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For the challenging problem that a spacecraft approaches a tumbling target with non-cooperative maneuver, 
an anti-saturated proximity control method is proposed in this paper. First, a brand-new appointed-time 
convergent performance function is developed via exploring Bézier curve to quantitatively characterize the 
transient and steady-state behaviors of the pose tracking error system. The major advantage of the proposed 
function is that the actuator saturation phenomenon at the beginning can be effectively reduced. Then, an 
anti-saturated pose tracking controller is devised along with an adaptive saturation compensator. Wherein, 
the finite-time stability of both the pose and its velocity error signals are guaranteed simultaneously in 
the presence of actuator saturation. Finally, 2 groups of illustrative examples are organized and verify 
that the close-range proximity is effectively realized even with unknown target maneuver.

Introduction

The past few decades have witnessed the burgeoning develop-
ment of on-orbit servicing in light of various meaningful space 
applications such as repair of malfunctioning satellites, 
debris removal, on-orbit assembly, and so on [1–4]. As for 
the orbit-servicing targets, they are usually divided into 2 
categories, i.e., cooperative and non-cooperative ones, based 
on whether the space targets have active cross-link communi-
cation and cooperative identifiers with the servicing spacecraft 
or not. Before executing the orbit-servicing task, close-range 
rendezvous and proximity is an inevitable process in which 
precise observation for the orbit-servicing target is imple-
mented to determine the docking ports and time (for the coop-
erative target) or capture ports and time (for the non-cooperative 
target) [5]. Thus, highly reliable and precise rendezvous and 
proximity control methods are essential to guarantee the safety 
and success of the on-orbit servicing task [6,7].

Based on the above discussions, there are many rendezvous 
and proximity control methods proposed in the existing works. 
For example, a robust H∞ control method was investigated for 
spacecraft rendezvous problem via using Clohessy–Wiltshire 
equations to describe the relative motion dynamics between 
2 spacecrafts in [8]. A robust model predictive control (MPC) 
scheme was devised to solve the problem of spacecraft rendez-
vous based on the Hill–Clohessy–Wiltshire model in the pres-
ence of additive disturbances in [9]. Owing to the effectiveness 
of MPC in coping with the state constraints, MPC-based ren-
dezvous law was further investigated in [10]. Moreover, in light 
of the high robustness and low sensitivity to the uncertainties 
and disturbances, sliding mode control (SMC)-based rendez-
vous and proximity methods have attracted considerable atten-
tion such as in [11,12] and references therein. Although effective 

to solve the rendezvous problem with a cooperative target, the 
abovementioned control methods are seriously dependent 
on the information shared between the spacecrafts in the 
target’s reference frame. Once the target is non-cooperative, 
the orbit and attitude information cannot be known by the 
servicing spacecraft. In this case, the foregoing correspond-
ing control methods are inadequate obviously to the non- 
cooperative target.

To solve the abovementioned defects existing in the rendez-
vous control methods for cooperative targets, many attempts 
have been made to handle the relative motion tracking problem 
for non-cooperative targets. With consideration of the loss of 
target’s orbit information, line of sight (LOS) frame established 
in the servicing spacecraft was proposed in view of the easy 
access of relative distance (by laser radar or angle-only naviga-
tion algorithm [13,14]) and LOS direction information from 
the navigation devices [15]. Based on the LOS coordinate 
frame, a fixed-time fault-tolerant controller was devised for 
the spacecraft rendezvous and docking with a freely tumbling 
target via exploring the SMC technique in [16]. Moreover, with 
consideration of the target’s active maneuver, an adaptive 
SMC-based motion tracking control law was presented in [17]. 
In practice, actuator saturation is often encountered, which will 
degrade the control performance and even cause the system 
instability [18]. To guarantee the stability and safety of the final 
phase proximity operations with a non-cooperative target, a 
saturated control law was developed to solve the motion track-
ing problem with consideration of the path constraints and 
actuator magnitude constraints in [19]. An adaptive passivity- 
based SMC method was proposed for LOS rendezvous con-
sidering the input saturation problem [20]. Although there are 
various effective motion tracking control methods presented 
in the existing works, how to ensure the high-quality tracking 
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performance behaviors (including the transient and steady-state 
behaviors) is still an open issue and an interesting field for the 
on-orbit servicing task.

