplet with a general prescribed steady local evaporative flux, the flow
within the droplet, the concentration of particles within the droplet, and the masses of the
particles in the bulk of the droplet and in the ring deposit that can form at the contact line.
Then in §§ 7 and 8 we analyse the behaviour of the general solutions obtained in §§ 3–6 for
a particular one-parameter family of local evaporative fluxes. Finally, in § 9 we summarise
our main conclusions and indicate some promising directions for future work.

2. Problem formulation

Consider the evaporation of a thin axisymmetric sessile droplet on a planar substrate with
a pinned circular contact line with constant radius R̂0. We assume that the suspension
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–R̂0 R̂0

r̂

ẑ

ẑ = ĥ(r̂, t̂ )

φ̂ (r̂, ẑ, t̂ )
θ̂( t̂ )

O

Ĵ(r̂)

Figure 1. Sketch of a thin pinned particle-laden sessile evaporating droplet on a planar substrate. The droplet
has constant contact radius R̂0, contact angle θ̂ (t̂), free surface ẑ = ĥ(r̂, t̂) and concentration of particles within
the droplet φ̂(r̂, ẑ, t̂). The arrows indicate the local evaporative mass flux Ĵ(r̂).

of particles is sufficiently dilute that the presence of the particles does not affect the
flow, and refer the description to cylindrical polar coordinates (r̂, ϕ, ẑ) with Oẑ along the
axis of symmetry of the droplet, perpendicular to the substrate at ẑ = 0, as sketched in
figure 1. The contact angle, free surface and volume of the droplet are denoted by θ̂ = θ̂ (t̂),
ĥ = ĥ(r̂, t̂) and V̂ = V̂(t̂), respectively, where t̂ denotes time. The initial values of θ̂ and V̂
at t̂ = 0 are denoted by θ̂0 and V̂0, respectively. The droplet is deposited onto the substrate
at t̂ = 0, and thereafter its volume decreases until it has completely evaporated, i.e. until
V̂(t̂lifetime) = 0, where t̂lifetime denotes the lifetime of the droplet.
The velocity and pressure within the droplet, denoted by û = (û(r̂, ẑ, t̂), 0, ŵ(r̂, ẑ, t̂)) and

p̂ = p̂(r̂, ẑ, t̂), satisfy the usual mass-conservation and Stokes equations subject to no-slip
and no-penetration conditions on the substrate and stress and kinematic conditions on the
free surface of the droplet. The concentration of particles within the droplet, denoted by
φ̂ = φ̂(r̂, ẑ, t̂), satisfies an advection–diffusion equation subject to no-flux conditions on
both the substrate and the free surface of the droplet.
The form of the local evaporative mass flux from the free surface of the droplet, denoted

by Ĵ = Ĵ(r̂, t̂) (�0), depends on the physical mechanism(s) controlling the evaporation
(see for example Wilson & D’Ambrosio 2023). In §§ 3–6 we assume that the local
evaporative flux is steady and takes the general form Ĵ = Ĵ(r̂), where Ĵ is a prescribed
function of r̂. Then in §§ 7 and 8 we consider a particular one-parameter family of local
evaporative fluxes. In Appendix A we show how the analysis in §§ 3–6 can be generalised
to the situation in which the local evaporative flux is unsteady and takes the general
separable form Ĵ = Ĵ(r̂, t̂) = f̂ (r̂)ĝ(t̂), where f̂ and ĝ are prescribed functions of r̂ and
t̂, respectively, as investigated numerically by Fischer (2002).
Before proceeding further, we non-dimensionalise and scale the variables appropriately

for a thin droplet (i.e. in the limit of small contact angle) according to

r̂ = R̂0r, ẑ = θ̂0R̂0z, θ̂ = θ̂0θ, ĥ = θ̂0R̂0h, V̂ = θ̂0R̂3
0V, t̂ = R̂0

Ûref
t,

û = Ûref u, ŵ = θ̂0Ûref w, p̂ − p̂a = γ̂ θ̂0

R̂0
p, φ̂ = φ̂refφ, Ĵ = Ĵref J,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.1)

where γ̂ is the constant surface tension of the fluid, p̂a is the constant atmospheric pressure,
Ûref = Ĵref /(ρ̂θ̂0) is an appropriate characteristic radial velocity scale, in which ρ̂ is the
constant density of the fluid, Ĵref is an appropriate characteristic local evaporative flux
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scale which depends on the physical mechanism(s) controlling evaporation and φ̂ref is an
appropriate characteristic particle concentration scale, chosen to be the spatial average of
the initial concentration of particles.
In the present work we are primarily (but not exclusively) motivated by situations in

which evaporation is described by the basic quasi-steady diffusion-limited model for the
concentration of vapour in the atmosphere (see for example Picknett & Bexon 1977; Popov
2005; Barash et al. 2009; Wilson & Duffy 2022; Wilson & D’Ambrosio 2023), subject
to a variety of different boundary conditions corresponding to, for example, surrounding
the droplet with a bath of fluid or using a mask with one or more holes in it to achieve
a desired pattern of evaporation enhancement and/or suppression. In particular, for the
diffusion-limited evaporation of a thin droplet appropriate characteristic radial velocity
and local evaporative flux scales are

Ûref = D̂(ĉsat − ĉ∞)

ρ̂θ̂0R̂0
, Ĵref = D̂(ĉsat − ĉ∞)

R̂0
, (2.2a,b)

where D̂ is the constant diffusion coefficient of vapour in the atmosphere, ĉsat is the
constant saturation concentration of vapour in the atmosphere and ĉ∞ is the constant
ambient concentration of vapour in the atmosphere (see for example Wilson & Duffy
2022). For the simplest and most widely studied case of a thin droplet evaporating into an
unbounded atmosphere the local evaporative flux is given by the well-known expression

J = 2
π

(1 − r2)−1/2. (2.3)

Note that the basic diffusion-limited model has been extended to include a variety of
additional physical effects (such as, for example, the dependence of ĉsat on temperature
and buoyancy-driven convection in the atmosphere) and/or to relax the assumption of
quasi-steadiness, but in the present work we restrict our attention to the basic model.
However, even for the basic diffusion-limited model, depending on the specific boundary
conditions imposed, it may be either difficult or impossible to obtain a closed-form
solution for the concentration of vapour in the atmosphere, and hence to determine a
closed-form expression for the local evaporative flux. Thus, as previously mentioned, in the
present work we follow an alternative (and more pragmatic) approach similar in spirit to
that taken by Fischer (2002) and analyse a one-parameter family of local evaporative fluxes
which includes members with the same qualitative features as those found experimentally
and/or hypothesised theoretically by previous authors. However, it should be noted that the
results obtained in the present work do not rely on this specific motivation for the form of
the local evaporative flux.

