

Gary, Howorth Univ of Strathclyde, UK

Ivana, Kockar Univ of Strathclyde, UK

Paul, Touhy Univ of Strathclyde, UK

Graeme, Flett John, Bingham Energy Technology Centre Ltd, UK Univ of Strathclyde, UK

Conclusions

- An enterprise choice of business model is risk preference dependent (i. e. Risk vs Reward dependent).
- * Under the strategic dimension approach there are still many other different combinations of assets, contracts, algorithms, locations and markets etc. that need to be considered. Future work will generate risk values and consider the effect of risk management on the outcomes. In addition, the stochastic nature of many of the inputs need to be included
- * Most importantly, the data generated from such simulations will help us develop heuristic rules about which business model (combinations of strategic dimensions) will be best under which circumstances

Gary, Howorth Univ of Strathclyde, UK

Ivana, Kockar Univ of Strathclyde, UK

Paul, Touhy Univ of Strathclyde, UK

Graeme, Flett John, Bingham Univ of Strathclyde, UK Energy Technology Centre Ltd, UK

SIES [Smart Integrated Energy Systems: Enhanced Virtual Power Plant VPP+ **Energy Pool Integration for Local and Regional Resistance**]

Project Overview

Aim

- ERA-Net's SIES 2022 project focuses on the technological and business related barriers and opportunities of how VPPs can function in flexibility markets.
- The SIES 2022 project aims to develop a digital energy utility management service (VPP) capable of managing local and regional energy systems and markets using a number of energy pools – use cases. E.g. ETC, FindHorn .
- "Learning by doing" Project

SPEN Power Heat Map (Congested Area)

Business Model Spectrum

100 KG 60 KG 60 KG			
		and the second se	

Business Models

Overview

- Number of Proposed Energy Pools (ETC) [Myres hill & SETP], Community Energy, Strath Energy Centre, PNDC) – Heat DSR, HY2GO etc.]
- VPP ++ (connecting different types of assets) including DSR), to maximize profits and provide support to an already congested grid;
- Algorithms to be developed for operation
- VPP Software under development
- Smart Transformer (ANM)

BAU	Simple VPP	Ennanced VPP+
Sell output/Buy Electricity input from	 Few assets e.g. PV + Battery 	 Multiple Sites/Energy Pools
retailer Treat assets as	 Use of Storage (time Shift) 	 Multiple Power Markets
separate entities	Optimization of Fuel	 Value Stacking
Multiple Long Term Contracts (one for each asset) selling all	/asset switching or use simple Heuristic eg Buy low sell high	Portfolio optimizationRisk Management
output	 1 end use market 	Complex Stochastic
Single site	 Use own assets 	 Use of others assets
Indirect sale of electricity to markets	 Indirect sale of electricity to markets 	 Direct sale of electricity to markets
		Trading
tore to a fact the second		

- Key element of the project was to develop Business models for a VPP.
- By collating data, analyzing it and simulating different use cases – it has been possible to value these business models.
- Work is underway to develop heuristics that will identify which models work best and under what conditions

Decision Options

- At each time step a decision has to be made about resources.
- Growing Complexity with more assets

Value Stacking

Markets, Value Stacking

Although assessments shown herein

assume a sale of flexibility services to one

- market, t is expected that VPP providers
- would sell to one more than one market.
- Some of these markets could be sold

concurrently.

This results in revenue streams that can

be "stacked"

Plus assets are stochastic

Gary, HoworthIvana, KockarPaul, TouhyGraeme, FlettJohn, BinghamUniv of Strathclyde, UKUniv of Strathclyde, UKUniv of Strathclyde, UKUniv of Strathclyde, UKUniv of Strathclyde, UK

SIES [Smart Integrated Energy Systems: Enhanced Virtual Power Plant VPP+ Energy Pool Integration for Local and Regional Resistance]

-/1

Overview of Software Used in Assessments

Overview

- Business model values generated in this work use a VPP platform to simulate different combinations of assets using data collected
 from actual VPP operation at the ETC
 demonstrator plant.
- Platform modified to simulate time steps rather than operate in real time.

- An overview of this platform is shown here
- The VPP platform uses a model predictive control optimizer to schedule assets so that it maximizes net revenue (exports vs imports)
- Revenues for the year are calculated and used to generate plots shown other pages.