A particular quantitative performance bound technique, pre-
scribed performance control (PPC), was proposed by Bechlioulis 
and Rovithakis [21] and then has attracted wide attention in the 
control system design for robotic manipulators, unmanned sur-
face vehicles, and vehicle suspensions [22–26]. Due to its unique 
advantage in quantitatively characterizing and synthesizing 
the transient and steady-state tracking performance, PPC was 
adopted to develop stable attitude controllers for single or 
multiple spacecraft in [27–29]. Moreover, the spatial motion 
constraints during the spacecraft proximity operations were 
approximated by 2 performance functions in the PPC structure. 
In addition, an effective pose controller was designed to guaran-
tee the motion tracking performance for spacecraft rendezvous 
in [30]. To further accelerate the convergence rate, finite-time or 
appointed-time PPC methods have been proposed in the existing 
works [31–34]. For example, an appointed-time PPC was pro-
posed for the spacecraft rendezvous orbit and attitude control in 
[35]. By the user’s specific choice for the parameters of the per-
formance function, the finite-time or appointed-time conver-
gence can be achieved for the controlled systems.

However, a major defect in the aforementioned PPC control 
methods should be considered in practical engineering, that is, 
the actuator saturation induced by high sensitivity to the perfor-
mance bounds. When the system state reaches the performance 
bound, the transformed state will be pretty large, which easily 
causes the actuator saturation [36]. One of the reasons that the 
relevant PPC control is sensitive to the performance bound is 
that the initial derivative of the performance function is nonzero 
and often very large. This forces the controlled system state 
change very fast and easily leads to a very large control input 
signal exceeding the actuator saturation bound. Although the 
saturation problem can be eased by constructing a compensation 
controller with an auxiliary system [37], nonsmooth change of 
the system states will cause quite a lot of fuel consumption, which 
is not permitted in many practical applications including the 
on-orbit servicing tasks.

Inspired by the foregoing observations, this paper tries to 
propose a brand-new anti-saturated appointed-time pose track-
ing control method for spacecraft rendezvous with a tumbling 
non-cooperative target. Compared with the existing works, the 
contributions of our work are 2-fold:

• A novel appointed-time convergent performance function 
is developed via exploring Bézier curve. Compared with existing 
performance functions in [21–23,25,26,32], the initial derivative 
of the proposed one is zero, and the transient behaviors can 
be tuned intuitively by the users. This is the first way to 
reduce the actuator saturation during the close-range proximity 
operations.

• Based on the devised performance function, an anti- saturated 
pose tracking controller is developed with an adaptive saturation 
compensator. Compared with the traditional finite-time control 
methods, the tedious discontinuous fractional type of finite-time 
controllers in the existing works is avoided, while the finite-time 
convergence of both the pose and its derivatives signals is achieved 
simultaneously.

The remainder of this paper is organized as follows. Relative 
Motion Dynamics shows the problem statement with description 
of the relative motion dynamics during the close-range prox-
imity operations. An anti-saturated appointed-time pose tracking 

controller is devised in Methods and Results along with stability 
analysis. Illustrative simulations of the proposed control method 
are organized in Numerical Simulations and Discussions, and 
some conclusions are drawn in Conclusion.

Notations: ⊤, ∥•∥ , ∣•∣ , σ(•) are the vector transpose, the 
Euclidean norm of a vector, the absolute value of a real number, and 
the eigenvalue of a nonsingular matrix, respectively. ℝn, ℝn+ rep-
resent the set of n-dimensional real numbers and n-dimensional 
positive real numbers, respectively. ℕ, ℕ+ denote the set of 
non-negative integers and positive integers, respectively.

Relative Motion Dynamics
Before moving, it is assumed that 2 spacecrafts are in orbit 
around the earth. Wherein, one is the servicing spacecraft 
(chaser for brevity), which has the control ability to approach 
the target. The other is the target spacecraft (target for brevity), 
which is tumbling and has no active interaction with the 
chaser. To develop the subsequent relative motion dynamics, 
the following coordinate frames are defined. I :OIXIYIZI 
represents the Earth-centered inertial frame with the origin OI 
being located in the earth center of mass and axes OIXI, OIZI 
pointing to the spring equinox and north pole, respectively. 
Employing a right-hand coordinate system can generate OIYI. 
s:OcXsYsZs denotes the LOS coordinate system with the origin 
Oc being the mass center of the target. Axis OcXs is the sight 
direction of chaser, which is pointed to the target. Axis OcYs is 
vertical to the longitudinal plane containing axis OcXs. Axis OcZs 
is generated by applying the right-hand coordinate system. 
bt:OtXtYtZt and bc:OcXcYcZc are, respectively, the body-
fixed frames of the target and the chaser.

