
Citation: Zhang, Y.; Zhang, G.;

Tao, L.; Wang, C.; Ye, L.; Sun, S.;

Han, K. Study and Discussion on

Computational Efficiency of

Ice–Structure Interaction by

Peridynamic. J. Mar. Sci. Eng. 2023,

11, 1154. https://doi.org/

10.3390/jmse11061154

Academic Editor: Sasan Tavakoli

Received: 25 April 2023

Revised: 27 May 2023

Accepted: 28 May 2023

Published: 31 May 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Journal of

Marine Science
and Engineering

Article

Study and Discussion on Computational Efficiency of
Ice–Structure Interaction by Peridynamic
Yuan Zhang 1,2 , Guoyang Zhang 1, Longbin Tao 3,4 , Chao Wang 1,*, Liyu Ye 5, Shuai Sun 6 and Kang Han 1

1 College of Shipbuilding Engineering, Harbin Engineering University (HEU), Harbin 150001, China;
zhangyuan@hrbeu.edu.cn (Y.Z.); guoyang.zhang@hrbeu.edu.cn (G.Z.); hankang3@163.com (K.H.)

2 Department of Civil and Environmental Engineering, Faculty of Engineering, Norwegian University of
Science and Technology (NTNU), 7034 Trondheim, Norway

3 School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology,
Zhenjiang 212003, China; longbin.tao@strath.ac.uk

4 Department of Naval Architecture and Marine Engineering, University of Strathclyde, Glasgow G4 0LZ, UK
5 Qingdao Innovation and Development Base of Harbin Engineering University, Harbin Engineering

University, Qingdao 266400, China; yeliyuxrxy@hrbeu.edu.cn
6 National Key Laboratory of Transient Physics, Nanjing University of Science and Technology,

Nanjing 210094, China; shuai.s@njust.edu.cn
* Correspondence: wangchao0104@hrbeu.edu.cn

Abstract: The peridynamic (PD) theory is based on nonlocal mechanics and employs particle dis-
cretization in its computational domain, making it advantageous for simulating cracks. Consequently,
PD has been applied to simulate ice damage and ice–structure interaction under various conditions.
However, the calculation efficiency of PD, similar to other meshless methods, is constrained by
the number of particles and the inherent limitations of the method itself. These constraints hin-
der its potential for further development in the field of ice−structure interaction. This study aims
to explore the computational efficiency of various methods that can be employed to improve the
computational cost of PD in ice–structure interactions. Specifically, we analyze the computational
efficiency of three different methods (the MPI parallelization, the updated link−list search method,
and the particle−pair method) and their collaborative calculation efficiency to reduce simulation time.
These methods are employed to calculate ice–ship interaction, and their coupled efficiency is studied.
Furthermore, this study discusses the computation strategy to improve efficiency on using the PD
method to calculate ice–structure interaction. The present work provides scholars who employ PD
to calculate ice–structure interaction or ice damage with a referential discussion plan to achieve an
efficient numerical computation process.

Keywords: ice–structure interaction; computational efficiency; particle−pair method; MPI
parallelization; peridynamic (PD)

1. Introduction

The peridynamic (PD) theory is a nonlocal theory proposed by Silling in 2000 [1]. The
theory reconstructs the motion equation of solid mechanics, and it can solve the differential
equation in the form of integration. It has great advantages in simulating the objects with
discontinuity without other assumptions and extra damage criteria, such as generation
and propagation of cracks and a failure model of materials [2,3]. The PD theory has two
primary forms: bone−based PD and state−based PD. In the bone−based PD theory, the
force between two particles is set to the same in magnitude and opposite in direction,
limiting Poisson’s ratio of materials [1]. In the state−based PD theory, the magnitude and
direction of the force between two particles can be different. It eliminates the limitation
in Poisson’s ratio of materials, making the PD theory applicable to elastic–plastic and
incompressible materials [4].

J. Mar. Sci. Eng. 2023, 11, 1154. https://doi.org/10.3390/jmse11061154 https://www.mdpi.com/journal/jmse

https://doi.org/10.3390/jmse11061154
https://doi.org/10.3390/jmse11061154
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/jmse
https://www.mdpi.com
https://orcid.org/0000-0002-9113-7242
https://orcid.org/0000-0002-8389-7209
https://doi.org/10.3390/jmse11061154
https://www.mdpi.com/journal/jmse
https://www.mdpi.com/article/10.3390/jmse11061154?type=check_update&version=1

J. Mar. Sci. Eng. 2023, 11, 1154 2 of 20

At present, the research of peridynamic applications is developing rapidly. The PD
method has been successfully applied to solid mechanics, and it’s applications has been
verified in the field of thermodynamics, electricity, and fluid mechanics [5–7]. PD also
serves as a preferable tool for simulating various ice mechanics and ice interacting with
an idealized structure. Wang et al. [8] studied ice fragmentation under explosive loading,
which shows PD’s ability in simulating ice elastic fracture under high pressure. This
is followed by Zhang et al. [9], who studied ice thermoelastic fragmentation with fully
coupled thermal equation in state−based PD. The in−plane and out−of−plane failures of
a square ice sheet were investigated, and the results were compared with a splitting test by
Vazic et al. [10]. Another ice simulation with PD also involves polycrystalline S2 ice [11],
ice−sloping/vertical structure interaction [12,13], and deicing [14]. Though a lot of works
on ice mechanics were studied, these studies pay more attention to the ice mechanical
model of idealized boundary conditions and the failure mechanism of an ice constitutive
model rather than the practical application in the engineering field. More efforts are still
needed to realize the application of PD in the field of engineering forecasting.

In view of more engineering applications, the first study employing PD in ice crushing
was conducted by Liu et al. [15], in which the ice plate was crushed by a rigid cylinder
in the bond−based PD numerical framework. Following this work, the ship navigating
in rubble ice was simulated by bond−based PD coupling with a Voronoi algorithm for
the formation of pack ice [16]. Moreover, PD was also employed to simulate ice–ship
interaction and ice–propeller interaction by introducing a new contact detection model
between a mesh element and particles [17–19] and the PD−FEM coupling method [20].
The above work applied the bond−based PD method to the real operating conditions of
marine structures with a fixed Poisson’s ratio of 1/3. However, the discretization of ice
particles is relatively rough, and the working conditions of the structure were assumed
in a simple operating mode, which is mainly because the fast computational efficiency
can be achieved by bond−based PD. Afterwards, in order to be able to simulate the fine
structure model and the mechanism of ice action, as well as the ice constitutive model of
the plastic behavior, a state−based model is urgently needed for the study of both 2D cases
and 3D cases in complex and practical scenarios. Unfortunately, due to the limitation of
low calculation efficiency, the engineering investigation of ice–structure interaction using
the state−based PD model is an underdeveloped field. In addition, though the PD theory
offers a better approach to deal with cracks and failure, the computational efficiency is
prohibitive to obtain an excellent exact solution to engineering problems.

To improve the efficiency of PD simulations, researchers have conducted extensive
algorithmic research. Diyaroglu et al. [21] introduced an effective method for searching the
neighborhood particles of each material point using 2D and 3D local squares and cubes to
allocate the region of each particle in advance. Vazic et al. [22] conducted a comprehensive
study on various neighborhood particle search algorithms suitable for dynamic simulations,
including brute−force search, region partitioning, balanced K−D tree algorithm, and
updated R−tree algorithm based on packaging algorithm. They found that the R−tree
data structure algorithm outperforms the other three algorithms, while brute−force is
the most time−consuming method. Dominguze et al. [23] proposed a dynamic updating
neighborhood search method based on Verlet list technology. By rearranging the particles
in a manner that places adjacent cells’ particles in close memory proximity, the methods’
performance can be enhanced. PD can be easily parallelized by OpenMP, but this shared
parallel mode puts higher demands on the hardware. A open−source software, Peridigm,
enables MPI parallelization for the PD method, which greatly improves the possibility
of the engineering application calculation of PD. Guo et al. [24] investigated a dynamic
ice−milling process and structural response of a propeller blade profile by Peridigm.
However, the update speed of Peridigm is far behind the progress of the current PD method.
Zhang et al. [25,26] investigated a continuous icebreaking process by proposed MPI parallel
strategies and compared icebreaking differences between two typical icebreaker bows. It
can be seen that the calculation efficiency of the PD method is increasing with the progress

J. Mar. Sci. Eng. 2023, 11, 1154 3 of 20

of research, but there is still a long way to go to reach the analysis of polar operations of
structures under more complex conditions.

In response to the development deficiencies discussed above, this study aims to ad-
dress the numerical efficiency of ice–structure interaction using PD, including the numerical
methods that improve the computational time and their MPI parallel calculation with mul-
tiple threads. The present study contributes to provide a feasibility plan for the PD method
applied in engineering fields. Note that the proposed strategies and discussions are not
limited to ice–structure interaction (though the paper focuses on ice–structure interaction
only), but it is easily possible to implement a high−efficiency strategy to other engineering
fields following the provided material in this study.

The present study demonstrates the numerical efficiency of three methods to improve
PD computing efficiency including the algorithm optimization method and parallelization.
The paper is organized as follows: The challenges on PD theory simulating ice–structure
interaction are briefly reviewed in Section 2. In Section 3, the numerical strategies of the
updated link−list algorithm to accelerate the ice particle search, particle−pair method
to accelerate the numerical integration, and the MPI parallel computing technology are
presented. Their time efficiency is investigated compared with the conventional framework
of the PD method. Moreover, collaborative speedup and the efficiency of the MPI paral-
lelization among the particle−pair method, the updated link−list method, and the original
PD algorithm are investigated in Section 4. Finally, an engineering event of icebreaker
breaking level ice is studied by the proposed efficient numerical method, which better
demonstrates the engineering application of the PD method in a parallelization scheme
with updated methods. Section 6 discusses the relevant conclusions of this paper and
efficient strategies for calculating ice–structure interaction.

2. Peridynamic Theory for Ice–Structure Interaction

Since the bond−based PD has been commonly introduced in simulating ice–structure
interaction, this section provides a brief overview of the ordinary state−based PD, which
serves as the numerical framework for the present study. Additionally, the challenge in
simulating ice–structure interaction caused by low computational efficiency is discussed in
Section 2.3, including large−scale simulations and fine structure models.