3. The evolution of the droplet

We consider the situation in which the droplet is sufficiently small that the effect of
gravity is negligible, and the surface tension is sufficiently strong that the profile of the
droplet evolves quasi-statically. More specifically, we consider the situation in which the
appropriately defined Bond number Bo and capillary number Ca, namely

Bo = ρ̂ĝR̂2
0

γ̂
and Ca = μ̂Ûref

θ̂30 γ̂
, (3.1a,b)

respectively, where ĝ is the magnitude of acceleration due to gravity and μ̂ is the constant
dynamic viscosity of the fluid, are both small and satisfy θ̂20 ,Bo � Ca � 1.
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We seek an asymptotic solution for the pressure p in the form

p = p(0) + Ca p(1) + O(θ̂20 ,Bo,Ca2). (3.2)

Note that the pressure p and concentration of particles φ are the only quantities that we
require beyond leading order, and so, for clarity, we omit the ‘(0)’ superscript on all other
leading-order quantities.
At leading order, the Stokes equation yields ∂p(0)/∂r = ∂p(0)/∂z = 0, and hence the

leading-order pressure is independent of r and z, i.e. p(0) = p(0)(t), and is given by the
normal stress condition at the free surface to be

p(0) = −1
r

∂

∂r

(
r
∂h
∂r

)
. (3.3)

The free-surface profile of the droplet h(r, t) therefore satisfies

∂

∂r

(
1
r

∂

∂r

(
r
∂h
∂r

))
= 0, (3.4)

subject to h = 0 and ∂h/∂r = −θ at r = 1 together with the requirement that h(0, t) must
be finite, and hence takes the familiar paraboloidal form

h = θ(1 − r2)
2

. (3.5)

Evaluating (3.3) using (3.5) yields p(0) = 2θ . For the purpose of the present work, it is
convenient to express h as

h = θη, where η(r) = 1 − r2

2
. (3.6)

The volume V = V(t) of the droplet is given by

V = 2π
∫ 1

0
h(r, t)r dr = 2πθH(1) = πθ

4
, (3.7)

where H = H(r), defined by

H =
∫ r

0
η(r̃) r̃ dr̃ = 1 − (1 − r2)2

8
, (3.8)

is the incomplete radial integral of ηr. For future reference we note that H(1) = 1/8.
The droplet evolves according to the global mass-conservation condition

dV
dt

= −F, (3.9)

where F, defined by

F = 2π
∫ 1

0
J(r̃) r̃ dr̃ = 2πI(1), (3.10)

is the (constant) total evaporative mass flux from the free surface of the droplet, in which
I = I(r), defined by

I =
∫ r

0
J(r̃) r̃ dr̃, (3.11)

is the incomplete radial integral of J r. The initial values of θ and V are given by
θ = θ0 = 1 and V = V0 = π/4. Substituting the expression for V given by (3.7) into (3.9)

970 A1-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

50
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.503


H.-M. D’Ambrosio, S.K. Wilson, A.W. Wray and B.R. Duffy

with (3.10) yields
dV
dt

= 2π
dθ
dt

H(1) = −2πI(1), (3.12)

and solving (3.12) shows that the droplet evolves according to

θ = 1 − I(1)
H(1)

t, V = π

4

(
1 − I(1)

H(1)
t
)

. (3.13a,b)

Setting V = 0 in (3.13a,b) shows that the lifetime of the droplet is given by

tlifetime = H(1)
I(1)

. (3.14)

Note that in the special case of diffusion-limited evaporation into an unbounded
atmosphere for which J is given by (2.3), (3.11) yields I(1) = 2/π, (3.10) gives
F = 2πI(1) = 4 and (3.14) recovers the familiar expression for the lifetime of a thin pinned
droplet, namely tlifetime = π/16 (see for example Stauber et al. 2014; Wilson & Duffy
2022).

4. The flow within the droplet

At leading order the mass-conservation equation is

1
r

∂(ru)
∂r

+ ∂w
∂z

= 0, (4.1)

and at first order the Stokes equation reduces to

∂2u
∂z2

= ∂p(1)

∂r
, 0 = ∂p(1)

∂z
(4.2a,b)

(see for example Wray et al. 2021). In particular, (4.2b) shows that the first-order pressure
p(1) is independent of z, i.e. p(1) = p(1)(r, t). Solving (4.1) and (4.2) subject to the no-slip
and no-penetration conditions on the substrate, i.e. u(r, 0, t) = w(r, 0, t) = 0, and the
tangential stress condition on the free surface of the droplet,

∂u
∂z

= 0 on z = h, (4.3)

leads to

u = 1
2

∂p(1)

∂r

(
z2 − 2hz

)
(4.4)

and

w = z2

6r

[
∂p(1)

∂r

(
3r

∂h
∂r

+ 3h − z
)

+ ∂2p(1)

∂r2
r (3h − z)

]
. (4.5)

The kinematic condition can be expressed as

∂h
∂t

+ 1
r

∂(rQ)

∂r
= −J, (4.6)
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The effect of the spatial variation of the evaporative flux

where Q = Q(r, t), defined by

Q =
∫ h

0
u dz = hū, (4.7)

is the local radial volume flux of fluid, and ū = ū(r, t), defined by

ū = 1
h

∫ h

0
u dz, (4.8)

is the depth-averaged radial velocity. Substituting the expression for u given by (4.4) into
(4.7) yields

Q = −h3

3
∂p(1)

∂r
. (4.9)

For the purpose of the present work, it is convenient to expressQ in terms of the incomplete
integrals H and I given by (3.8) and (3.11), respectively, by integrating (4.6) with respect
to r and rearranging to give

Q = −1
r

∫ r

0

(
J + ∂h

∂t

)
r̃ dr̃ = −1

r

(∫ r

0
J(r̃) r̃ dr̃ + dθ

dt

∫ r

0
η(r̃) r̃ dr̃

)
, (4.10)

and hence obtaining the explicit expression

Q = I(1)H(r) − H(1)I(r)
rH(1)

. (4.11)

In particular, (4.11) shows that Q (but not, of course, ū) is independent of time t.
Eliminating Q between (4.9) and (4.11) and recalling that h is given by (3.5) gives

∂p(1)

∂r
= −24 [I(1)H(r) − H(1)I(r)]

θ3r(1 − r2)3H(1)
, (4.12)

and explicit expressions for the velocities u and w are given by substituting (4.12) into (4.4)
and (4.5).