Relative translational motion
As Fig. 1 shows, the relative translational motion between the 
chaser and target is described in the LOS coordinate frame 
[17,38]:

where r, qε, qβ ∈ ℝ denote the distance between the chaser and 
the target, the elevation angle, and azimuth angle in the LOS 
coordinate frame, respectively. Moreover, as Fig. 1 shows, The 
initial elevation and azimuth angles satisfy qε ∈ (−π/2, π/2), 
qβ ∈ (−π, π). at = [atx, aty, atz]

⊤ ∈ ℝ3 is the accelerated velocity 
of the tumbling target, which is unknown for the chaser. 
d = [dx, dy, dz]

⊤ ∈ ℝ3 represents the unknown space perturba-
tions. uc = [ucx, ucy, ucz]⊤ ∈ ℝ3 is the accelerated velocity of the 
chaser to be designed.

Without loss of generality, the final relative distance is sup-
posed to be rd > 0. When the non-cooperative target is tum-
bling, the position of the feature point on the target will be 
changed. Consequently, the desired orbital information will be 
changed. It is assumed that the unit vector of the feature point 
in the body-fixed coordinate is defined as nb, and then the 
desired LOS orientation is −nb. The projection of the desired 
LOS orientation in the inertial frame I is:

(1)

⎧⎪⎪⎨⎪⎪⎩
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bt
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where Cbt
I

 denotes the direction cosine matrix from the 
body-fixed frame bt of the target to the inertial frame I. With 
consideration of the transformation from the LOS frame s to 
the inertial frame I, vector ρI also equals to

where ρs is the vector defined in the LOS frame s. Direction 
cosine matrix CI

s is defined as

Accordingly, the desired LOS distance, elevation angle, and 
azimuth angle ρd = [rd, qεd, qβd]⊤ and their time derivatives can 
be calculated by the foregoing 2 equations. By defining the 
translational motion tracking errors re = r − rd, qεe = qε − qεd, 
and qβe = qβ − qβd, one can obtain the tracking error system for 
the relative translational motion, i.e.,

where s1 =
[
re, q𝜀e, q𝛽e

]⊤
and ṡ2 = ṡ1 =

[
ṙe, q̇𝜀e, q̇𝛽e

]⊤. Nonlinear 
functions fo and go are expressed by

Relative rotational motion
In the foregoing subsection, the relative translational motion 
dynamics between the chaser and target have been established. 
In this part, the relative rotational motion dynamics will be 
given. First, we apply the quaternion to describe the attitude 
motion for nonsingular attitude representation. The kinematics 
and dynamics of the chaser attitude are given by [39,40] as

where ϱϱc = [ϱϱcv, ϱc4]
⊤ is the unit quaternion for the attitude 

representation, which satisfies �⊤cv�cv + 𝜚2
c4
= 1. ωc denotes the 

angle velocity of the chaser. Jc is the uncertain inertia matrix, 
which is uncertain due to the fuel consumption and system 
uncertainties. τc is the control torque to be designed. τd is the 
space perturbations, which are unknown but bounded. Matrix 
A(ϱϱc) equals to

To facilitate the subsequent attitude controller design, the 
desired attitude command of the chaser should be preplanned. 
First, we assume that the measuring sensors and solar panels 
are installed on the Xc and Yc-axes of the body-fixed frame bc, 
respectively. To ensure the effective observing and monitoring 
for the non-cooperative target, the center axes of the measure 
sensors should be along with the vector xbcd to be given later. 
Moreover, to obtain more solar energy, the solar panels should 
be vertical with the solar ray. The solar ray represented in the 
inertial frame I is denoted as ζ ∈ ℝ3. Then, in the body-fixed 
frame bc of the chaser, the desired triaxial unit vector for the 
chaser is defined as

Based on the above equation, the translational matrix from 
the initial frame I to the desired body-fixed frame cd of 
the chaser is expressed by

The desired attitude command in quaternion �cd =
[
�⊤
cdv

, 𝜚cd4
]⊤ 

can be computed by solving the following equation

Accordingly, the attitude tracking error vector of the 
chaser is defined as �ce = �c ⊗ �−1

cd
=
[
�⊤cev, 𝜚ce4

]⊤ with �−1
cd

=  
[

−�
⊤

cd
, 𝜚cd4

]⊤. The angle velocity tracking error vector is 
defined as �ce = �c − C

cd

c
�cd with translational matrix 

Ccd
c =

(
𝜚2
ce4

− �⊤cev�cev
)
I3 + 2�cev�

⊤
cev − 2𝜚ce4�

×
cev

. Then, the 
attitude tracking error system in the proximity phase is 
obtained as