2.1. Ordinary State−Based Peridynamic for Ice Model

Peridynamic (PD) is a nonlocal theory that provides an alternative formulation for
continuum mechanics. This method can solve differential equations in the form of integra-
tion, so it is suitable for discontinuous problems. The continuum is made up of an infinite
number of particles at any one time. As shown in Figure 1, an ice body is discretized into a
particle domain. Ice particles interact with each other in a certain range, δ, which is called
horizon. All ice particles within the distance δ constitute the family members of ice material
point i, and the volume range occupied by family members is defined as interact domain,
Hx. In the PD theory, the displacement change between two particles in the deformed body
can be expressed as follows [27]:

η = u′ − u = (y(i) − y(j))− (x(i) − x(j)) (1)

The vector x(i) (or x) represents the location of point i. The force density and the
displacement are defined as t, u. Similarly, the relative physical quantities of material point
j are x(j) (or x′), t′, u′. With respect to a Cartesian coordinate system, material point x(i)
experiences displacement, u, and the new location of ice particle i is defined as y(i). The
relative position is expressed as u = x(i) − x(j), and the relative position after deformation
is expressed as u′ = y(i) − y(j).

J. Mar. Sci. Eng. 2023, 11, 1154 4 of 20

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 4 of 21

as
()y i

. The relative position is expressed as
() ()u x xi j−= , and the relative position after

deformation is expressed as
() ()u y yi j

 −= .

z

y

x

0

i

i

j

j

x
x'

y

y'

u'

u'

ξ+η

ξ

Undeformed state

Deformed state

xH

xH

δ

Figure 1. Ice discretization and ice particle i interact with those in sphere
xH (family members in

horizon) through bonds.

In an ordinary state−based PD (OSB−PD), the governing equation is defined as fol-

lows [27]:

() () ()() ()() , , , , , d ,u x t u u x x t u u x x b xi x

H

ρ t t t H t = − − − − − +
(2)

where ρ represents the density of the ice, (),b x t represents the external force of the ice

body; t and t represent the force density vectors of ice particles i and j, and (),u x t

represents the acceleration of material point i. The equation of force density is expressed

as follows:

1

2

1
(, ,)

2

1
(, ,)

2

t B

t B

 −
 − − = −

− − − = −

 −

y y
t u u x x

y y

y y
t u u x x

y y

 (3)

where the parameters
1B and

2B are additional parameters for the state−based PD.

The ice model presented here is an isotropic, linear elastic material model, also com-

monly known as the linear peridynamic solid (LPS) material model. This model can also

be extended to other types of material behavior, such as plasticity or viscoelasticity. The

present study employs elastic ice behavior to demonstrate numerical results.

2.2. Contact Model for Ice–Structure Interaction

When dealing with ice–structure interaction, two main algorithms are employed to

model contact force.

The first is contact force repelling short−range force, originally proposed by Silling

[1,28] and applied to ship–ice contact by Liu et al. [16]. In this model, both ice and structure

are discretized into particles, the force between ice particle and structure particle is:

Figure 1. Ice discretization and ice particle i interact with those in sphere Hx (family members in
horizon) through bonds.

In an ordinary state−based PD (OSB−PD), the governing equation is defined as
follows [27]:

ρ(i)
..
u(x, t) =

∫
H

(
t
(
u′ − u, x′ − x, t

)
− t′

(
u− u′, x− x′, t

))
dHx + b(x, t) (2)

where ρ represents the density of the ice, b(x, t) represents the external force of the ice body;
t and t′ represent the force density vectors of ice particles i and j, and

..
u(x, t) represents the

acceleration of material point i. The equation of force density is expressed as follows: t(u′ − u, x′ − x, t) = 1
2 B1

y′−y
|y′−y|

t′(u− u′, x− x′, t) = − 1
2 B2

y′−y
|y′−y|

(3)

where the parameters B1 and B2 are additional parameters for the state−based PD.
The ice model presented here is an isotropic, linear elastic material model, also com-

monly known as the linear peridynamic solid (LPS) material model. This model can also
be extended to other types of material behavior, such as plasticity or viscoelasticity. The
present study employs elastic ice behavior to demonstrate numerical results.

2.2. Contact Model for Ice–Structure Interaction

When dealing with ice–structure interaction, two main algorithms are employed to
model contact force.

The first is contact force repelling short−range force, originally proposed by Silling [1,28]
and applied to ship–ice contact by Liu et al. [16]. In this model, both ice and structure are
discretized into particles, the force between ice particle and structure particle is:

fcontact = −
p
|p| csh(

|p|
rsh
− 1) (4)

where p is the distance between ice particles and structure particles after deformation,
csh is the short−range force constant, and rsh is the critical distance, beyond which the
short−range force does not exist.

The other contact model has a wider range of applications, can simulate any shape of
the structure, and is also suitable for coupling with FEM [29]. In this model, the structure is

J. Mar. Sci. Eng. 2023, 11, 1154 5 of 20

discretized into mesh elements. The velocity of the ice particle at time t + ∆t is obtained by
the following formula:

__
v t+∆t
(i) =

__
u t+∆t
(i) − ut

(i)

∆t
(5)

__
u t+∆t
(i) is the displacement of the newly allocated ice particle at time t + ∆t, and ut

(i) is the
displacement of the ice particle at time t. At time t + ∆t, the contact force of the ice particle
on the structure can be calculated by the following formula [27]:

Ft+∆t
(i) = −ρ(i)

__
v t+∆t
(i) − vt

(i)

∆t
V(i) (6)

where vt+∆t
(i) is the velocity of the ice particle infiltrated into the structure body at time

t + ∆t, and ρ(i) and V(i) are the density and volume of the ice particle, respectively. At time
t + ∆t, the contact force on any structure surface element can be obtained by superimposing
the contact force of all ice particles in contact with it:

Ft+∆t
j,contact = ∑

i=1
Ft+∆t
(i) λt+∆t

(i) (7)

where λt+∆t
(i) can be defined by the following formula:

λt+∆t
(i) =

{
1 contact with j element of structure
0 no contact

(8)

The second approach is adopted in this paper to demonstrate numerical efficiency.
However, the discussion of computational efficiency in this paper applies to both methods.

2.3. Challenges in Engineering Application in View of Computational Cost

PD simulation plays a crucial role in studying ice’s large deformation, failure mech-
anisms in various boundary conditions and ice–structure interaction modes; however,
the computational cost associated with PD simulations can be prohibitive. Ice–structure
interaction is a complicated process, and its engineering application challenges are mainly
limited by the following aspects due to the low efficiency of PD.

• Difficult to model large−scale cases.

The calculation efficiency of PD depends directly on the number of particles; obviously,
the larger the number of particles, the longer the calculation time. This computational
cost is related to the neighborhood particle search time and the time integration step.
Although the number of particles can decrease with an increasing scale when computing
large−scale ice damage and ice–structure interaction problems, such as ice–ship collisions
on the prototype scale and ice rheology in the geophysics, the calculation time will not be
significantly improved with the reduction of the number of particles.

• Difficult to model fine and accurate shape structure breaking ice.

Taking ice–ship collision as an example, the outline characteristics of the bow greatly
determine the icebreaking mode and icebreaking load. In order to explain the influence
of the change of bow shape parameters on the icebreaking process, the accurate and fine
bow model must be established. This makes a finer discretization of the ice domain and
the hull, ensuring the capture of change of the bow parameters acting on the icebreaking.
Subsequently, the number of particles will be greatly increased, and the time step size will
be greatly reduced, which is a huge challenge for computational cost.

J. Mar. Sci. Eng. 2023, 11, 1154 6 of 20

• Difficult to model long duration cases.

An explicit solver provides a guaranteed way to model ice damage, but the PD method
requires a very small time step compared with the FEM in an explicit solver. A value for
the maximum stable time step is determined as follows [30]:

∆tcrit =

√
2ρ

∑ p∆VpCp
(9)

where ρ is the density, p iterates over all the neighbors of the given ice particle, ∆Vp is
the volume associated with neighbor p, and Cp is the micromodules between the given ice
particle and neighbor p. ∆tcrit depends on the number of particles in the neighborhood;
in other words, it depends on the horizon size and the dimension of the calculation case
(for example, if the horizon size is 3.015, the summation times of horizon particles are 6, 25, and
122, corresponding to 1D, 2D, and 3D, respectively). FEM employs Courant–Friedrichs–Lewy
to determine the time step. With same input model and setup, the time steps needed by
PD are much smaller than those required by FEM. Therefore, when predicting the damage
problem of ice over a long period of time, such as the time period reaching days or weeks, the
computational cost increases sharply with the increase in the calculation period. If the time
step cannot be increased appreciably, computational efficiency must be improved to achieve
long−period ice–structure interaction prediction.

• Difficult to model ice–structure interaction in a complex working condition.

To the authors’ knowledge, the PD has not been developed to model ice–structure
interaction in a complex working condition, such as the ship motion in six degrees in
breaking ice.

Through the understanding of the PD algorithm and the experience of predicting
ice–structure interaction, we present three ways to improve the computational efficiency
of ice–structure interaction. Additionally, the computational efficiency of each method is
analyzed accordingly. They are:

• Updated link−list search method to accelerate particle search in the ice domain;
• Particle−pair method to accelerate time integration in solving an ice constitutive

model;
• MPI parallelism to improve the efficiency of the entire algorithm.

These studies are presented in Section 3. Accordingly, collaborative computing with
three methods and its efficiency are studied in Section 4.

It is worth noting that the research in this paper cannot completely solve the
above−mentioned challenges. However, it is very meaningful to raise the above−mentioned
challenges to provide thinking for the development of the industry and to call on more
scholars to pay attention to the future development. Additionally, our work serves as an
inspiring starting point for addressing the aforementioned problems, and there remains an
ample scope for future research to build upon the findings of this study.