5. The concentration of particles within the droplet

The concentration of particles within the droplet φ satisfies the advection–diffusion
equation

Pe∗
(

∂φ

∂t
+ u

∂φ

∂r
+ w

∂φ

∂z

)
= θ̂20

1
r

∂

∂r

(
r
∂φ

∂r

)
+ ∂2φ

∂z2
, (5.1)

in which Pe∗ is the appropriately defined reduced Péclet number which characterises the
ratio of advective and diffusive particle transport timescales, namely

Pe∗ = θ̂20 R̂0Ûref

D̂p
, (5.2)

where D̂p is the constant diffusivity of the particles in the fluid. Equation (5.1) is subject
to the no-flux conditions

∂φ

∂z
= 0 on z = 0 (5.3)
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and
1√

1 + θ̂20 (∂h/∂r)2

(
∂φ

∂z
− θ̂20

∂h
∂r

∂φ

∂r

)
= Pe∗Jφ on z = h. (5.4)

In most of the remainder of the present work we consider the regime in which diffusion
is faster than axial advection but slower than radial advection, i.e. we consider the regime in
which the reduced Péclet number satisfies θ̂20 � Pe∗ � 1, and seek an asymptotic solution
for φ in the form

φ = φ(0) + Pe∗φ(1) + O
(
θ̂20 ,Pe∗2

)
. (5.5)

However, note that in § 8 we calculate the paths of the particles in the alternative regime
in which diffusion is slower than both axial and radial advection, i.e. when the reduced
Péclet number satisfies Pe∗ � 1.
At leading order, (5.1), (5.3) and (5.4) reduce to

∂2φ(0)

∂z2
= 0, (5.6)

subject to

∂φ(0)

∂z
= 0 on z = 0 and z = h, (5.7)

which shows that φ(0) is independent of z, i.e. φ(0) = φ(0)(r, t).
At first order, (5.1), (5.3) and (5.4) reduce to

∂2φ(1)

∂z2
= ∂φ(0)

∂t
+ u

∂φ(0)

∂r
, (5.8)

subject to

∂φ(1)

∂z
= 0 on z = 0 (5.9)

and
∂φ(1)

∂z
= Jφ(0) on z = h. (5.10)

Integrating (5.8) with respect to z subject to (5.9) and (5.10), and henceforth dropping the
superscript ‘(0)’ on φ for clarity, yields the equation for the leading-order concentration
of particles, namely

∂φ

∂t
+ ū

∂φ

∂r
= Jφ

h
, (5.11)

where the depth-averaged radial velocity ū is given by (4.8) (see for example Deegan et al.
2000; Wray et al. 2014, 2021).
Equation (5.11) may be put into characteristic form, i.e.

dφ
dt

= Jφ
h

on the characteristics determined by
dr
dt

= ū, (5.12)

subject to a prescribed initial concentration of particles in the bulk of the droplet, φ(r, 0) =
φ0(r), and solved using the method of characteristics. Using the expressions for h and
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The effect of the spatial variation of the evaporative flux

dθ/dt given by (3.6) and (3.12), the characteristic equations (5.12) can be used to write

dr
dθ

= dr/dt
dθ/dt

= −H(1)Q(r)
θ I(1)η(r)

,
dφ
dr

= dφ/dt
dr/dt

= J(r)φ
Q(r)

. (5.13a,b)

Integration of (5.13a,b) yields the implicit solution

log θ = −
∫ r

r0

I(1)η(r̃)
H(1)Q(r̃)

dr̃, log
φ

φ0
=

∫ r

r0

J(r̃)
Q(r̃)

dr̃, (5.14a,b)

where r0 = r0(r, t) (0 � r0 � 1) denotes the initial radial position (i.e. the radial position
at time t = 0) of the particles that are at radial position r at time t (see for example
Boulogne et al. 2017), and is determined by solving (5.14a). Note that, by definition,
r0(r, 0) = r. The solution (5.14) can be simplified by adding (5.14a) and (5.14b) to yield

log θ + log
φ

φ0
= −

∫ r

r0

I(1)η(r̃) − H(1)J(r̃)
H(1)Q(r̃)

dr̃, (5.15)

and then recalling that Q may be expressed in the form (4.11) to give

log θ + log
φ

φ0
= −

∫ r

r0

1
r̃Q(r̃)

d (r̃Q(r̃))
dr̃

dr̃ = log
r0Q(r0)
rQ(r)

. (5.16)

Hence the implicit solution (5.14) of the characteristic equations (5.12) may be written in
the simplified form

log θ = −
∫ r

r0

I(1)η(r̃)
H(1)Q(r̃)

dr̃,
φ

φ0
= r0Q(r0)

θrQ(r)
. (5.17a,b)

As mentioned in § 2, the corresponding analysis for the situation in which the local
evaporative flux is unsteady and takes a general separable form is described in Appendix A.

6. The mass of particles

The mass of particles per unit area within the footprint of the droplet is φh, and so the
mass of particles in the bulk of the droplet as it evaporates, denoted by Mdrop = Mdrop(t)
(non-dimensionalised by θ̂0R̂3

0φ̂ref ), is given by

Mdrop = 2π
∫ 1

0
φ(r, t) h(r, t) r dr, (6.1)

which can be rewritten as

Mdrop = 2π
∫ r0(1,t)

0
φ0(r) h(r, 0) r dr, (6.2)

where r0(1, t) denotes the initial radial position of the particles that are at radial position
r = 1 (i.e. at the contact line) at time t, which is determined by solving (5.17a) with r = 1.
The initial mass of particles in the droplet isMdrop(0) = M0, where

M0 = 2π
∫ 1

0
φ0(r) h(r, 0) r dr. (6.3)

The mass flux of particles from the bulk of the droplet into the contact line is
limr→1− 2πrφQ, and so the mass of particles in the ring deposit that can form at the
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contact line, denoted byMring = Mring(t) (also non-dimensionalised by θ̂0R̂3
0φ̂ref ), is given

by

Mring = 2π
∫ t

0
lim
r→1−

r φ(r, t̃)Q(r, t̃) dt̃, (6.4)

which can be rewritten as

Mring = 2π
∫ 1

r0(1,t)
φ0(r) h(r, 0) r dr (6.5)

(see Deegan et al. 2000; Boulogne et al. 2017). The initial mass of particles in the ring is,
by definition, zero, i.e. Mring(0) = 0.
Adding the expressions for Mdrop and Mring, given by (6.2) and (6.5), respectively,

confirms that the total mass of particles is conserved as the droplet evaporates, i.e. that
Mdrop + Mring ≡ M0.
For simplicity, in the remainder of the present work we take the initial concentration

of particles in the bulk of the droplet to be spatially uniform, and so, as consequence of
our choice of φ̂ref , φ0(r) ≡ 1. In this case, from (6.3), the initial mass of particles in the
droplet is

M0 = 2π
∫ 1

0
h(r, 0) r dr = π

4
. (6.6)