(3)�I = Cs
I�s = Cs

I
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,
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s =
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Fig. 1. Sketch of the LOS coordinate frame.
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Based on Eq. 11, by defining 2 new state variables s3 = �cev,

s4 = ṡ3 = �̇cev, a strict-feedback form for Eq. 11 is obtained as

with

where matrix P = [Av(ϱϱce)/2]−1, 
(
�ce

)
= P⊤J cP, 

(

�ce

)

=

P⊤
(

�
×

c
J c�c − J c�

×

ce
�c + J cC

cd

c
�̇cd

)

,  and 
(

�ce, �̇ce

)

= − 
(

�ce

)

Ṗ
−1
P.

Based on Eqs. 5 and 12, by defining �1=

[

s
⊤

1
, s⊤

3

]⊤
,�2=

�̇1=
[

s
⊤

2
, s⊤

4

]⊤
∈ℝ

6, the coupling relative translational and 
rotational motion dynamics under the actuator saturation are 
expressed by

where f
∗
1

(

�1,�2

)

= f 1
(

�1,�2

)

+
(

g1
(

�1,�2

)

−1
)

sat(u)+

d1

(

�1,�2

)

 with f 1
(
�1,�2

)
=
[
f ⊤o , f

⊤
a

]⊤
∈ ℝ

6×6, g1(χ1,  χ2) 
=  diag {go,  ga} ∈ℝ6 ×  6,  u =

[
−u⊤c , �

∗T
c

]⊤
∈ ℝ

6,  and d1 =
[

(

g
o
at +g

o
d
)⊤

, �∗T
d

]⊤ ∈ℝ6. sat(u) is the output of the actuator 
and satisfies
w

where ui,max and ui,min are the relevant maximal and minimal 
saturation bounds of ith control input.

As presented in Eq. 14, the coupling nonlinear term f ∗1
(
�1,�2

)
 

is tedious and unknown. Based on the existing reference 
works [41,42], a radial basis neural network has been widely 
used to approximate the unknown nonlinearities. Without 
loss of generality, f ∗1

(
�1,�2

)
=

⊤�(x) with  ∈ ℝ
m×6 and 

φ(x) ∈ ℝm being the optimal weight vector and Gaussian 
basis function, respectively (m is the number of hidden layer 
nodes, x =

[
�⊤
1
,�⊤

2
, sat⊤(u)

]⊤
 is the input vector the radial 

basis neural network). Note that the optimal weight vector 
  is unknown but bounded, which requires to estimate.

Based on the established relative motion dynamic model in 
Eq. 14, the control objectives of this paper are 2-fold: (a) The 
orbital and attitude tracking errors χ1 and χ2 can be steered by 
the designed controller to a small neighborhood around the 
origin with guaranteed performance within finite time. (b) The 
negative effects introduced by control saturation can be com-
pensated by devising an adaptive antisaturation controller.

Methods

In this section, an adaptive anti-saturated appointed-time con-
vergent controller will be developed for the tracking error sys-
tem of the close-range proximity operations in Eq. 14.

Appointed-time convergent performance function 
with initial zero derivative via exploring Bézier curve
To guarantee the tracking performance and reduce the impact 
of the actuator saturation problem, a brand-new appointed-time 
convergent performance function is designed in this part.

To start, according to [43], suppose that there are n + 1 
preassigned reference points in the 2-dimensional plane (the 
x-axes denotes time), i.e., P0(t0, y0), P1(t1, y1), …, Pn(tn, yn). Then, 
the Bezier curve B(α) can be described as

where α ∈ [0, 1] is a time-varying parameter. To guarantee the 
appointed-time convergence, the time series t0, t1, t2, …, tn sat-
isfy t0 < t1 < t2 < tn ≤ Ta with Ta is appointed by the users. And 
then, parameter α is chosen as α = t/Ta which meets the 
requirement α ∈ [0, 1].

For the Bézier curve introduced in Eq. 16, there are 2 inher-
ent properties [43] in the following:

Property 1. The Bézier curve B(α) will always go across and 
be tangent with the first and the final points P0(t0, y0), Pn(tn, yn).