Gary, Howorth Univ of Strathclyde, UK

Ivana, Kockar Univ of Strathclyde, UK

Paul, Touhy Univ of Strathclyde, UK

Graeme, Flett John, Bingham Energy Technology Centre Ltd, UK Univ of Strathclyde, UK

SIES [Smart Integrated Energy Systems: Enhanced Virtual Power Plant VPP+

Energy Pool Integration for Local and Regional Resistance]

Results: Additional Detail

Business Model Valuation

Which business model?

- Depends on risk reward preferences.
- ETC demonstrator used as an illustrative case study.
- Calculated the net revenues to the project half-hour by half-hour over a period of a year through simulation.
- The results are shown in figure. Graphs are for

Portfolio Management: Reward vs Risk

- the renewables output at the actual rates at ETC. Spheres of the same colour have the same routes to market.
- Battery dispatch patterns vary throughout the year and also depend on the market selected (see below). This impacts on valuation values.

Portfolios (1) - (4), lie on the efficient frontier

Note this point has a higher risk and lower return than point (4), so is not on the efficient frontier

Business Model Assessments: Reward vs Risk

Yearly Net Revenues (Without Battery) (a)

With Battery

(b) Yearly Net Revenues (With Battery)

Assets Asu	umption					
			Net Revs	Net Revs with	Battery	Risk
Load	Renewables	Market	without Battery	Battery	Benefit	Score
Load (ETC +other						
buidling)	(PV Wind)x1	Octopus Agile	-35,156	-31,852	3,304	1
Load (ETC +other						
buidling)	(PV Wind)x10	Octopus Agile	42,157	42,748	591	1
No Load	(PV Wind)x1	Octopus Agile	5,990	7,508	1,518	0
No Load	No Renewables	Octopus Agile	0	1,491	1,491	0
Load (ETC +other						
buidling)	No Renewables	Octopus Agile	-40,875	-37,508	3,367	0
Load (ETC +other						
buidling)	(PV Wind)x1	BMRS	-12,632	2,925	15,558	
Load (ETC +other						
buidling)	(PV Wind)x10	BMRS	21,779	36,073	14,294	
Load (ETC +other						
buidling)	(PV Wind)x1	BMRS+Piclo	-18,577	21,130	39,707	
Load (ETC +other						
buidling)	(PV Wind)x10	BMRS+Piclo	40,031	54,278	14,247	
Load (ETC +other						
buidling)	(PV Wind)x1	Octopus Agile+Piclo	16,149	16,355	205	
Load (ETC +other						
buidling)	(PV Wind)x1	Fixed Prices	-34,813	-34,766	47	1
Load (ETC +other						
buidling)	(PV Wind)x10	Fixed Prices	28,044	28,091	47	1

Battery Dispatch Example: Same Asset but different Markets

Battery Benefit

	(c)	Battery Benefit
--	-----	-----------------

(d) Tabular summary

Gary, Howorth Univ of Strathclyde, UK

Ivana, Kockar Univ of Strathclyde, UK

Paul, Touhy Univ of Strathclyde, UK

Graeme, Flett John, Bingham Univ of Strathclyde, UK Energy Technology Centre Ltd, UK

SIES [Smart Integrated Energy Systems: Enhanced Virtual Power Plant VPP+

Energy Pool Integration for Local and Regional Resistance]

Future Work: Initial Results

Which Business Model Example

Overview

- A VPP business model framework has been proposed that uses a number of strategic dimensions. The selection of elements along the various strategic dimensions constitutes what defines a business model.
- Under the strategic dimension approach of this work, there are still many other different combinations of assets, contracts,

Six Business /models. Last three include risk managment

- algorithms, locations and markets etc. that need to be considered.
- Risk management is an important element of this work.
- Initial work using a larger market with many assets shows that business model preference depend on a number of factors including:
 - Flexibility requirements (grid location). Ο
 - Amount and type of flexibility available.
 - The Portfolio selection method. Ο
- In some cases Risk Management is preferred (BM's 4-6) and in others it is not.

Portfolio Management

- The figure above uses the concept introduced by Markowitz [1] and is summarized in the figure below.
- Whether an enterprise prefers one business model over another is a matter of personal choice and risk preference. E.g. (3) vs (2) see below
- Utility theory and other techniques can be used to reflect the risk reward numbers as a single value. This single value can then be used to select an appropriate business model

References

[1] H. Markowitz, "Portfolio Selection: Efficient Diversification of Investments, New York, John Wiely & Sons," ed: Inc, 1959.