7. A one-parameter family of local evaporative fluxes

7.1. The local evaporative flux
In the remainder of the present work we analyse the behaviour of the general solutions
obtained in §§ 3–6 for a one-parameter family of local evaporative fluxes of the form
J(r) = J0(1 − r2)n, where, in order to ensure that the total evaporative flux given by
(3.10) is finite, the exponent n must satisfy n > −1, but is otherwise a free parameter.
As mentioned in § 2, this specific form of J was chosen because as n is varied it exhibits
qualitatively different behaviours mimicking those that can be obtained by, for example,
surrounding the droplet with a bath of fluid or using a mask with one or more holes in it
to achieve a desired pattern of evaporation enhancement and/or suppression, as described
in § 1. (Note that a similar, but different, variation in the form of J occurs as the contact
angle varies over the range 0 < θ � π.) In particular, the values n = −1/2, n = 0 and
n = 1 correspond to diffusion-limited evaporation into an unbounded atmosphere given
by (2.3), spatially uniform evaporation and evaporation that is proportional to −∂h/∂t,
respectively. However, as also mentioned in § 2, the rather general results obtained in the
present work do not rely exclusively on this specific motivation for the form of the local
evaporative flux.
To facilitate comparison between the results for different values of n, the pre-factor

in J was chosen to be J0 = J0(n) = 4(n + 1)/π so that the total evaporative flux given by
(3.10) is equal to its value for diffusion-limited evaporation into an unbounded atmosphere,
namely F = 4, for all values of n. In particular, this means that the evolution of the droplet
given by (3.13), namely

θ = 1 − 16
π
t, V = π

4
− 4t, (7.1a,b)
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The effect of the spatial variation of the evaporative flux

5(a) (b)
n n

4

3

2

J

1

0 0.2 0.4 0.6
r

0.8 1.0

50
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0 0.2 0.4 0.6
r

0.8 1.0

Figure 2. The prescribed local evaporative flux J given by (7.2) plotted as a function of r for
(a) n = −3/4,−1/2, . . . , 3 and (b) n = 4, 8, . . . , 40. In (a) the dashed line denotes the curve for n = 1. The
arrows indicate the direction of increasing n.

and hence the lifetime of the droplet given by (3.14), namely tlifetime = π/16, are the same
for all values of n. Thus in the remainder of the present work we take

J(r) = 4(n + 1)
π

(1 − r2)n for n > −1, (7.2)

and, in particular, we will describe the qualitatively different behaviours of the flow within
the droplet in § 7.2, the concentration of particles within the droplet in § 7.3 and the masses
of the particles in the bulk of the droplet and in the ring deposit in § 7.4 for different values
of n.
Figure 2 shows J given by (7.2) plotted as a function of r for a range of values of n.

As figure 2 shows, the behaviour of J is qualitatively different for −1 < n < 0, n = 0,
and n > 0. For −1 < n < 0 (including the special case n = −1/2 of diffusion-limited
evaporation into an unbounded atmosphere), J is a monotonically increasing function of r
which takes its minimum value at the centre of the droplet (i.e. at r = 0) and is (integrably)
singular at the contact line (i.e. at r = 1) according to

J ∼ 22+n(n + 1)
π

(1 − r)n as r → 1−. (7.3)

For n = 0 (i.e. spatially uniform evaporation), J ≡ 4/π, while for n > 0 (including the
special case n = 1 in which J is proportional to −∂h/∂t), J is a monotonically decreasing
function of r which takes its maximum value at the centre of the droplet and approaches
zero at the contact line according to (7.3).

7.2. The flow within the droplet
Substituting the expression for J given by (7.2) into (3.11) and evaluating the integral gives

I = 4(n + 1)
π

∫ r

0
(1 − r̃2)n r̃ dr̃ = 2

π

[
1 − (1 − r2)n+1

]
, (7.4)

and so from (4.11) with (3.8) and (7.4) the radial volume flux Q is given by

Q = 2(1 − r2)
πr

[
(1 − r2)n − (1 − r2)

]
, (7.5)
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n

Figure 3. The radial volume fluxQ given by (7.5) plotted as a function of r for (a) n = −3/4,−1/2, . . . , 1 and
(b) n = 2, 4, . . . , 20. In (a) the dashed line denotes the limiting value of Q as n → −1+, namely 2r(2 − r2)/π.
The arrows indicate the direction of increasing n.

3

2

ūθ

n

n

1

0
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0.2 0.4 0.6
r

0.8 1.0

n = 0

0.2 0.4 0.6

r
0.8 1.00(a) (b)

Figure 4. The quantity ūθ given by (7.6) plotted as a function of r for (a) n = −3/4,−1/2, . . . , 1 and
(b) n = 2, 4, . . . , 20. In (a) the dashed line denotes the limiting value of ūθ as n → −1+, namely 4r(2 − r2)/
(π(1 − r2)). The arrows indicate the direction of increasing n.

and hence the depth-averaged radial velocity ū is given by

ū = Q
h

= 4
πθr

[
(1 − r2)n − (1 − r2)

]
. (7.6)

In the special case n = 1 (7.5) and (7.6) give Q ≡ 0 and ū ≡ 0, and, as we shall show
subsequently, there is no flow within the droplet in this case.
Figures 3 and 4 show Q given by (7.5) and ūθ given by (7.6), respectively, for a range of

values of n. In particular, figures 3 and 4 show that both Q and ū are qualitatively different
for −1 < n < 1 and n > 1. Specifically, for −1 < n < 1 the average radial velocity is
always outwards (i.e. Q � 0 and ū � 0), whereas for n > 1 the average radial velocity is
always inwards (i.e. Q � 0 and ū � 0). However, figures 3 and 4 also show that while
Q always approaches zero at r = 0 and r = 1 and ū always approaches zero at r = 0
according to ū ∼ 4(1 − n)r/(πθ) → 0 as r → 0+, the behaviour of ū at r = 1 is more
complicated. Specifically, for −1 < n < 0, ū is singular according to

ū ∼ 22+n

πθ
(1 − r)n as r → 1−, (7.7)
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The effect of the spatial variation of the evaporative flux

for n = 0, ū = 4/(πθ) at r = 1, for 0 < n < 1, ū approaches zero from above according
to (7.7), while for n � 1, ū approaches zero from below according to

ū ∼ − 8
πθ

(1 − r) → 0− as r → 1−. (7.8)

Substituting the expression for ∂p(1)/∂r given by (4.12) into (4.4) and (4.5) yields the
solutions for the velocities u and w, namely

u = 24z
πθ3r(1 − r2)2

[
(1 − r2)n − (1 − r2)

] [
θ(1 − r2) − z

]
(7.9)

and

w = − 8z2

πθ3(1 − r2)3

[
3θ(1 − n)(1 − r2)n+1 − 2(2 − n)(1 − r2)nz + 2(1 − r2)z

]
,

(7.10)

with (Stokes) streamfunction ψ = ψ(r, z, t) (non-dimensionalised by R̂0Ûref )

ψ = − 4z2

πθ3(1 − r2)2

[
(1 − r2)n − (1 − r2)

] [
3θ(1 − r2) − 2z

]
. (7.11)