Property 2. The Bézier curve B(α) is always be trapped 
into the convex hull formulated by the chosen reference points 
Pi(ti, yi) (i = 0, 1, 2, …, n).

Based on the foregoing 2 properties, a corollary is obtained 
as follows.

Corollary. If the first 3 reference points P0(t0, y0), P1(t1, y1), 
and P2(t2, y2) are selected to satisfy y0 = y1 = y2, then the devel-
oped Bézier curve B(α) will go across the first point and deriv-
ative of B(α) with respect to t at t0 is zero. Similarly, if the last 
3 points Pn−2(tn−2, yn−2), Pn−1(tn−1, yn−1), and Pn(tn, yn) 
(n ≥ 3) are selected to satisfy yn−2 = yn−1 = yn, then 
B(α(Ta)) = yn and dB(α)/dt = 0.

Based on the aforementioned analysis, without loss of gen-
erality, a brand-new appointed-time convergent performance 
function μ(t) is generated by constructing a Bézier curve with 
7 points. Namely, its detailed form is given by

⎧
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�
=

⎧
⎪⎨⎪⎩

ui,max, if ui≥ui,max

ui, otherwise

ui,min, if ui≤ui,max,
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where , 
y0 = y1 = y2 = μ(0) = μ0, and y4 = y5 = y6 = μ(Ta) = μ∞ with 
μ0 > μ∞ > 0 being 2 constants. y5 is selected to satisfy y5 ∈ (μ0, μ∞) 
and can be adjusted for different convergent speed.

To verify the effectiveness of the proposed performance μ(t) 
in Eq. 17, a comparative simulation is carried out against the 
traditional appointed-time performance in [44] with the same 
initial value μ0 = 8, the same final value μ∞ = 0.5, and the same 
appointed time Ta = 8 s. The simulation result is presented in 
Fig. 2.

From Fig. 2, one can obtain that the initial convergent speed 
of the proposed function is obviously slower than the traditional 
one because of the initial zero derivative. In practical applica-
tions, the input saturation problem usually occurs at the initial 
time due to the big initial state errors. The proposed function 
provides a wider range for the tracking control system, by which 
the effect of the input saturation problem can be reduced. In the 
meantime, the appointed-time convergent property is remained.

Remark 1. Appointed-time convergent performance func-
tion proposed in Eq. 17 is defined by 7 reference points, with 
only P3(t3, y3) for adjusting the convergent speed. Actually, extra 
reference points can be inserted into the Bézier curve if the con-
trol system has complex requirements for the whole convergent 
process. Consequently, the proposed performance function μ(t) 
is more flexible than the traditional one in practical situations.

Anti-saturated appointed-time pose tracking 
controller design
In this part, an anti-saturated appointed-time pose tracking 
controller is designed to realize the performance function. 
Before moving, a vital assumption is given as follows.

Assumption. The uncertain accelerated velocity at of the 
tumbling target and space perturbations d and τd in Eqs. 1 and 
7 are bounded.

Remark 2. Owing to the physical limitations for the tum-
bling target, its accelerated velocity is bounded. Moreover, if 
the space perturbations are sufficiently large, the close-range 
proximity operations will not be completed with restricted 
control input. Thus, Assumption is reasonable.

To facilitate the subsequent controller design, an auxiliary 
state variable p ∈ ℝ6 is defined as

where λ =  diag {λ1, λ2, …, λ6} ∈ ℝ6×6 is positive-definite 
diagonal matrix. Based on [41], the element of vector ϕ(χ1) is 
designed in the following form

where 𝛾 ∈(0, 1), 0<𝜀0,i≤

(

𝜇i,∞

𝜆i

)
1

𝛾
, b1,i =(2−𝛾)𝜀

𝛾−1

0,i
, andb2,i =

(� − 1)�
�−2

0,i  are design parameters. sgnγ(χ1,i) = |χ1,i|
γ sgn (χ1,i). 

sgn2(χ1,i) = |χ1,i|
2 sgn (χ1,i). Then, the time derivative of ϕ(χ1,i) 

in Eq. 19 equals to

To guarantee the pose tracking performance during the 
close-range proximity operations, the following perfor-
mance inequality is imposed on the auxiliary state variable 
p = [p1, p2, …, p6]

⊤ as

where μi(t) (i = 1, 2, …, 6) is derived from Eq. 17. δi ∈ (0, 1] 
is a positive constant. Then, the standard tracking error 
Λi = pi(t)/μi(t) satisfies