3. Computation Efficiency of Optimization Methods
3.1. Updated Link−List Search Method to Improve Family Member Search of Ice Domain

In the PD solution, the search for particles within the horizon plays a crucial role and is
a time−consuming process, along with time integration. The time consumption is primarily
dependent on the horizon distance δ. It is important to note that constructing the stiffness
matrix for solving static problems in PD involves considering the family members of each
material point. This approach leads to a higher density stiffness matrix compared with the
finite element method (FEM) used in traditional mechanics. As a result, the computational
time increases, leading to lower calculation efficiency. To address this issue and improve
computational efficiency, this section introduces an updated and extended version of the
link−list search method [31] from the smoothed−particle hydrodynamics (SPH) theory to
PD solutions.

J. Mar. Sci. Eng. 2023, 11, 1154 7 of 20

A schematic diagram of an updated link−list method is shown in Figure 2. A series of
3D square grids are arranged in the discrete ice domain, including the boundary particles.
The side length of a square is set to be the same as the horizon length, δ. The search for
horizon particles is only carried out in the current grid and adjacent grids. For example, as
shown in Figure 2, the family particles of the particle in grid 1 only exist in grids 1, 2, 8,
and 9; the family particles of the ice particle in grid 28 only exist in grids 20, 21, 27, 28, 34,
and 35; by analogy, the family particle members of particles in grid 31 only exist in grids
23, 24, 25, 30, 31, 32, 37, 38, and 39. This way avoids the global search one by one in the
entire PD. In the 1D, 2D, and 3D cases, the numbers of grids to be searched are 3, 9, and 27,
respectively, indicating a great deal of savings in search computing time. For the specific
numerical implementation process of the method, please refer to our previous work [32].
In general, it is necessary for the grid size to be greater than or equal to the horizon size in
order to effectively search for all the family particles within the current grid and its adjacent
grids. As the grid size increases, the number of search operations per step also increases.
Therefore, the optimal grid size is the minimum value that guarantees the inclusion of all
family particles in the horizon, which corresponds to the horizon size, δ.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 7 of 21

3. Computation Efficiency of Optimization Methods

3.1. Updated Link−List Search Method to Improve Family Member Search of Ice Domain

In the PD solution, the search for particles within the horizon plays a crucial role and

is a time−consuming process, along with time integration. The time consumption is pri-

marily dependent on the horizon distance δ. It is important to note that constructing the

stiffness matrix for solving static problems in PD involves considering the family mem-

bers of each material point. This approach leads to a higher density stiffness matrix com-

pared with the finite element method (FEM) used in traditional mechanics. As a result, the

computational time increases, leading to lower calculation efficiency. To address this issue

and improve computational efficiency, this section introduces an updated and extended

version of the link−list search method [31] from the smoothed−particle hydrodynamics

(SPH) theory to PD solutions.

A schematic diagram of an updated link−list method is shown in Figure 2. A series

of 3D square grids are arranged in the discrete ice domain, including the boundary parti-

cles. The side length of a square is set to be the same as the horizon length, δ. The search

for horizon particles is only carried out in the current grid and adjacent grids. For exam-

ple, as shown in Figure 2, the family particles of the particle in grid 1 only exist in grids 1,

2, 8, and 9; the family particles of the ice particle in grid 28 only exist in grids 20, 21, 27,

28, 34, and 35; by analogy, the family particle members of particles in grid 31 only exist in

grids 23, 24, 25, 30, 31, 32, 37, 38, and 39. This way avoids the global search one by one in

the entire PD. In the 1D, 2D, and 3D cases, the numbers of grids to be searched are 3, 9,

and 27, respectively, indicating a great deal of savings in search computing time. For the

specific numerical implementation process of the method, please refer to our previous

work [32]. In general, it is necessary for the grid size to be greater than or equal to the

horizon size in order to effectively search for all the family particles within the current

grid and its adjacent grids. As the grid size increases, the number of search operations per

step also increases. Therefore, the optimal grid size is the minimum value that guarantees

the inclusion of all family particles in the horizon, which corresponds to the horizon size,

δ.

δ

1 2 3

8 9

49

7

20 21

27 28

34 35

23 24 25

30 31 32

37 38 39

Figure 2. Schematic diagram of an updated link−list search method to search the family particle in

the ice domain.

Here, we establish an ice domain with different discretization. The information for

ice discretization is shown in Table 1. Then the family member search is carried out to

check the efficiency. A comparison of time consumption in searching for family particles

Figure 2. Schematic diagram of an updated link−list search method to search the family particle in
the ice domain.

Here, we establish an ice domain with different discretization. The information for ice
discretization is shown in Table 1. Then the family member search is carried out to check
the efficiency. A comparison of time consumption in searching for family particles between
traditional brute−force search and updated link−list search with different numbers of
ice particles is given in Table 2. The time consumption of three computers with different
configurations is also listed in the table as a reference.

Table 1. Information of ice domain discretization.

Conditions Number of Particles Number of Grids in Link−List Method

A 7000 304
B 64,000 1977
C 125,000 3564
D 216,000 6048
E 343,000 9396
F 512,000 14,040
G 729,000 19,872
H 1,000,000 19,683

J. Mar. Sci. Eng. 2023, 11, 1154 8 of 20

Table 2. Time consumption of updated link−list search method (unit: s).

Conditions Configuration 1 Configuration 2

Type Updated Link−List
Method Brute−Forced Method Updated Link−List

Method Brute−Forced Method

A 0.01562 0.046785 0.03125 0.0625
B 0.23437 3.25 0.296875 4.1875
C 0.45312 12.6875 0.57812 18.96875
D 0.73437 35.25 1.03125 74.31812
E 1.48437 98.75 1.82812 221.96875
F 2.875 356.59375 2.75 460.14062
G 3.29687 724.140625 4.39062 957.45312
H 4.67187 1672.14062 6.4375 2667.89062

Configuration 1: Intel(R) Core (TM) i7−10875H @ 2.3 GHz, 32 GB RAM, MS Windows 11× 64. Configuration 2: Intel(R)
Core (TM) i5−8250U @ 1.6 GHz, 8 GB RAM, MS Windows 10× 64.

Figure 3 illustrates a 100% stacked bar chart comparing the computational efficiencies
of the brute−force search method and the updated link−list search method. The plot
in Figure 4 also showcases the time consumption of both methods. It is evident that the
updated link−list search method significantly reduces the computational cost of searching
for family particles. Additionally, the updated link−list method exhibits superior computa-
tional efficiency as the number of particles increases, in comparison with the brute−force
search method. In other words, as the number of particles increases, the rate at which
the brute−force search method consumes time far exceeds that of the updated link−list
method. For instance, at 7000 particles, the respective time consumptions for the two
methods are 0.125 and 0.51562 s. However, at 1,000,000 particles, these values escalate
to 25.29687 and 9077.875 s, respectively. Consequently, the growth multiples of time con-
sumption are 202.37 for the updated link−list method and 17,605.74 for the brute−force
search method.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 9 of 21

Figure 3. Comparison of updated link−list search and traditional brute−forced search under differ-

ent configurations.

Figure 4. Time cost of updated link−list search in different configurations.

In Figure 4, it can be observed that the time cost of the updated link−list method ex-

hibits a more consistent linear relationship with the increase in the number of particles in

release mode. Furthermore, the growth trend is less influenced by changes in configura-

tion when the number of particles is small. However, the impact of computer configura-

tion on calculation time becomes evident as the number of particles increases significantly.

This is due to the fact that with a large number of particles, the computer’s ability to store

and process data can be clearly distinguished.

During the calculation process, the family particles searched need to be stored in a

line list called nodefam; when the number of particles reaches 1,000,000, a stack overflow

issue arises. This is because each thread has its own stack allocated for storing local vari-

ables and functions, depending on the compiler. To address this issue, allocatable arrays

are defined, providing a temporary solution to the stack overflow problem. From this per-

spective, relying solely on algorithm improvements for serial computation cannot fully

maximize the performance of the computer. Therefore, it remains crucial to implement a

multithreaded parallel computation of the PD algorithm.

25%

7% 3% 2% 1% 1% 0% 0%

75%

93% 97% 98% 99% 99% 100% 100%

7,000 64,000 125,000 216,000 343,000 512,000 729,000 1,000,000

0

20

40

60

80

100

number of particles

t
/

s

 brute-force search method

 updated link-list search method

Figure 3. Comparison of updated link−list search and traditional brute−forced search under
different configurations.

In Figure 4, it can be observed that the time cost of the updated link−list method
exhibits a more consistent linear relationship with the increase in the number of particles in
release mode. Furthermore, the growth trend is less influenced by changes in configuration
when the number of particles is small. However, the impact of computer configuration on
calculation time becomes evident as the number of particles increases significantly. This is

J. Mar. Sci. Eng. 2023, 11, 1154 9 of 20

due to the fact that with a large number of particles, the computer’s ability to store and
process data can be clearly distinguished.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 9 of 21

Figure 3. Comparison of updated link−list search and traditional brute−forced search under differ-

ent configurations.

Figure 4. Time cost of updated link−list search in different configurations.

In Figure 4, it can be observed that the time cost of the updated link−list method ex-

hibits a more consistent linear relationship with the increase in the number of particles in

release mode. Furthermore, the growth trend is less influenced by changes in configura-

tion when the number of particles is small. However, the impact of computer configura-

tion on calculation time becomes evident as the number of particles increases significantly.

This is due to the fact that with a large number of particles, the computer’s ability to store

and process data can be clearly distinguished.

During the calculation process, the family particles searched need to be stored in a

line list called nodefam; when the number of particles reaches 1,000,000, a stack overflow

issue arises. This is because each thread has its own stack allocated for storing local vari-

ables and functions, depending on the compiler. To address this issue, allocatable arrays

are defined, providing a temporary solution to the stack overflow problem. From this per-

spective, relying solely on algorithm improvements for serial computation cannot fully

maximize the performance of the computer. Therefore, it remains crucial to implement a

multithreaded parallel computation of the PD algorithm.

25%

7% 3% 2% 1% 1% 0% 0%

75%

93% 97% 98% 99% 99% 100% 100%

7,000 64,000 125,000 216,000 343,000 512,000 729,000 1,000,000

0

20

40

60

80

100

number of particles

t
/

s

 brute-force search method

 updated link-list search method

Figure 4. Time cost of updated link−list search in different configurations.