In particular, (7.9) shows that the radial velocity u satisfies u > 0, u ≡ 0 and u < 0
everywhere within the droplet when −1 < n < 1, n = 1 and n > 1, respectively, i.e. the
radial velocity is always in the same direction as the average radial velocity. However,
as (7.10) shows, the behaviour of the vertical velocity w is qualitatively different for
−1 < n � 1/2, 1/2 < n < 1, n = 1 and n > 1. Specifically, whereas w < 0 and w ≡ 0
everywhere within the droplet when −1 < n � 1/2 and n = 1, respectively, the sign of
w is not the same everywhere within the droplet when 1/2 < n < 1 and when n > 1, i.e.
there is always both upwards and downwards flow in these cases. Using (7.10) shows that
in these cases there is a curve within the droplet on which w = 0, denoted by z = zcrit(r, t),
given by

zcrit
h

= 3(1 − n)
2 − n − (1 − r2)1−n for rcrit � r � 1, (7.12)

where r = rcrit is the solution of zcrit/h = 1. Specifically, when 1/2 < n < 1 then w < 0
everywhere within the droplet except for w = 0 on z = zcrit and w > 0 for zcrit < z � h
and, conversely, when n > 1 then w > 0 everywhere within the droplet except for w = 0
on z = zcrit and w < 0 for zcrit < z � h.
In the special cases n = −1/2 and n = 0 (7.9) and (7.10) are equivalent to the

corresponding expressions given by Boulogne et al. (2017). In the special case n = 1 (7.9)
and (7.10) give u ≡ 0 and w ≡ 0, i.e. the local mass loss due to evaporation is exactly
balanced by the local decrease of the free-surface profile everywhere, and so there is no
flow within the droplet.
Note that while J and Q are independent of time t, the quantities ū, u and w all depend

on t via their dependence on θ given by (7.1a). In particular, ū is singular in the limit
t → t−lifetime with ū → +∞ for −1 < n < 1 and ū → −∞ for n > 1, where the former
behaviour is a generalisation of the rush-hour effect that occurs during the final stages of
diffusion-limited evaporation into an effectively unbounded atmosphere mentioned in § 1.
The solution for the first-order pressure p(1) can be obtained by eliminating Q between

(4.9) and (7.5) and integrating with respect to r. The resulting expression for p(1) is given
by D’Ambrosio (2022), but is rather cumbersome and so is omitted here for brevity.
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Figure 5. The instantaneous streamlines of the flow within the droplet calculated from (7.9) and (7.10) for
(a) n = −1/2 and (b) n = 4 at t = tlifetime/2 = π/32. In (b) the dashed line denotes the curve z = zcrit on
which w = 0 given by (7.12).

Figure 5 shows the instantaneous streamlines of the flow within the droplet calculated
from (7.9) and (7.10) for (a) n = −1/2 (typical of −1 < n � 1/2) and (b) n = 4 (typical
of n > 1) at t = tlifetime/2 = π/32. (Note that, for brevity, figure 5 does not include a
corresponding plot for a value of n in the range 1/2 < n < 1.) In particular, figure 5(a)
illustrates that when n = −1/2 the flow is outwards and downwards everywhere, while
figure 5(b) illustrates that when n = 4 the flow is inwards and upwards everywhere except
for a region of downwards flow for zcrit < z � h when rcrit 	 0.6908 < r < 1, where the
curve z = zcrit on which w = 0 is given by (7.12).

7.3. The concentration of particles within the droplet
Substituting the expression for Q given by (7.5) into (5.17a) and evaluating the integral
gives

θ(1−n)/2 = 1 − (1 − r20)
1−n

1 − (1 − r2)1−n , (7.13)

and so, using (7.1a), the time for the particles that are at initial radial position r0 to reach
radial position r is given by

t
tlifetime

= 1 −
[
1 − (1 − r20)

1−n

1 − (1 − r2)1−n

]2/(1−n)

. (7.14)

In particular, setting r = 1 in (7.14), the time for the particles that are at initial radial
position r0 to reach the ring deposit at the contact line, denoted by t = tring, is given by

tring
tlifetime

= 1 −
[
1 − (1 − r20)

1−n
]2/(1−n)

for − 1 < n < 1. (7.15)

Figure 6 shows tring/tlifetime given by (7.15) plotted as a function of r0 for various values
of n in the range −1 < n < 1. In particular, figure 6 shows that, as expected, tring/tlifetime
decreases monotonically from tring/tlifetime = 1 at r0 = 0 to tring/tlifetime = 0 at r0 = 1, i.e.
particles initially close to the contact line are deposited at the contact line before those that
are initially further away from it, and all of the particles are eventually transferred from
the bulk of the droplet to the ring deposit at the contact line.
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Figure 6. The quantity tring/tlifetime given by (7.15) as a function of r0 for n = −3/4,−1/2, . . . , 3/4. The
dashed line denotes the limiting value of tring/tlifetime as n → −1+, namely (1 − r20)

2. The arrow indicates the
direction of increasing n.

Substituting the expression for Q given by (7.5) into (5.17b) and using (7.13) gives

φ = θ−(1+n)/2

(
1 − r20
1 − r2

)n+1

, (7.16)

and eliminating r0 between (7.13) and (7.16) yields an explicit expression for the
concentration of particles within the droplet, namely

φ =
[

θ(n−1)/2 − 1 + (1 − r2)1−n

(1 − r2)1−n

](n+1)/(1−n)

. (7.17)

In the special cases n = −1/2 and n = 0 (7.17) is equivalent to the corresponding
expressions given by Zheng (2009).
Figure 7 shows φ given by (7.17) plotted as a function of r for a range of values of

n at t = tlifetime/2 = π/32. In particular, figure 7 illustrates that the behaviour of φ is
qualitatively different for −1 < n < 1, n = 1 and n > 1. Specifically, for −1 < n < 1,
φ is a monotonically increasing function of r which takes its minimum value at r = 0
and is singular at the contact line according to φ = O((1 − r)−(n+1)), for n = 1, φ

remains spatially uniform and is given by φ = 1/θ , while for n > 1, φ is a monotonically
decreasing function of r which takes its maximum value at r = 0 and approaches unity
from above at the contact line according to φ = 1 + O((1 − r)n−1).

7.4. The mass of particles
From (3.5) and (7.17) the mass of particles per unit area is given by

φh = θ(1 − r2)
2

[
θ(n−1)/2 − 1 + (1 − r2)1−n

(1 − r2)1−n

](n+1)/(1−n)

. (7.18)

Figure 8 shows φh given by (7.18) plotted as a function of r at various times for
(a) n = −1/2 (typical of −1 < n < 0), (b) n = 0, (c) n = 1/2 (typical of 0 < n < 1) and
(d) n = 2 (typical of n > 1). Note that, because it is independent of time t, the plot of
φh in the special case n = 1 in which it remains identically equal to its initial value of
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Figure 7. The concentration of particles within the droplet φ given by (7.17) plotted as a function of r for
(a) n = −3/4,−1/2, . . . , 1 and (b) n = 3/2, 2, . . . , 6 at t = tlifetime/2 = π/32. The dashed lines denote the
initial concentration of particles, namely φ ≡ 1, which is also the limiting value of φ as n → −1+. The arrows
indicate the direction of increasing n.
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Figure 8. The mass of particles per unit area φh given by (7.18) at times t = (0, 1/10, . . . , 9/10) × tlifetime for
(a) n = −1/2, (b) n = 0, (c) n = 1/2 and (d) n = 2. The dashed lines denote the initial mass of particles given
by h(r, 0) = (1 − r2)/2, and the arrows indicate the direction of increasing t.