In PPC structure, a constraint-free translation function is 
often used to remove the defined performance constraints as 
presented in Eq. 21. Namely, there exists a monotone function 
(∙) such that

where θi ∈ ℝ is the newly established state variable. Without 
loss of generality, function (∙) in this work is chosen as 

(
�i
)
=
[
�i�i

(
exp

(
2�i

)
− 1

)]
∕
[
�
i
exp

(
2�i

)
+ �i

]
. Then, the 

newly established state is obtained as

(18)p = �2 + ��
(
�1

)
,

(19)

𝜙
(
𝜒1,i

)
=

{
sgn𝛾

(
𝜒1,i

)
, if ||𝜒1,i

||>𝜀0,i, pi ≠0 or pi=0

b1,i𝜒1,i+b2,isgn
2
(
𝜒1,i

)
, if ||𝜒1,i

||≤𝜀0,i & pi≠0,

(20)

�̇�
(
𝜒1,i

)
=

{
𝛾||𝜒1,i

||
𝛾−1

�̇�1,i, if
||𝜒1,i

||>𝜀0,i, pi ≠0 or pi=0

b1,i�̇�1,i+2b2,i
||𝜒1,i

||�̇�1,i, if
||𝜒1,i

||≤𝜀0,i & pi≠0.

(21)

{
−𝛿i𝜇i(t)<pi(t)<𝜇i(t) if pi(0)≥0

−𝜇i(t)<pi(t)<𝛿i𝜇i(t) if pi(0)<0,

(22)Λi =
pi(t)

𝜇i(t)
∈ Ωi =

(
− 𝛿

i
, 𝛿i

)
=

{ (
−𝛿i, 1

)
, if pi(0)≥0

(
−1, 𝛿i

)
, if pi(0)<0.

(23)

⎧⎪⎪⎨⎪⎪⎩

pi(t)=
�
�i
�
�i(t)

lim
�i→+∞


�
�i
�
= �i

lim
�i→−∞


�
�i
�
= −�

i
,

(24)�i=
−1
(

Λi

)

=
1

2
ln

(

�i�i
+�iΛi

�i�i
−�

i
Λi

)

.
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Fig. 2. Comparative simulation of different appointed-time performance functions.
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Based on the foregoing analysis, an adaptive anti-saturated 
appointed-time pose tracking controller is devised for system 
Eq. 14 as

with

uc is derived by the following adaptive projection rule

where k =  diag {k1, k2, …, k6} and ξ =  diag {ξ1, ξ2, …, ξ6} ∈ ℝ6 × 6 
are, respectively, the positive-definite control gain matrix and 
intermediate parameters. Wherein, each element of ξ equals to 
�i = �i�i ∕

[(
Λi + �

i

)(
�i − Λi

)(
�i + �

i

)]
 (i = 1, 2, …, 6). 

Δu = sat(u) − u is the difference between control input com-
mand and the output of the actuator. ι0 and Ξ0 are 2 small 
positive constants. κ1 and κ2 are the relevant positive constants. 
ψ(x) is the product of the 2-norm of the Gaussian basis function 
φ(x), i.e, ψ(x) =  ∥ φ(x)∥. �̂ is an adaptive parameter to be 
defined later, which has the following adaptive law

where κ3 is a positive constant.
Remark 3. Based on the devised performance function in 

Eq. 17, it is easy to find that the zero derivative of the perfor-
mance function makes the tracking error system response more 
smooth. This is conducive to reduce the existence of saturation 
phenomenon. Moreover, the anti-saturated pose tracking con-
troller devised in Eq. 27 is also used to compensate the negative 
effects induced by the actuator saturation. Thus, there are 2 
anti-saturation ways in our work.

Stability analysis
Based on the aforementioned anti-saturated appointed-time 
pose tracking controller design, an important result is addressed 
in the following theorem.

Theorem. Under the devised pose controller and adaptive 
laws in Eqs. 24 to 28, when the control gain ki satisfies ki > 
(1 + δi)

2/8 (i = 1, 2, …, 6), the auxiliary state variable p will be 
steered to a small neighborhood around origin with guaran-
teed prescribed performance within appointed time instant 
Ta,max =  max {Ta,i} (i = 1, 2, …, 6). Both the pose tracking 
errors χ1 and χ2 are finite-time convergent. Moreover, all the 
involved close-loop signals for the close-range proximity oper-
ations are uniformly ultimately bounded.