During the calculation process, the family particles searched need to be stored in a line
list called nodefam; when the number of particles reaches 1,000,000, a stack overflow issue
arises. This is because each thread has its own stack allocated for storing local variables and
functions, depending on the compiler. To address this issue, allocatable arrays are defined,
providing a temporary solution to the stack overflow problem. From this perspective,
relying solely on algorithm improvements for serial computation cannot fully maximize the
performance of the computer. Therefore, it remains crucial to implement a multithreaded
parallel computation of the PD algorithm.

3.2. Particle−Pair Method to Accelerate Time Integration in Solving Ice Constitutive Model

In the original PD framework, the integration process is primarily performed on
individual particles, which results in repeated search and calculation for each pair of
interacting particles. Figure 5 provides an example of a 1D ice bar with 7 particles. In this
figure, all the interacting ice particles are listed with a horizon value of 3. However, it can
be observed that certain interacting particles are calculated redundantly, e.g., 1–2 and 2–1,
1–3 and 3–1, and 1–4 and 4–1. Specifically, in Figure 5, ice particles from 1 to 7 are stored in
the array S, occupying 7 memory addresses. The interacting particles for each particle are
stored in the array T in a specific order, occupying 30 memory addresses. Consequently,
the original PD algorithm requires 30 loops for the integration calculation at each time
step. However, it is evident that 15 of these loops are repetitive, as highlighted in Figure 5
with a diagonal background. To eliminate the redundancy in particle integration loops, a
particle−pair algorithm is proposed. This algorithm transforms the integration process
from individual particles to interacting particle pairs. For instance, the arrays S and T in
Figure 5 can be replaced by a particle−pair array with two columns, represented as pair
(count, 1) and pair (count, 2) (where count represents the total number of particle pairs with
active relationships), as depicted in Figure 6.

It can be found that the particle−pair method mentioned above not only reduces
the amount of family particle search (as shown in Figure 5: the computational amount of
search and integration processes is reduced from 30 to 15), but also eliminates the need for
defining large arrays. Only one array is required to replace three large arrays, S, T, and their
corresponding pointer array. The particle−pair method retains the mathematical model of
the PD theory, and the parameter settings for ice and the numerical setup remain the same

J. Mar. Sci. Eng. 2023, 11, 1154 10 of 20

as in the original PD algorithm. The numerical implementation process of this method
involves simply modifying the loop variables of each particle and its family particles using
particle−pair array, which can be found in our previous work [33].

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 21

3.2. Particle−Pair Method to Accelerate Time Integration in Solving Ice Constitutive Model

In the original PD framework, the integration process is primarily performed on in-

dividual particles, which results in repeated search and calculation for each pair of inter-

acting particles. Figure 5 provides an example of a 1D ice bar with 7 particles. In this fig-

ure, all the interacting ice particles are listed with a horizon value of 3. However, it can be

observed that certain interacting particles are calculated redundantly, e.g., 1–2 and 2–1, 1–

3 and 3–1, and 1–4 and 4–1. Specifically, in Figure 5, ice particles from 1 to 7 are stored in

the array S, occupying 7 memory addresses. The interacting particles for each particle are

stored in the array T in a specific order, occupying 30 memory addresses. Consequently,

the original PD algorithm requires 30 loops for the integration calculation at each time

step. However, it is evident that 15 of these loops are repetitive, as highlighted in Figure

5 with a diagonal background. To eliminate the redundancy in particle integration loops,

a particle−pair algorithm is proposed. This algorithm transforms the integration process

from individual particles to interacting particle pairs. For instance, the arrays S and T in

Figure 5 can be replaced by a particle−pair array with two columns, represented as pair

(count, 1) and pair (count, 2) (where count represents the total number of particle pairs with

active relationships), as depicted in Figure 6.

1 2 3 4 5 6 7

1 2

3

4

S T

2 1

3

4

S T

3 1

2

4

S T

4 1

2

3

S T

5 2

3

4

S T

6 3

4

5

S T

7 4

5

6

S T

5 5

6

5

6

7

6

7

7

Figure 5. List of interacting particles in one dimension.

1

2

1

3

1

4

2

3

2

4

2

5

3

4

3

5

3

6

4

5

4

6

4

7

5

6

5

7

6

7

Pair(count,1)

Pair(count,2)

Data:

Adress: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.

Figure 6. The array of particle pair refers to the case in Figure 5.

It can be found that the particle−pair method mentioned above not only reduces the

amount of family particle search (as shown in Figure 5: the computational amount of

search and integration processes is reduced from 30 to 15), but also eliminates the need

for defining large arrays. Only one array is required to replace three large arrays, S, T, and

their corresponding pointer array. The particle−pair method retains the mathematical

model of the PD theory, and the parameter settings for ice and the numerical setup remain

the same as in the original PD algorithm. The numerical implementation process of this

method involves simply modifying the loop variables of each particle and its family par-

ticles using particle−pair array, which can be found in our previous work [33].

To validate the accuracy of the particle−pair method, an impact between a rigid cyl-

inder and an ice plate is calculated. In this case, the ice is not allowed to be damaged. The

calculation model and results, specifically the displacement of the ice plate in the y−direc-

tion, are presented in Figures 7 and 8. The accuracy of the results is verified by comparing

them with those obtained from the original PD algorithm.

Figure 5. List of interacting particles in one dimension.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 10 of 21

3.2. Particle−Pair Method to Accelerate Time Integration in Solving Ice Constitutive Model

In the original PD framework, the integration process is primarily performed on in-

dividual particles, which results in repeated search and calculation for each pair of inter-

acting particles. Figure 5 provides an example of a 1D ice bar with 7 particles. In this fig-

ure, all the interacting ice particles are listed with a horizon value of 3. However, it can be

observed that certain interacting particles are calculated redundantly, e.g., 1–2 and 2–1, 1–

3 and 3–1, and 1–4 and 4–1. Specifically, in Figure 5, ice particles from 1 to 7 are stored in

the array S, occupying 7 memory addresses. The interacting particles for each particle are

stored in the array T in a specific order, occupying 30 memory addresses. Consequently,

the original PD algorithm requires 30 loops for the integration calculation at each time

step. However, it is evident that 15 of these loops are repetitive, as highlighted in Figure

5 with a diagonal background. To eliminate the redundancy in particle integration loops,

a particle−pair algorithm is proposed. This algorithm transforms the integration process

from individual particles to interacting particle pairs. For instance, the arrays S and T in

Figure 5 can be replaced by a particle−pair array with two columns, represented as pair

(count, 1) and pair (count, 2) (where count represents the total number of particle pairs with

active relationships), as depicted in Figure 6.

1 2 3 4 5 6 7

1 2

3

4

S T

2 1

3

4

S T

3 1

2

4

S T

4 1

2

3

S T

5 2

3

4

S T

6 3

4

5

S T

7 4

5

6

S T

5 5

6

5

6

7

6

7

7

Figure 5. List of interacting particles in one dimension.

1

2

1

3

1

4

2

3

2

4

2

5

3

4

3

5

3

6

4

5

4

6

4

7

5

6

5

7

6

7

Pair(count,1)

Pair(count,2)

Data:

Adress: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

.

Figure 6. The array of particle pair refers to the case in Figure 5.

It can be found that the particle−pair method mentioned above not only reduces the

amount of family particle search (as shown in Figure 5: the computational amount of

search and integration processes is reduced from 30 to 15), but also eliminates the need

for defining large arrays. Only one array is required to replace three large arrays, S, T, and

their corresponding pointer array. The particle−pair method retains the mathematical

model of the PD theory, and the parameter settings for ice and the numerical setup remain

the same as in the original PD algorithm. The numerical implementation process of this

method involves simply modifying the loop variables of each particle and its family par-

ticles using particle−pair array, which can be found in our previous work [33].

To validate the accuracy of the particle−pair method, an impact between a rigid cyl-

inder and an ice plate is calculated. In this case, the ice is not allowed to be damaged. The

calculation model and results, specifically the displacement of the ice plate in the y−direc-

tion, are presented in Figures 7 and 8. The accuracy of the results is verified by comparing

them with those obtained from the original PD algorithm.

Figure 6. The array of particle pair refers to the case in Figure 5.

To validate the accuracy of the particle−pair method, an impact between a rigid
cylinder and an ice plate is calculated. In this case, the ice is not allowed to be damaged.
The calculation model and results, specifically the displacement of the ice plate in the
y−direction, are presented in Figures 7 and 8. The accuracy of the results is verified by
comparing them with those obtained from the original PD algorithm.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 21

Figure 7. Rigid cylinder impacting an ice plate without damage.

Results of original PD method

Results of particle pair method

Results of original PD method

Results of particle pair method

(a) (b)

Figure 8. Comparison of displacement of ice plate in y−direction after contacting: (a) original PD

method, (b) particle−pair method.

In terms of the results, Figure 8 illustrates that the particle−pair algorithm exhibits a

similar performance to the original PD algorithm. Subsequently, we delved into the com-

putational efficiency improvement of this method. Figure 9 compares the time consump-

tion between the particle−pair method and the original PD algorithm for various ice dis-

cretizations. The specific configurations of the cases with different numbers of ice particles

are provided in Table 3. The number of particles ranges from 5000 to 1,440,000.

Figure 7. Rigid cylinder impacting an ice plate without damage.

J. Mar. Sci. Eng. 2023, 11, 1154 11 of 20

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 11 of 21

Figure 7. Rigid cylinder impacting an ice plate without damage.

Results of original PD method

Results of particle pair method

Results of original PD method

Results of particle pair method

(a) (b)

Figure 8. Comparison of displacement of ice plate in y−direction after contacting: (a) original PD

method, (b) particle−pair method.

In terms of the results, Figure 8 illustrates that the particle−pair algorithm exhibits a

similar performance to the original PD algorithm. Subsequently, we delved into the com-

putational efficiency improvement of this method. Figure 9 compares the time consump-

tion between the particle−pair method and the original PD algorithm for various ice dis-

cretizations. The specific configurations of the cases with different numbers of ice particles

are provided in Table 3. The number of particles ranges from 5000 to 1,440,000.

Figure 8. Comparison of displacement of ice plate in y−direction after contacting: (a) original PD
method, (b) particle−pair method.