(1 − r2)/2 is omitted from figure 8. In particular, figure 8 illustrates that, in addition to the
special case n = 1, the behaviour of φh is qualitatively different for −1 < n < 0, n = 0,
0 < n < 1 and n > 1. Specifically, figures 8(a)–8(c) illustrate that for −1 < n < 1 (i.e.
when the radial flow is outwards) φh decreases (relative to its initial value) near the centre
of the droplet but increases (again relative to its initial value) near the contact line as the
droplet evaporates. However, its behaviour near the contact line depends on the value of n,
namely φh = O((1 − r)−n) → 0+ in the limit r → 1− when −1 < n < 0, φh = θ1/2(1 −
θ1/2)/2 = O(1) at r = 1 when n = 0 and φh = O((1 − r)−n) → +∞ in the limit r → 1−
when 0 < n < 1. Since particles are advected towards the contact line by the outwards
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radial flow, at first sight, the behaviour of φh near the contact line when −1 < n < 1
might appear to be surprising. However, this behaviour is explained by the fact that when
−1 < n < 0 the advection of particles towards the contact line is balanced by the flux
into the ring deposit, and hence φh = 0 at r = 1, whereas when 0 � n < 1 the advection
of particles towards the contact line exceeds the flux into the ring deposit, and hence
φh = O(1) at r = 1 when n = 0 and φh is unbounded in the limit r → 1− when 0 <

n < 1. On the other hand, figure 8(d) illustrates that for n > 1 (i.e. when the radial flow
is inwards) φh increases (relative to its initial value) near the centre of the droplet but
decreases (again relative to its initial value) near the contact line as the droplet evaporates,
and satisfies φh = O(1 − r) → 0+ in the limit r → 1−.
For n � 1 the radial flow is always inwards (or, in the special case n = 1, zero) and so

all of the particles remain within the bulk of the droplet as it evaporates. Hence

Mdrop ≡ M0, Mring ≡ 0 for n � 1, (7.19)

and no ring deposit forms at the contact line. For n > 1 all of the particles are eventually
advected to the centre of the droplet, and so the final deposit on the substrate predicted by
the model is a deposit of mass M0 at r = 0. Of course, in practice, diffusion in the radial
direction, or other weak physical effects not accounted for in the present leading-order
model, will smooth this out to create a deposit of non-zero radius near r = 0.
In the special case n = 1 there is no flow, and so all of the particles are simply deposited

onto the substrate at their initial radial position. As a consequence of the paraboloidal
shape of the initial free-surface profile of the droplet, and hence of the initial distribution
of mass, the distribution of mass in the final deposit on the substrate predicted by the
model is also paraboloidal, specifically (1 − r2)/2. This behaviour is consistent with the
corresponding experimental results of Deegan et al. (2000) for a local evaporative flux that
is approximately proportional to the rate of decrease of the height of the droplet discussed
in § 1.
For −1 < n < 1 the radial flow is always outwards and all of the particles are eventually

advected to the contact line. EvaluatingMdrop andMring using (6.2) and (6.5), respectively,
requires the value of r0(1, t), i.e. the initial radial position of the particles that are at radial
position r = 1 at time t, and this is readily obtained from (7.13) to be

r0(1, t) =
[
1 −

(
1 − θ(1−n)/2

)1/(1−n)
]1/2

for − 1 < n < 1. (7.20)

Substituting the expression for φh given by (7.18) into (6.2) and (6.5), and evaluating the
integrals using (7.20), yields explicit expressions for the masses of the particles in the bulk
of the droplet and in the ring deposit at time t, namely

Mdrop = M0

[
1 −

(
1 − θ(1−n)/2

)2/(1−n)
]

for 1 < n < 1 (7.21)

and

Mring = M0

(
1 − θ(1−n)/2

)2/(1−n)
for − 1 < n < 1, (7.22)

respectively, where the initial mass of particles in the bulk of the droplet is given by (6.6)
to be M0 = π/4. In the special case n = −1/2 (7.22) is equivalent to the corresponding
expression first given by Deegan et al. (2000), and in the special cases n = −1/2 and
n = 0 it is equivalent to the corresponding expressions given by Boulogne et al. (2017).
For −1 < n < 1 all of the particles are eventually transferred from the bulk of the droplet
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Figure 9. The evolutions of (a) Mdrop/M0 given by (7.21) and (b) Mring/M0 given by (7.22) as functions of
t/tlifetime for n = −9/10, −4/5, . . . , 1. The dashed straight lines denote the limiting values of Mdrop/M0 and
Mring/M0 as n → −1+, namely θ and 1 − θ , respectively. The arrows indicate the direction of increasing n.

to the ring deposit at the contact line, and so the final deposit on the substrate predicted
by the model is a ring deposit with mass M0 at r = 1. This behaviour is consistent
with the corresponding experimental results of Deegan et al. (2000) and Boulogne et al.
(2017) for both diffusion-limited evaporation into an effectively unbounded atmosphere
and approximately spatially uniform evaporation discussed in § 1. Of course, in practice,
weak physical effects not accounted for in the present leading-order model will again
smooth this out to create a ring deposit of non-zero width near r = 1.
Figure 9 shows the evolutions of Mdrop/M0 and Mring/M0 plotted as functions of

t/tlifetime for various values of n in the range −1 < n � 1. In particular, figure 9(a)
shows that, as expected, for −1 < n < 1, Mdrop/M0 decreases monotonically from
Mdrop/M0 = 1 at t/tlifetime = 0 toMdrop/M0 = 0 at t/tlifetime = 1, and figure 9(b) shows the
corresponding behaviour ofMring/M0, confirming that for −1 < n < 1, all of the particles
are eventually transferred from the bulk of the droplet to the ring deposit at the contact line.
Figure 9 also shows that as n increases from n = −1 towards n = 1 the flux of particles
into the ring deposit becomes increasingly concentrated towards the end of the lifetime of
the droplet, i.e. the rush-hour effect becomes more and more dramatic.

7.5. Behaviour in the singular limit n → −1+

In the singular limit n → −1+ the local evaporative flux takes the form

J = 4(n + 1)
π(1 − r2)

+ 4(n + 1)2

π(1 − r2)
log(1 − r2) + O

(
(n + 1)3

)
, (7.23)

which approaches zero from above everywhere except in a thin boundary layer of thickness
O(n + 1) � 1 near the contact line, and drives an O(1) radially outwards flow given by

ū = 4r(2 − r2)
πθ(1 − r2)

+ O(n + 1) (>0). (7.24)

The concentration of particles in the bulk of the droplet is given by

φ = 1 + 1
2
log

[
θ−1 − 1 + (1 − r2)2

(1 − r2)2

]
(n + 1) + O

(
(n + 1)2

)
as n → −1+, (7.25)

i.e. at leading order φ remains equal to its spatially uniform initial value, but at first order
it increases non-uniformly. The masses of the particles in the bulk of the droplet and in the
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ring deposit are given by

Mdrop = M0θ − M0

2

[
(1 − θ) log (1 − θ) + θ log θ

]
(n + 1) + O

(
(n + 1)2

)
→ M0θ

+

(7.26)

andMring = M0 − Mdrop → M0(1 − θ)− as n → −1+, respectively. Further details of the
behaviour in this limit are given D’Ambrosio (2022).