Proof. The proof of Theorem is divided into 2 steps as follows.
Step 1. Prove the convergence of the auxiliary tracking error 

p for close-range proximity operations within appointed time 

instant Ta,max =  max {Ta,i} (i = 1, 2, …, 6). First, considering 
Λi = pi/μi(t) (i = 1, 2, …, 6), there exists

The above equation is also equivalent to �̇=diag−1{�(t)}
[

ṗ−diag{�̇(t)∕�(t)}p
]

. To guarantee the prescribed pose track-
ing performance in the close-range operations defined in 
Eq. 21, the following Lyapunov function V1 is constructed

where �min = min
i=1,2,… ,6

{

1∕�i,0

}

. �̃ =� − �̂ is the estimation 
error. Based on Eq. 30, taking the time derivative of V1 yields

Substituting Eqs. 14, 20, and 25 into Eq. 31 gets

To facilitate the subsequent simplification for Eq. 32, we 
define a function as follows

Taking the derivative of ℏ(Λi) with respect to Λi gets

As the above equation presents, it is easy to verify that when 
0 < Λi < 𝛿i, ℏ̇

(
Λi

)
> 0 and when − 𝛿

i
< Λi < 0, ℏ̇

(
Λi

)
< 0. 

Thus, one can obtain the minimal value ℏmin of function ℏ(Λi), 
namely, it is derived by applying the L’Hospital’s rule

(25)

u = u0
⏟⏟⏟

stable control term

+ uc
⏟⏟⏟

anti− saturation control term

,

(26)

u0= −k��−��̇
�
�1

�
+diag

�
�̇(t)

�(t)

�
p−

�̂�2(x)�

�(x)‖�‖+ �0
,

(27)

(28)�̇𝜛= −𝜅3 �𝜛+
𝜓2(x)�⊤�

𝜓(x)‖�‖+ 𝜄0
,

(29)Λ̇i =

(
pi

�i(t)

)�

=
ṗi

�i(t)
−

�̇i(t)

�2
i
(t)

pi.

(30)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

V1=V11+V12

V11=
1

2
�
⊤
�

V12=
1

2
u
⊤
c
uc+

1

2
𝜌2
0
+
𝜇min

2
�𝜛2

,

(31)
V̇11 =�

⊤
�̇

=�
⊤diag−1{�(t)}

[

ṗ−diag−1{�(t)}diag{�̇(t)}p
]

.

(32)

(33)ℏ
(

Λi

)

=
1

Λi

ln

(

𝛿i𝛿i
+𝛿iΛi

𝛿i𝛿i
−𝛿

i
Λi

)

(i=1, 2, … , 6),

(34)

ℏ̇
(

Λi

)

=
dℏ

dΛi

=
1

Λi

[

𝛿i+𝛿
i

(

Λi+𝛿
i

)(

𝛿i−Λi

) −
1

Λi

ln

(

𝛿i𝛿i
+𝛿iΛi

𝛿i𝛿i
−𝛿

i
Λi

)]

(35)

ℏmin

(
Λi

)
= lim

Λi→0+
ℏmin

(
Λi

)
= lim

Λi→0−
ℏmin

(
Λi

)

=
d2𝜃i∕dΛi

1

||||Λi=0

=
𝛿i+𝛿

i(
Λi+𝛿

i

)(
𝛿i−Λi

)
|||||Λi=0

=
𝛿i+𝛿

i

𝛿i𝛿i
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Based on the above equation, the following inequality holds

According to Eq. 14, one can find that term �⊤diag−1{�(t)}f ∗1(

�1,�2

)

 satisfies

where �max = max
i=1,2,… ,6

{

1∕�i,∞

}

. � = �max‖‖∕�min. ψ(x) 
is defined in Eq. 27. Based on Eqs. 36 and 37, Eq. 32 becomes

With consideration of �̃ =� − �̂, ̇̃� = �̇ −
̇�̂ = −

̇�̂, 
then, taking the derivative of V12 in Eq. 30 yields

Accordingly, 2 cases are considered as follows.
Case 1.1: ‖uc‖ ≥ Ξ0. Then, substituting the first 2 subequa-

tions in Eq. 27 into Eq. 39 gets

Based on Eqs. 28, 38, and 40, the derivative of V1 in Eq. 30 
satisfies

where ℵ0 = μminκ3ϖ
2/2 + ϖι0μmin is a positive constant.