In terms of the results, Figure 8 illustrates that the particle−pair algorithm exhibits
a similar performance to the original PD algorithm. Subsequently, we delved into the
computational efficiency improvement of this method. Figure 9 compares the time con-
sumption between the particle−pair method and the original PD algorithm for various
ice discretizations. The specific configurations of the cases with different numbers of ice
particles are provided in Table 3. The number of particles ranges from 5000 to 1,440,000.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 12 of 21

Figure 9. Comparison of calculation time of particle−pair method.

Table 3. Setup of rigid cylinder impacting ice plate by particle−pair method.

Cases Particle Number Size of Array in Particle−pair Method Size of Particle Array in Original PD Algorithm

case 1 5000 67,318 134,636

case 2 20,000 274,618 549,236

case 3 80,000 1,109,218 2218434

case 4 180,000 9,413,790 18,827,580

case 5 300,000 16,608,234 33,216,468

case 6 600,000 34,594,344 69,188,688

case 7 800,000 46,585,084 93,170,168

case 8 1,440,000 81,529,656 163,059,312

In Table 3, it is observed that the allocated size of the array using the particle−pair

method in programming is only half of that in the original PD algorithm. This reduction

in memory consumption leads to a significant improvement in computational efficiency.

Figure 9 presents a comparison of the calculation time for both time integration and family

member search as a function of the number of particles. It is evident from the comparison

curve that the particle−pair method achieves more time savings in both the time integra-

tion stage and the particle search stage compared with the traditional PD algorithm. The

magnitude of time savings increases as the number of particles increases.

Overall, as the number of particles increases, the time consumption of these two mod-

ules (time integration and family member search) increases noticeably. When comparing

with the original brute−force search method, the time advantage of the particle−pair algo-

rithm may not be apparent when the number of particles is small (less than 80,000 in Fig-

ure 9). However, when the number of particles exceeds 80,000, the particle−pair algorithm

exhibits a remarkable reduction in the time consumption of these two parts, saving ap-

proximately 78% of the calculation time. In summary, the efficiency improvement

achieved with the particle−pair method becomes more significant as the number of parti-

cles increases.

Figure 9. Comparison of calculation time of particle−pair method.

Table 3. Setup of rigid cylinder impacting ice plate by particle−pair method.

Cases Particle Number Size of Array in Particle−Pair Method Size of Particle Array in Original PD Algorithm

case 1 5000 67,318 134,636
case 2 20,000 274,618 549,236
case 3 80,000 1,109,218 2218434
case 4 180,000 9,413,790 18,827,580
case 5 300,000 16,608,234 33,216,468
case 6 600,000 34,594,344 69,188,688
case 7 800,000 46,585,084 93,170,168
case 8 1,440,000 81,529,656 163,059,312

In Table 3, it is observed that the allocated size of the array using the particle−pair
method in programming is only half of that in the original PD algorithm. This reduction
in memory consumption leads to a significant improvement in computational efficiency.

J. Mar. Sci. Eng. 2023, 11, 1154 12 of 20

Figure 9 presents a comparison of the calculation time for both time integration and
family member search as a function of the number of particles. It is evident from the
comparison curve that the particle−pair method achieves more time savings in both the
time integration stage and the particle search stage compared with the traditional PD
algorithm. The magnitude of time savings increases as the number of particles increases.

Overall, as the number of particles increases, the time consumption of these two mod-
ules (time integration and family member search) increases noticeably. When comparing
with the original brute−force search method, the time advantage of the particle−pair
algorithm may not be apparent when the number of particles is small (less than 80,000
in Figure 9). However, when the number of particles exceeds 80,000, the particle−pair
algorithm exhibits a remarkable reduction in the time consumption of these two parts,
saving approximately 78% of the calculation time. In summary, the efficiency improve-
ment achieved with the particle−pair method becomes more significant as the number of
particles increases.

3.3. MPI Parallel Technology

In the PD framework, the most commonly used parallel technology is OpenMP, which
is based on multithreaded and shared memory parallel mode [34]. OpenMP technology is
relatively simple and easy to implement because the calculation domain can be automatically
divided into several processors, and it can be easily realized with fewer instructions [35].
However, it still faces limitations regarding the number of particles. On the other hand,
message passing interface (MPI) is a widely used cross−language parallel programming
technique. The MPI parallel technology enables distributed computation with high scalability,
facilitating high−performance parallel computing of clusters and reducing the hardware
requirement of a single computer. In this section, the OSB−PD program is compiled based on
MPI, enabling the calculation of a large amount of data on hardware with limited memory
capacity. The configuration of the computer used for the study is as follows: Intel(R) Core
(TM) i7−10875H @ 2.3 GHz, 32 GB RAM, MS Windows 11 × 64.

The computational cost of the PD method primarily lies in the “do loop” of PD force
integration on particles and their family members. In other words, the number of particles
determines the amount of computation in the algorithm. Therefore, the most effective
strategy is to reduce the computational complexity of numerical integration. This can be
achieved by employing multiple processors to share the total number of particles, using
a domain partition algorithm [36]. The details of the MPI strategy can be found in our
previous work [26].

In this section, the case shown in Figure 7 is chosen to study MPI efficiency. The
MPI method is applied to conduct the simulation with particles of 1,440,000. The family
particle search, integration, and total time under different numbers of thread are calculated.
The speedup and efficiency are calculated and shown in Table 4. Speedup is the ratio of
the execution time ts of the serial computation to the execution time tp(q) of the parallel
computation using q processors, Sp(q) = ts/tp(q). Efficiency is the ratio of speedup to the
number of processor cores used in the parallel program, Ep(q) = Sp(q)/q.

In Table 4, the computation time of the original PD algorithm in serial computing
mode is about 17,320 s. However, after adopting an MPI parallel strategy, a significant
improvement in computing efficiency is observed. In the case with 2 threads, the calculation
time is approximately 0.2 times that of the original method. As the number of threads
increases, the speedup shows a linear growth trend, reaching 9.46 under 14 threads. How-
ever, in terms of computational efficiency, as the number of threads increases, the efficiency
gradually reduces. This aspect will be analyzed in detail in the following paragraph. It is
evident that the parallel strategy must replace the original calculation method, especially
in the case with a large number of particles, as mentioned in Section 2.3.

J. Mar. Sci. Eng. 2023, 11, 1154 13 of 20

Table 4. Speedup and efficiency of MPI parallelization with different threads in release mode (unit: s).

Threads
MPI Parallelization Computing Time of

Traditional PD Serial
Speedup Efficiency

Search of Family Particles Time Integration Total Time

4 272.234 3319.438 3594.609

17,320.609

4.82 1.20
6 160.531 2316.000 2493.922 6.96 1.16
8 112.797 1877.266 2002.359 8.65 1.08

10 83.484 2284.266 2381.672 7.27 0.727
12 59.828 1988.984 2067.297 8.39 0.698
14 63.343 1758.719 1830.891 9.46 0.676

The time versus the thread number in an MPI scheme for different calculation modules
is plotted in Figures 10 and 11. It should be noted that the time consumption of original PD
computing is not included in Figure 10, as it has a significantly large value that is impractical
to depict in a figure. From Figure 10, it can be observed that the time consumption decreases
as the number of threads increases. In Figure 11, it is evident that the calculation achieves
a superlinear ratio of when using 8 threads or fewer, that is, S ≥ q. However, when the
number of threads exceeds 8, it transitions to S < q. As the number of threads increases,
the efficiency exhibits a linear decrease. This is due to the increase in CPU time (lost time)
for I/O operations that use memory increases and the increase in data communication as
the number of threads increases, as depicted in Figure 12. Moreover, it can be seen that the
decrease in time becomes more modest beyond 8 threads.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 21

impractical to depict in a figure. From Figure 10, it can be observed that the time consump-

tion decreases as the number of threads increases. In Figure 11, it is evident that the cal-

culation achieves a superlinear ratio of when using 8 threads or fewer, that is, S q . How-

ever, when the number of threads exceeds 8, it transitions to S q . As the number of

threads increases, the efficiency exhibits a linear decrease. This is due to the increase in

CPU time (lost time) for I/O operations that use memory increases and the increase in data

communication as the number of threads increases, as depicted in Figure 12. Moreover, it

can be seen that the decrease in time becomes more modest beyond 8 threads.

Figure 10. The time versus the thread number in MPI scheme for different calculation modules.

Figure 11. The efficiency of the MPI parallelization.

4 6 8 10 12 14

4

5

6

7

8

9

10

 speed up

sp
ee

d
 u

p

number of threads

4 6 8 10 12 14

0.6

0.7

0.8

0.9

1.0

1.1

1.2
 efficiency

ef
fi

ci
en

cy

number of threads

Figure 10. The time versus the thread number in MPI scheme for different calculation modules.

In general, there is a linear relationship between speedup/efficiency and the number
of threads. In other words, increasing the number of threads significantly improves the
computational efficiency of the algorithm, resulting in an almost linear speedup. However,
it is worth noting that the trend differs for 6 and 8 threads compared with other thread
counts, particularly with 8 threads. Surprisingly, the speedup of 8 threads is even higher
than that of 10 threads. This can be attributed to the fact that computing efficiency is not
solely determined by the number of threads but also influenced by data communication,
which is determined by domain partitioning. Figure 12 provides insight into this observa-
tion, showing that the maximum number of threads communicating simultaneously is 7,
10, and 13 for 6 threads, 8 threads, and 10 threads, respectively.

J. Mar. Sci. Eng. 2023, 11, 1154 14 of 20

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 14 of 21

impractical to depict in a figure. From Figure 10, it can be observed that the time consump-

tion decreases as the number of threads increases. In Figure 11, it is evident that the cal-

culation achieves a superlinear ratio of when using 8 threads or fewer, that is, S q . How-

ever, when the number of threads exceeds 8, it transitions to S q . As the number of

threads increases, the efficiency exhibits a linear decrease. This is due to the increase in

CPU time (lost time) for I/O operations that use memory increases and the increase in data

communication as the number of threads increases, as depicted in Figure 12. Moreover, it

can be seen that the decrease in time becomes more modest beyond 8 threads.