7.6. Behaviour in the regular limit n → 1
In the limit n → 1, i.e. approaching the special case n = 1 in which J is proportional to
−∂h/∂t, the local evaporative flux takes the form

J = 8(1 − r2)
π

+ O(n − 1), (7.27)

which drives a weak O(n − 1) � 1 radial flow given by

ū = 4(1 − r2) log(1 − r2)
πθr

(n − 1) + O
(
(n − 1)2

)
. (7.28)

The concentration of particles in the bulk of the droplet is given by

φ = 1
θ

+ log θ

2θ

[
1 + 2 log (1 − r2)

]
(n − 1) + O

(
(n − 1)2

)
as n → 1, (7.29)

i.e. at leading order φ takes the spatially uniform value 1/θ , but at first order it increases
for 0 � r < rzero and decreases for rzero < r � 1 when n approaches 1 from above and
vice versa when n approaches 1 from below, where rzero = (1 − e−1/2)1/2 	 0.6273. The
masses of the particles in the bulk of the droplet and in the ring deposit are given by

Mdrop ∼ M0

[
1 − θ1/2

(
log θ(n−1)/2

)2/(1−n)
]

→ M−
0 (7.30)

and Mring = M0 − Mdrop → 0+ as n → 1−, respectively. Further details of the behaviour
in this limit are again given by D’Ambrosio (2022).

7.7. Behaviour in the limit n → +∞
In the limit n → +∞ the local evaporative flux takes the form

J ∼ 4n
π
e−nr2, (7.31)

which, in sharp contrast to its behaviour in the limit n → −1+ described in § 7.5,
approaches zero from above everywhere except in a thin internal layer of thickness
O(1/

√
n) � 1 near the centre of the droplet, and drives an O(1) radially inwards flow

given by

ū ∼ − 4
πθr

(
1 − r2 − e−nr2

)
(<0). (7.32)

The concentration of particles in the bulk of the droplet is given by

φ ∼
[
1 −

(
1 − θ(n−1)/2

)
e−nr2

]−(n+2)/n
as n → +∞, (7.33)

i.e. at leading order φ remains equal to its spatially uniform initial value everywhere except
for in the internal layer, in which it increases non-uniformly. Since n > 1, the masses of
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the particles in the bulk of the droplet and in the ring deposit are given by (7.19). Further
details of the behaviour in this limit are again given by D’Ambrosio (2022).

8. Particle paths when Pe∗ � 1

Thus far we have considered the regime in which diffusion is faster than axial advection
but slower than radial advection, corresponding to θ̂20 � Pe∗ � 1. However, as mentioned
in § 5, in this section we calculate the paths of the particles in the alternative regime in
which diffusion is slower than both axial and radial advection, corresponding to Pe∗ � 1.
In this regime at leading order the particles are simply advected by the flow, and so the

particle paths r = r(t) and z = z(t) satisfy

dr
dt

= u,
dz
dt

= w, (8.1a,b)

where u and w are given by (4.4) and (4.5), subject to the initial conditions r(0) = r0
(0 � r0 � 1) and z(0) = z0 (0 � z0 � h(r0, 0)). Motivated by experimental observations
of the motion of spherical particles (see for example Yunker et al. 2011), we make the
natural modelling assumption that if a particle reaches the descending free surface of the
droplet, then it thereafter stays on (but moves along) the free surface according to

dr
dt

= u
∣∣∣∣
z=h

,
dz
dt

= w
∣∣∣∣
z=h

− J = ∂h
∂t

+ u
∣∣∣∣
z=h

∂h
∂r

on z = h, (8.2)

without affecting the shape of the droplet or the flow within it. We refer to this as
‘free-surface capture’ and denote the time at which free-surface capture occurs by
t = tcapture (0 � tcapture � tlifetime).
For the one-parameter family of local evaporative fluxes given by (7.2), the particle

paths are determined by solving (8.1) and (8.2) with u and w given by (7.9) and (7.10),
respectively.
In the special case n = 1 there is no flow (i.e. u ≡ 0 and w ≡ 0), and so all of the

particles remain at their initial positions as the droplet evaporates until the particle initially
at r = r0 and z = z0 is captured by the free surface at time t = tcapture given by

tcapture
tlifetime

= 1 − r20 − 2z0
1 − r20

. (8.3)

Thereafter (i.e. for tcapture < t < tlifetime) the particle moves vertically downwards on the
descending free surface, and is eventually deposited onto the substrate at r = r0 and z = 0
at t = tlifetime. Hence, as discussed in § 7.3, as a consequence of the paraboloidal shape of
the initial free-surface profile of the droplet, the distribution of mass in the final deposit
on the substrate predicted by the model is also paraboloidal, specifically (1 − r2)/2.
In the general case −1 < n < 1 and n > 1 the particle paths were determined by solving

(8.1) and (8.2) numerically using the NDSolve function in Mathematica 12.2 (Wolfram
Research, Inc. 2021).
Figure 10 shows the paths taken by the particle that starts at the initial position r0 = 1/2

and z0 = 1/4 for a range of values of n. In particular, figure 10 shows that, as a consequence
of the behaviour of the flow described in § 7.2, before it is captured by the free surface,
this particle moves downwards and outwards when −1 < n < 1, remains stationary when
n = 1, moves upwards and inwards when 1 < n < ncrit 	 14.47, and initially moves
downwards and inwards and then upwards and inwards when n > ncrit, where n = ncrit
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Figure 10. The paths taken by the particle that starts at the initial position r0 = 1/2 and z0 = 1/4 for
n = −3/4,−1/2, . . . , 1, 2, 4, . . . , 30. The (barely discernible) dashed line denotes the limiting particle path
as n → −1+, and the arrow indicates the direction of increasing n.
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Figure 11. The paths of twelve representative particles for (a) n = −1/2 and (b) n = 4. The dots and the
squares denote the initial position and the position of free-surface capture, respectively, of each particle. The
dashed lines denote the initial free-surface profile given by h(r, 0) = (1 − r2)/2.

is the solution of zcrit(r0, 0) = z0. Figure 10 also shows that after it is captured by the
descending free surface, this particle continues to move downwards and outwards when
−1 < n < 1, moves vertically downwards when n = 1, and moves downwards and inwards
when n > 1. Figure 10 also confirms that the final position of this particle on the substrate
is in the ring deposit at r = 1 when −1 < n < 1, at r = r0 when n = 1, and at the centre
of the droplet at r = 0 when n > 1.
Figure 11 shows the paths of twelve representative particles for (a) n = −1/2 (typical of