Figure 10. The time versus the thread number in MPI scheme for different calculation modules.

Figure 11. The efficiency of the MPI parallelization.

4 6 8 10 12 14

4

5

6

7

8

9

10

 speed up

sp
ee

d
 u

p

number of threads

4 6 8 10 12 14

0.6

0.7

0.8

0.9

1.0

1.1

1.2
 efficiency

ef
fi

ci
en

cy

number of threads

Figure 11. The efficiency of the MPI parallelization.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 15 of 21

(a) (b) (c)

Figure 12. Comparison of data communication in different threads. The yellow plate represents the

ice domain, while the thick red lines indicate the thread partitioning of the ice body in parallel com-

puting. The green numbers correspond to the thread numbers (counting from 0), and the blue arrow

lines depict the data exchange and direction between different threads ((a) 6 threads, (b) 8 threads,

(c) 10 threads).

In general, there is a linear relationship between speedup/efficiency and the number

of threads. In other words, increasing the number of threads significantly improves the

computational efficiency of the algorithm, resulting in an almost linear speedup. How-

ever, it is worth noting that the trend differs for 6 and 8 threads compared with other

thread counts, particularly with 8 threads. Surprisingly, the speedup of 8 threads is even

higher than that of 10 threads. This can be attributed to the fact that computing efficiency

is not solely determined by the number of threads but also influenced by data communi-

cation, which is determined by domain partitioning. Figure 12 provides insight into this

observation, showing that the maximum number of threads communicating simultane-

ously is 7, 10, and 13 for 6 threads, 8 threads, and 10 threads, respectively.

Additionally, for 8 threads, the communication particles with adjacent threads in the

x−direction are the same as those in the y−direction, both equaling 100. This means that

the maximum number of particles communicated between threads simultaneously is 100.

However, at 10 threads, the maximum number of communication particles between

threads is 100 in the x−direction and 80 in the y−direction. When the number of particles

exchanging information in different directions is unequal, calculation in threads has to

wait for other threads to achieve synchronous computing before proceeding. This discrep-

ancy is one of the factors contributing to the lower computational efficiency observed with

10 threads. Furthermore, it should be noted that more threads result in more time loss

compared with fewer threads, as MPI implementation on the read/write speed of the stor-

age device (SSD) affects efficiency.

In conclusion, the optimal domain partitioning achieved with 8 threads demonstrates

good efficiency. Therefore, it is recommended to prioritize domain partitioning that min-

imizes the number of communication threads and communication particles in MPI paral-

lel computing. Additionally, it is advisable to ensure that the quantity of particles used for

information exchange in all directions is equal or similar.

4. Efficiency Analysis of Multimethod Collaborative Computing

In this section, the collaborative computing of multiple methods is investigated in PD

programming, building upon the aforementioned three methods. The study further ex-

plores the impact of combining multiple methods on computational efficiency and

speedup, specifically examining the effects of utilizing the updated link−list method in

MPI parallelization and the particle−pair method in MPI parallelization. Additionally, a

comparison of efficiency between MPI parallelization and OpenMP parallelization is con-

ducted. The calculation case used in this section is identical to that of Section 5, involving

a rigid cylinder impacting an ice plate.

0 1 2

3 4 5

0 1 2 3

4 5 6 7

0 1 2 3

5 6 7 8

4

9

Figure 12. Comparison of data communication in different threads. The yellow plate represents
the ice domain, while the thick red lines indicate the thread partitioning of the ice body in parallel
computing. The green numbers correspond to the thread numbers (counting from 0), and the
blue arrow lines depict the data exchange and direction between different threads ((a) 6 threads,
(b) 8 threads, (c) 10 threads).

Additionally, for 8 threads, the communication particles with adjacent threads in
the x−direction are the same as those in the y−direction, both equaling 100. This means
that the maximum number of particles communicated between threads simultaneously is
100. However, at 10 threads, the maximum number of communication particles between
threads is 100 in the x−direction and 80 in the y−direction. When the number of particles
exchanging information in different directions is unequal, calculation in threads has to wait
for other threads to achieve synchronous computing before proceeding. This discrepancy
is one of the factors contributing to the lower computational efficiency observed with
10 threads. Furthermore, it should be noted that more threads result in more time loss
compared with fewer threads, as MPI implementation on the read/write speed of the
storage device (SSD) affects efficiency.

In conclusion, the optimal domain partitioning achieved with 8 threads demonstrates
good efficiency. Therefore, it is recommended to prioritize domain partitioning that mini-
mizes the number of communication threads and communication particles in MPI parallel
computing. Additionally, it is advisable to ensure that the quantity of particles used for
information exchange in all directions is equal or similar.

4. Efficiency Analysis of Multimethod Collaborative Computing

In this section, the collaborative computing of multiple methods is investigated in
PD programming, building upon the aforementioned three methods. The study further
explores the impact of combining multiple methods on computational efficiency and
speedup, specifically examining the effects of utilizing the updated link−list method in
MPI parallelization and the particle−pair method in MPI parallelization. Additionally,

J. Mar. Sci. Eng. 2023, 11, 1154 15 of 20

a comparison of efficiency between MPI parallelization and OpenMP parallelization is
conducted. The calculation case used in this section is identical to that of Section 5, involving
a rigid cylinder impacting an ice plate.

4.1. Updated Link−List Method in MPI Parallelization and Particle−Pair Method in
MPI Parallelization

Figure 13 shows a comparison of time consumption for time integration and family
particle search among updated link−list method in MPI parallelization, particle−pair
method in MPI parallelization, and original PD solution in MPI parallelization. It is evident
from the figure that the calculation loop of each modulus significantly decreases with the
increase in the number of threads. When the number of threads is equal to 10, the situation
is the same as described in Section 3.3, and there is a temporary increase trend. Compared
with the original PD method in MPI parallelization, the updated link−list method in MPI
parallelization saves much time consumed by family particle search, thereby reducing the
total calculation time. However, since the time integration plays a dominant role in the
overall program, the efficiency of the updated link−list method in MPI parallelization
is less remarkable. The speedup of the two parallel methods aligns with the increase in
the number of threads, as depicted in Figure 14a. The updated link−list method in MPI
parallelization with 8 threads or fewer is more efficient than the original PD method in MPI
parallelization; however, this advantage weakens as the increase in the number of threads,
as shown in Figure 14b.

J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 16 of 21

4.1. Updated Link−List Method in MPI Parallelization and Particle−Pair Method in MPI

Parallelization

Figure 13 shows a comparison of time consumption for time integration and family

particle search among updated link−list method in MPI parallelization, particle−pair

method in MPI parallelization, and original PD solution in MPI parallelization. It is evi-

dent from the figure that the calculation loop of each modulus significantly decreases with

the increase in the number of threads. When the number of threads is equal to 10, the

situation is the same as described in Section 3.3, and there is a temporary increase trend.

Compared with the original PD method in MPI parallelization, the updated link−list

method in MPI parallelization saves much time consumed by family particle search,

thereby reducing the total calculation time. However, since the time integration plays a

dominant role in the overall program, the efficiency of the updated link−list method in

MPI parallelization is less remarkable. The speedup of the two parallel methods aligns

with the increase in the number of threads, as depicted in Figure 14a. The updated link−list

method in MPI parallelization with 8 threads or fewer is more efficient than the original

PD method in MPI parallelization; however, this advantage weakens as the increase in the

number of threads, as shown in Figure 14b.

(a) (b)

Figure 13. Comparison of time consumption among the updated link−list method in MPI parallel-

ization, the particle−pair method in MPI parallelization, and the original PD solution in MPI paral-

lelization. ((a) modulus of time integration, (b) modulus of family particle search).

4 6 8 10 12 14

-50

0

50

100

150

200

250

300

350

t
/

s

number of threads

 family particle search of original PD solution

 in MPI parallelization

 family particle search of updated link-list method

 in MPI parallelization

 family particle search of particle pair method

 in MPI parallelization

Figure 13. Comparison of time consumption among the updated link−list method in MPI paral-
lelization, the particle−pair method in MPI parallelization, and the original PD solution in MPI
parallelization. ((a) modulus of time integration, (b) modulus of family particle search).

J. Mar. Sci. Eng. 2023, 11, 1154 16 of 20
J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 17 of 21

(a) (b)

Figure 14. Comparison of (a)speedup and (b) efficiency among the updated link−list method in MPI

parallelization, the particle−pair method in MPI parallelization, and the original PD solution in MPI

parallelization.

The particle−pair method in MPI parallelization significantly improves the efficiency

of the calculation program, which is about 1.8 times higher than the other two collabora-

tive methods and dramatically reduces the calculation time. With the increase in the num-

ber of threads, the speedup of the particle−pair method in MPI parallelization is better

than the updated link−list method in MPI parallelization. It can be concluded that the par-

ticle−pair method in MPI parallelization plays a significant role in improving the efficiency

of PD calculation.

4.2. Comparison between MPI Parallelization and OpenMP Parallelization

In OpenMP parallelization, the brute−force search process cannot be parallelized

since the particles in the family member array established during this process have a se-

quential relationship. Therefore, it is necessary to calculate and assign addresses accord-

ing to the number of particles in serial computing, which is one of the disadvantages of

OpenMP parallelization compared with MPI parallelization. Since the brute−force search

process is serial, there is no advantage under the condition of 1,440,000 particles. There-

fore, this section directly adopts the updated linked list search method to determine the

neighborhood particle information.

As is shown in Figure 15a, the speedup of PD in MPI parallelization is approximately

1.2 times higher than that of PD in OpenMP parallelization, and it remains unchanged

regardless of the number of threads. Therefore, it can be concluded that MPI paralleliza-

tion is a better choice to improve the efficiency of the PD method despite its implementa-

tion challenges in the code. In Figure 15b, with the increase in the number of threads, the

efficiency of PD gradually decreases, and when the number of threads is 8, the efficiency

decreases faster. This trend is the same as that in the summary in Section 3.3. As the num-

ber of threads increases, the time benefit resulting from additional parallel threads dimin-

ishes due to the growing number of parallel threads.