−1 < n � 1/2) and (b) n = 4 (typical of n > 1). (Note that, for brevity, figure 11 does not
include a corresponding plot for a value of n in the range 1/2 < n < 1.) The dots and the
squares denote the initial position and the position of free-surface capture, respectively,
of each particle. Figure 11 illustrates that all of the particles are captured by the free
surface before eventually being deposited onto the substrate. This behaviour is consistent
with the numerical results of Kang et al. (2016) for diffusion-limited evaporation of a
non-thin droplet. Note that, unlike all of the particles shown in figure 11(a) and the other
eleven particles shown in figure 11(b), which move upwards before being captured by
the descending free surface, the rightmost particle shown in figure 11(b) (i.e. the one
with initial position r0 = 0.84 and z0 = 0.13 satisfying zcrit(r0, 0) < z0 < h(r0, 0)) moves
downwards before being captured.
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9. Conclusions

Motivated by the continuing interest in controlling the deposition from an evaporating
droplet, in the present work we analysed the effect of the spatial variation of the
local evaporative flux on the deposition from a pinned particle-laden sessile droplet.
Specifically, in §§ 2–6 we formulated and solved a mathematical model for the evolution
of a thin sessile droplet with a general prescribed steady local evaporative flux J(r), the
flow within the droplet, the concentration of particles within the droplet and the masses
of the particles in the bulk of the droplet and in the ring deposit that can form at the
contact line. Then in §§ 7 and 8 we analysed the behaviour of the general solutions
obtained in §§ 3–6 for the one-parameter family of local evaporative fluxes J(r) given
by (7.2) with the free parameter n (> −1) that exhibits qualitatively different behaviours
mimicking those that can be obtained by, for example, surrounding the droplet with a
bath of fluid or using a mask with one or more holes in it to achieve a desired pattern
of evaporation enhancement and/or suppression, as described in § 1. Specifically, for
−1 < n < 0 (including the special case n = −1/2 of diffusion-limited evaporation into
an unbounded atmosphere), J is (integrably) singular at the contact line and smallest at
the centre of the droplet, for n = 0, J is spatially uniform, while for n > 0 (including
the special case n = 1 in which J is proportional to −∂h/∂t), J is largest at the centre
of the droplet and zero at the contact line. In particular, we obtained explicit expressions
for the concentration of particles within the bulk of the droplet φ given by (7.17) and the
masses of the particles in the bulk of the droplet and in the ring deposit Mdrop and Mring
given by (7.21) and (7.22), respectively, which generalise the previous results in the special
cases n = −1/2, n = 0 and n = 1 described in § 1. We showed that, while the behaviour
of the vertical velocity w given by (7.10) is qualitatively different for −1 < n � 1/2,
1/2 < n < 1, n = 1 and n > 1, the radial velocity u given by (7.9) is always outwards
towards the contact line when −1 < n < 1, but inwards towards the centre of the droplet
when n > 1. In the former case all of the particles are eventually advected to the contact
line, and so the final deposit is a ring deposit at r = 1, whereas in the latter case all of
the particles are eventually advected to the centre of the droplet, and so the final deposit
is at r = 0. In the special case n = 1 in which J is proportional to −∂h/∂t the local
mass loss due to evaporation is exactly balanced by the local decrease of the free-surface
profile everywhere, and so there is no flow within the droplet and the final deposit has a
paraboloidal profile. In particular, the present work demonstrates that, contrary to what
is sometimes erroneously implicitly implied or explicitly claimed, a singular (or even
a non-zero) evaporative flux at the contact line is not an essential requirement for the
formation of a ring deposit. Indeed, not only a spatially uniform evaporative flux, but also
evaporative fluxes with 0 < n < 1 that are largest at the centre of the droplet and zero at
the contact line, lead to the formation of a ring deposit. We also described a generalisation
of the well-known rush-hour effect, and found that it becomes more and more dramatic
as n increases from n = −1 towards n = 1. In addition, we calculated the paths of the
particles when Pe∗ � 1, and showed that in this regime all of the particles are captured
by the descending free surface before eventually being deposited onto the substrate. In
particular, the behaviour for −1 < n < 1 is consistent with the numerical results of Kang
et al. (2016) for diffusion-limited evaporation of a non-thin droplet described in § 8.
In Appendix A we showed how the present analysis can be generalised to the situation

in which the local evaporative flux is unsteady and takes a general separable form.
However, there are many other promising directions for future work. In particular, as
well as including additional physical effects, such as when the presence of the particles
affects the flow within the droplet (see for example Kaplan & Mahadevan 2015) and/or
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particle adsorption and coagulation (see for example Zigelman & Manor 2018a), it would
be interesting to investigate the effect of the spatial variation of the local evaporative flux
in more complicated geometries such as, for example, a non-axisymmetric droplet (see
for example Sáenz et al. 2017; Wray & Moore 2023), a droplet in a well (see for example
Vlasko-Vlasov et al. 2020; D’Ambrosio et al. 2021) and multiple interacting droplets (see
for example Wray et al. 2020, 2021).
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Appendix A. Unsteady local evaporative flux in separable form

In this appendix we show how the present analysis can be generalised to the situation
in which the local evaporative flux is unsteady and takes the general separable form
J = J(r, t) = f (r)g(t), where f and g are prescribed functions of r and t, respectively.
In this situation, the total evaporative flux is given by

F = 2π
∫ 1

0
J(r̃, t) r̃ dr̃ = 2πI(1)g(t), (A1)

in which, instead of (3.11), I = I(r) is now defined by

I =
∫ r

0
f (r̃) r̃ dr, (A2)

and so the droplet evolves according to

θ = 1 − I(1)G(t)
H(1)

, V = π

4

(
1 − I(1)G(t)

H(1)

)
, (A3a,b)

in which G = G(t), defined by

G =
∫ t

0
g(t̃) dt̃, (A4)

is the incomplete temporal integral of g.
The local radial volume flux Q = Q(r, t) is given by Q = q(r)g(t), where q = q(r)

coincides exactly with the expression for Q when J is independent of t given by (4.11).
The characteristic equations (5.12) can therefore be expressed as

dr
dθ

= dr/dt
dθ/dt

= − H(1)q(r)
θ I(1)η(r)

,
dφ
dr

= dφ/dt
dr/dt

= f (r)φ
q(r)

. (A5a,b)

A notable feature of these equations is that they do not involve g, and so they coincide
exactly with the corresponding equations when J is independent of t given by (5.13) if
J(r) is replaced by f (r) and Q(r) is replaced by q(r). In particular, this means that the
solution of (A5) can readily be obtained from the solution of (5.13) given by (5.17), and
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the unsteadiness of J enters the solution for r0, and hence the solution for φ, only via θ

given by (A3a).
Once φ has been determined, the masses of the particles in the bulk of the droplet and

in ring deposit can be calculated from (6.2) and (6.5), respectively.
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