4 6 8 10 12 14

4

6

8

10

12

14

16

18

20

sp
ee

d
 u

p

number of threads

 speedup of updated link-list method

 in MPI parallelization

 speedup of original PD solution

 in MPI parallelization

 speedup of particle pair method

 in MPI parallelization

4 6 8 10 12 14

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

ef
fi

ci
en

cy
number of threads

 efficiency of updated link-list method in MPI parallelization

 efficiency of original PD solution in MPI parallelization

 efficiency of particle pair method in MPI parallelization

Figure 14. Comparison of (a)speedup and (b) efficiency among the updated link−list method in
MPI parallelization, the particle−pair method in MPI parallelization, and the original PD solution in
MPI parallelization.

The particle−pair method in MPI parallelization significantly improves the efficiency
of the calculation program, which is about 1.8 times higher than the other two collaborative
methods and dramatically reduces the calculation time. With the increase in the number of
threads, the speedup of the particle−pair method in MPI parallelization is better than the
updated link−list method in MPI parallelization. It can be concluded that the particle−pair
method in MPI parallelization plays a significant role in improving the efficiency of
PD calculation.

4.2. Comparison between MPI Parallelization and OpenMP Parallelization

In OpenMP parallelization, the brute−force search process cannot be parallelized since
the particles in the family member array established during this process have a sequential
relationship. Therefore, it is necessary to calculate and assign addresses according to the
number of particles in serial computing, which is one of the disadvantages of OpenMP
parallelization compared with MPI parallelization. Since the brute−force search process is
serial, there is no advantage under the condition of 1,440,000 particles. Therefore, this sec-
tion directly adopts the updated linked list search method to determine the neighborhood
particle information.

As is shown in Figure 15a, the speedup of PD in MPI parallelization is approximately
1.2 times higher than that of PD in OpenMP parallelization, and it remains unchanged
regardless of the number of threads. Therefore, it can be concluded that MPI parallelization
is a better choice to improve the efficiency of the PD method despite its implementation
challenges in the code. In Figure 15b, with the increase in the number of threads, the
efficiency of PD gradually decreases, and when the number of threads is 8, the efficiency
decreases faster. This trend is the same as that in the summary in Section 3.3. As the number
of threads increases, the time benefit resulting from additional parallel threads diminishes
due to the growing number of parallel threads.

J. Mar. Sci. Eng. 2023, 11, 1154 17 of 20
J. Mar. Sci. Eng. 2023, 11, x FOR PEER REVIEW 18 of 21

(a) (b)

Figure 15. Comparison of the (a) speedup and (b) efficiency between MPI parallelization and

OpenMP parallelization.

5. Engineering Efficiency on Ice–Ship Interaction

In order to demonstrate the application of MPI parallelization in practical engineer-

ing cases, an icebreaker breaking level ice was studied in our previous work [25]. In this

case, a complete icebreaker model was established to continuously break the level ice, with

failure defined by critical stretch. The calculation results validate the accuracy of simulat-

ing ice damage. Since our present study primarily focuses on computational efficiency,

which was not previously emphasized in our calculations, we will not delve into the de-

tails of ice damage and its contour in this section.

In this section, four parallel schemes are set to simulate the process of ship breaking

ice. The total time, speed up, and computing efficiency are given in Table 5. The MPI par-

allel computing efficiency has been greatly improved. As the number of threads increases,

the total computation time decreases. Although there is a slight decline in efficiency, com-

putational efficiency can still surpass 90% compared with a single thread, with the calcu-

lation speedup increasing linearly. This makes the practical application of MPI parallel-

ization more viable in engineering scenarios.

Table 5. MPI efficiency of the icebreaking process.

Threads Domain Partitioning Total Time Speedup Efficiency

1 −−−−− 717,969.6403 −−−−− −−−−−

10 5 × 2 76,280.195 9.89 0.99

20 5 × 4 40,490.68004 18.63 0.93

30 6 × 5 27,785.8704 27.15 0.91

40 8 × 5 13,999.2036 38.89 0.97
Configuration: Intel(R) Xeon(R) E5−2699 v4 @ 2.2 GHz, 128 GB RAM, MS Windows 7 × 64.

6. Discussion

In order to address the issue of low computing efficiency in the original peridynamic

(PD) algorithm for simulating ice–structure interaction, this paper adopts three optimiza-

tion algorithms to simulate a case involving a three−dimensional rigid cylinder impacting

an ice plate. These algorithms include the updated link−list method, particle−pair method,

and a collaboration method combining MPI parallelization with the aforementioned two

4 6 8 10 12 14

4

5

6

7

8

9

10

sp
ee

d
 u

p

number of threads

 speedup of updated link-list search method

 in MPI parallelization

 speedup of updated link-list search method

 in OpenMP parallelization

4 6 8 10 12 14

0.4

0.6

0.8

1.0

1.2

1.4

ef
fi

ci
en

cy

number of threads

 efficiency of updated linked list method

 in OpenMP parallelization

 efficiency of updated linked list method

 in MPI parallelization

Figure 15. Comparison of the (a) speedup and (b) efficiency between MPI parallelization and
OpenMP parallelization.

5. Engineering Efficiency on Ice–Ship Interaction

In order to demonstrate the application of MPI parallelization in practical engineering
cases, an icebreaker breaking level ice was studied in our previous work [25]. In this case, a
complete icebreaker model was established to continuously break the level ice, with failure
defined by critical stretch. The calculation results validate the accuracy of simulating ice
damage. Since our present study primarily focuses on computational efficiency, which was
not previously emphasized in our calculations, we will not delve into the details of ice
damage and its contour in this section.

In this section, four parallel schemes are set to simulate the process of ship breaking ice.
The total time, speed up, and computing efficiency are given in Table 5. The MPI parallel
computing efficiency has been greatly improved. As the number of threads increases, the
total computation time decreases. Although there is a slight decline in efficiency, computa-
tional efficiency can still surpass 90% compared with a single thread, with the calculation
speedup increasing linearly. This makes the practical application of MPI parallelization
more viable in engineering scenarios.

Table 5. MPI efficiency of the icebreaking process.

Threads Domain Partitioning Total Time Speedup Efficiency

1 −−−−− 717,969.6403 −−−−− −−−−−
10 5 × 2 76,280.195 9.89 0.99
20 5 × 4 40,490.68004 18.63 0.93
30 6 × 5 27,785.8704 27.15 0.91
40 8 × 5 13,999.2036 38.89 0.97

Configuration: Intel(R) Xeon(R) E5−2699 v4 @ 2.2 GHz, 128 GB RAM, MS Windows 7 × 64.

6. Discussion

In order to address the issue of low computing efficiency in the original peridynamic
(PD) algorithm for simulating ice–structure interaction, this paper adopts three optimization
algorithms to simulate a case involving a three−dimensional rigid cylinder impacting an ice
plate. These algorithms include the updated link−list method, particle−pair method, and a
collaboration method combining MPI parallelization with the aforementioned two methods.
Compared with the original algorithms in PD, the influence of the above algorithms on
total computing time, speedup, and calculating efficiency is analyzed. Furthermore, the

J. Mar. Sci. Eng. 2023, 11, 1154 18 of 20

efficiency of multimethod collaboration is also examined. An engineering case of icebreaker
breaking level ice is utilized to demonstrate these methods. The following conclusions can
be drawn from the present study:

(1) The updated link−list method significantly improves the calculation efficiency of ice
particle search compared with the original PD method. As the number of particles
increases, the brute−force method takes much more time in the family member search
compared with the updated link−list method.

(2) The particle−pair method reduces both the amount of family particle search and the
size of the array storing particles in the horizon. Analysis of the calculation results of
ice structures reveals that the particle−pair algorithm improves the computational
efficiency by approximately 1.5 to 2 times, and this improvement is independent of
the number of particles. Notably, with the increasing number of particles, the time
cost of family particle search in the particle−pair algorithm grows slower than that of
the original PD algorithm.

(3) With the increase in the number of threads in the MPI scheme, the time consumption
of the PD program shows a relatively linear decreasing tendency. At 8 threads and
below, parallelism achieves superlinear speedup. However, the number of threads
is not the only factor that affects computational efficiency. The number of commu-
nicating threads and the number of communicating particles with different domain
partitioning also influence efficiency.

(4) The combination methods proposed in the present paper can significantly reduce
time consumption. Combined with the numerical simulation results of icebreaker
breaking level ice, the particle−pair method in MPI parallelization exhibits the highest
efficiency. PD in MPI parallelization outperforms the OpenMP scheme in terms
of efficiency.

From our perspective, when dealing with large−scale ice engineering problems. The
PD method effectively predicts ice damage. Although parallel computing improves effi-
ciency, it heavily relies on hardware. Based on the research and discussion in this article, we
suggest using collaboration between optimized numerical algorithms, such as particle−pair
and MPI parallel, to solve the problem of high computational complexity in engineering
case analysis.

The method proposed in this paper to enhance the calculation efficiency of ice–
structure interaction simulation is only the beginning. For instance, MPI parallelism
can also be expanded to high−performance computing clusters to enable a large number
of computing nodes. Additionally, if PD can achieve GPU−based parallel computing, it
will pave the way for significant advancements in engineering applications. In the future,
we will further explore other optimization algorithms to simultaneously enhance efficiency
and computational accuracy.

Author Contributions: Conceptualization, Y.Z. and L.Y.; Methodology, Y.Z., L.Y. and K.H.; Valida-
tion, Y.Z.; Formal analysis, Y.Z. and S.S.; Investigation, S.S.; Writing—original draft, Y.Z. and G.Z.;
Writing—review & editing, L.T. and C.W.; Funding acquisition, C.W. All authors have read and
agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China (Grant
No. 52171300).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

J. Mar. Sci. Eng. 2023, 11, 1154 19 of 20

References
1. Silling, S.A. Reformulation of elasticity theory for discontinuities and long-range forces. J. Mech. Phys. Solids 2000, 48, 175–209.

[CrossRef]
2. Silling, S.A.; Askari, E. A meshfree method based on the peridynamic model of solid mechanics. Comput. Struct. 2005,

83, 1526–1535. [CrossRef]
3. Foster, J.T.; Silling, S.A.; Chen, W.W. Viscoplasticity using peridynamics. Int. J. Numer. Methods Eng. 2010, 81, 1242–1258.

[CrossRef]
4. Silling, S.A.; Epton, M.; Weckner, O.; Xu, J.; Askari, E. Peridynamic States and Constitutive Modeling. J. Elast. 2007, 88, 151–184.

[CrossRef]
5. Nikolaev, P.; Sedighi, M.; Jivkov, A.P.; Margetts, L. Analysis of heat transfer and water flow with phase change in saturated

porous media by bond-based peridynamics. Int. J. Heat Mass Transf. 2022, 185, 122327. [CrossRef]
6. Katiyar, A.; Agrawal, S.; Ouchi, H.; Seleson, P.; Foster, J.T.; Sharma, M.M. A general peridynamics model for multiphase transport

of non-Newtonian compressible fluids in porous media. J. Comput. Phys. 2020, 402, 109075. [CrossRef]
7. Madenci, E.; Roy, P.; Behera, D. Advances in Peridynamics; Springer: Berlin/Heidelberg, Germany, 2022.
8. Wang, Q.; Wang, Y.; Zan, Y.F.; Lu, W.; Bai, X.L.; Guo, J. Peridynamics simulation of the fragmentation of ice cover by blast loads of

an underwater explosion. J. Mar. Sci. Tech. 2018, 23, 52–66. [CrossRef]
9. Zhang, Y.; Tao, L.; Wang, C.; Sun, S. Peridynamic analysis of ice fragmentation under explosive loading on varied fracture

toughness of ice with fully coupled thermomechanics. J. Fluids Struct. 2022, 112, 103594. [CrossRef]
10. Vazic, B.; Oterkus, E.; Oterkus, S. In-Plane and Out-of Plane Failure of an Ice Sheet using Peridynamics. J. Mech. 2020, 36, 265–271.

[CrossRef]
11. Li, J.; Wang, C.; Wang, Q.; Zhang, Y.; Jing, C.; Han, D. Peridynamic modeling of polycrystalline S2 ice and its applications. Eng.

Fract. Mech. 2023, 277, 108941. [CrossRef]
12. Lu, W.; Wang, Q.; Jia, B.; Shi, L. Simulation of Ice-Sloping Structure Interactions With Peridynamic Method. In Proceedings of the

28th International Ocean and Polar Engineering Conference, Sapporo, Japan, 10–15 June 2018.
13. Jia, B.; Ju, L.; Wang, Q. Numerical Simulation of Dynamic Interaction Between Ice and Wide Vertical Structure Based on

Peridynamics. Comput. Model. Eng. Sci. 2019, 121, 501–522. [CrossRef]
14. Song, Y.; Liu, R.; Li, S.; Kang, Z.; Zhang, F. Peridynamic modeling and simulation of coupled thermomechanical removal of ice

from frozen structures. Meccanica 2019, 55, 961–976. [CrossRef]
15. Liu, M.H.; Wang, Q.; Lu, W. Peridynamic simulation of brittle-ice crushed by a vertical structure. Int. J. Nav. Archit. Ocean. Eng.

2017, 9, 209–218. [CrossRef]
16. Liu, R.W.; Xue, Y.Z.; Lu, X.K.; Cheng, W.X. Simulation of ship navigation in ice rubble based on peridynamics. Ocean Eng. 2018,

148, 286–298. [CrossRef]
17. Vazic, B.; Oterkus, E.; Oterkus, S. Peridynamic approach for modelling ice-structure interactions. In Trends in the Analysis and

Design of Marine Structures; CRC Press: Boca Raton, FL, USA, 2019.
18. Ye, L.Y.; Guo, C.Y.; Wang, C.; Wang, C.H.; Chang, X. Peridynamic solution for submarine surfacing through ice. Ships Offshore

Struct. 2020, 15, 535–549. [CrossRef]
19. Ye, L.Y.; Wang, C.; Chang, X.; Zhang, H.Y. Propeller-ice contact modeling with peridynamics. Ocean Eng. 2017, 139, 54–64.

[CrossRef]
20. Liu, R.; Xue, Y.; Lu, X. Coupling of Finite Element Method and Peridynamics to Simulate Ship-Ice Interaction. J. Mar. Sci. Eng.

2023, 11, 481. [CrossRef]
21. Diyaroglu, C. Peridynamics and Its Applications in Marine Structures; University of Strathclyde: Glasgow, UK, 2016.
22. Vazic, B. Multi-Scale Modelling of Ice-Structure Interactions; University of Strathclyde: Glasgow, UK, 2020.
23. Domínguez, J.M.; Crespo, A.J.C.; Gómez-Gesteira, M.; Marongiu, J.C. Neighbour lists in smoothed particle hydrodynamics. Int. J.

Numer. Methods Fluids 2011, 67, 2026–2042. [CrossRef]
24. Guo, C.; Han, K.; Wang, C.; Ye, L.; Wang, Z. Numerical modelling of the dynamic ice-milling process and structural response of a

propeller blade profile with state-based peridynamics. Ocean. Eng. 2022, 264, 112457. [CrossRef]
25. Yuan, Z.; Longbin, T.; Chao, W.; Liyu, Y.; Chunyu, G. Numerical study on dynamic icebreaking process of an icebreaker by

ordinary state-based peridynamics and continuous contact detection algorithm. Ocean Eng. 2021, 233, 109148. [CrossRef]
26. Zhang, Y.; Tao, L.; Wang, C.; Ye, L.; Sun, S. Numerical study of icebreaking process with two different bow shapes based on

developed particle method in parallel scheme. Appl. Ocean. Res. 2021, 114, 102777. [CrossRef]
27. Madenci, E.; Oterkus, E. Peridynamic Theory and Its Applications; Springer: New York, NY, USA, 2014. [CrossRef]
28. Silling, S.A.; Askari, E. Peridynamic modeling of impact damage. In Proceedings of the ASME/JSME 2004 Pressure Vessels and

Piping Conference, San Diego, CA, USA, 25–29 July 2004; pp. 197–205.
29. Zhang, Y.; Tao, L.; Ye, L.; Wang, C.; Sun, S.; Lu, W. An updated fast continuous contact detection algorithm and its implementation

in case study of ice-structure interaction by peridynamics. Mar. Struct. 2023, 89, 103406. [CrossRef]
30. Bobaru, F.; Foster, J.T.; Geubelle, P.H.; Silling, S.A. Handbook of Peridynamic Modeling; CRC Press: Boca Raton, FL, USA, 2016.

[CrossRef]
31. Liu, G.-R.; Liu, M.B. Smoothed Particle Hydrodynamics: A Meshfree Particle Method; World Scientific: Singapore, 2003.

https://doi.org/10.1016/S0022-5096(99)00029-0
https://doi.org/10.1016/j.compstruc.2004.11.026
https://doi.org/10.1002/nme.2725
https://doi.org/10.1007/s10659-007-9125-1
https://doi.org/10.1016/j.ijheatmasstransfer.2021.122327
https://doi.org/10.1016/j.jcp.2019.109075
https://doi.org/10.1007/s00773-017-0454-x
https://doi.org/10.1016/j.jfluidstructs.2022.103594
https://doi.org/10.1017/jmech.2019.65
https://doi.org/10.1016/j.engfracmech.2022.108941
https://doi.org/10.32604/cmes.2019.06798
https://doi.org/10.1007/s11012-019-01106-z
https://doi.org/10.1016/j.ijnaoe.2016.10.003
https://doi.org/10.1016/j.oceaneng.2017.11.034
https://doi.org/10.1080/17445302.2019.1661626
https://doi.org/10.1016/j.oceaneng.2017.04.037
https://doi.org/10.3390/jmse11030481
https://doi.org/10.1002/fld.2481
https://doi.org/10.1016/j.oceaneng.2022.112457
https://doi.org/10.1016/j.oceaneng.2021.109148
https://doi.org/10.1016/j.apor.2021.102777
https://doi.org/10.1007/978-1-4614-8465-3
https://doi.org/10.1016/j.marstruc.2023.103406
https://doi.org/10.1201/9781315373331

J. Mar. Sci. Eng. 2023, 11, 1154 20 of 20

32. Zhang, Y. Numerical Study of Ice and Ice-Ship Interaction Based on Ordinary State-Based Peridynamics. Ph.D. Thesis, Harbin
Engineering University, Harbin, China, 2022. (Unpublished Doctoral Dissertation). (In Chinese)

33. Han, K. A particle pair method to improve PD computation efficiency and its MPI parallel strategy. J. Harbin Eng. Univ. 2022,
accepted.

34. Prakash, N.; Stewart, R.J. A Multi-threaded Method to Assemble a Sparse Stiffness Matrix for Quasi-static Solutions of Linearized
Bond-Based Peridynamics. J. Peridynamics Nonlocal Model. 2021, 3, 113–147. [CrossRef]

35. Chambon, G.; Bouvarel, R.; Laigle, D.; Naaim, M. Numerical simulations of granular free-surface flows using smoothed particle
hydrodynamics. J. Non-Newton. Fluid Mech. 2011, 166, 698–712. [CrossRef]

36. Cui, X.D.; Habashi, W.G.; Casseau, V. MPI Parallelisation of 3D Multiphase Smoothed Particle Hydrodynamics. Int. J. Comput.
Fluid. D 2020, 34, 610–621. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1007/s42102-020-00041-y
https://doi.org/10.1016/j.jnnfm.2011.03.007
https://doi.org/10.1080/10618562.2020.1785436

	Introduction
	Peridynamic Theory for Ice–Structure Interaction
	Ordinary State-Based Peridynamic for Ice Model
	Contact Model for Ice–Structure Interaction
	Challenges in Engineering Application in View of Computational Cost

	Computation Efficiency of Optimization Methods
	Updated Link-List Search Method to Improve Family Member Search of Ice Domain
	Particle-Pair Method to Accelerate Time Integration in Solving Ice Constitutive Model
	MPI Parallel Technology

	Efficiency Analysis of Multimethod Collaborative Computing
	Updated Link-List Method in MPI Parallelization and Particle-Pair Method in MPI Parallelization
	Comparison between MPI Parallelization and OpenMP Parallelization

	Engineering Efficiency on Ice–Ship Interaction
	Discussion
	References