Accordingly, there exists 0= min
i=1,2,…,6

{

2ki∕
[

�i,0

(

Λi,max + �
i

)

(

�i − Λi,min

)]

, 2�1, 2�2,�min�3

}

 such that

Based on Eq. 42, one can obtain that V1≤ exp
(

−0t
)

(

V1(0)−
ℵ0

0

)

+
ℵ0

0

. Thus, when ‖uc‖ ≥ Ξ0, all the adaptive param-
eters are uniformly ultimately bounded. Meanwhile, owing to 
the appointed-time convergence of the performance function 
μi(t), one can find that the state variable pi is appointed-time 
convergent to the envelope generated by the steady-state per-
formance bound μi, ∞ (i = 1, 2, …, 6).

Case 1.2: ‖uc‖ < Ξ0. Then, substituting the second 2 sub-
equations in Eq. 27 into Eq. 39 gets

In this regard, based on Eqs. 28, 38, and 43, the derivative 
of V1 in Eq. 30 satisfies

(36)

(37)

V̇11≤−

6
∑

i=1

kiΛ
2
i

𝜇i(t)
(

Λi+𝛿
i

)(

𝛿i−Λi

) +�
⊤diag−1{�(t)}

(

uc+Δu
)

+ 𝜇min

�
𝜛‖�‖𝜓(x) −

�𝜛𝜓2(x)�⊤�

𝜓(x)‖�‖ + 𝜄0

�

≤ −

6
∑

i=1

kiΛ
2
i

𝜇i(t)
(

Λi+𝛿
i

)(

𝛿i−Λi

) +�
⊤diag−1{�(t)}

(

uc+Δu
)

+ 𝜇min

�
�̃�𝜓2(x)�⊤�

𝜓(x)‖�‖ + 𝜄0
+

𝜛‖�‖𝜓(x)𝜄0
𝜓(x)‖�‖ + 𝜄0

�

≤ −

6
∑

i=1

kiΛ
2
i

𝜇i(t)
(

Λi+𝛿
i

)(

𝛿i−Λi

) +�
⊤diag−1{�(t)}

(

uc+Δu
)

(38)+ 𝜇min

�
�̃�𝜓2(x)�⊤�

𝜓(x)‖�‖ + 𝜄0
+ 𝜄0𝜛

�

(39)V̇12 =u
⊤
c
u̇c+𝜌0�̇�0+𝜇min �𝜛 �̇𝜛.

(40)

V̇12=−𝜅1u
⊤
c
uc−

u⊤
c
uc�

⊤diag−1{�(t)}
(
uc+Δu

)

u⊤
c
uc+

||𝜌0
||

−𝜅2𝜌
2
0−

||𝜌0||�
⊤diag−1{�(t)}

(
uc+Δu

)

u⊤
c
uc+

||𝜌0
||

−𝜇min �𝜛 �̇𝜛

= −𝜅1u
⊤
c
uc−𝜅2𝜌

2
0−𝜇min �𝜛 �̇𝜛−�

⊤diag−1{�(t)}
(
uc+Δu

)
.

+ 𝜇min�̃�

�
𝜓2(x)�⊤�

𝜓(x)‖�‖ + 𝜄0
− �̇𝜛

�
+𝜛𝜄0𝜇min

≤ −

6∑
i=1

kiΛ
2
i

𝜇i(t)
(
Λi + 𝛿

i

)(
𝛿i − Λi

) − 𝜅1u
⊤
c uc − 𝜅2𝜌

2
0

−
�min�3

2
�̃2 +

�min�3

2
�2 +��0�min

(41)

(42)V̇1≤ −0V1+ℵ0,

(43)V̇12= −�min�̃
̇�̂

�
uc +Δu

�
+ 𝜇min�̃�

�
𝜓2(x)�⊤�

𝜓(x)‖�‖ + 𝜄0
− �̇𝜛

�
+𝜛𝜄0𝜇min

≤ −

6∑
i=1

Λ2
i

�i(t)

(
ki(

Λi + �
i

)(
�i − Λi

) −
1

2

)
−

�min�3

2
�̃2

+
�min�3

2
�2 +��0�min +

1

2

6∑
i=1

(
uc,i+Δui

)2
�i(t)
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where  
is a lumped term. Note that Ξ0 is very small positive constant. 
In this case, the anti-saturation controller term uc is very small, 
which in turn means that the difference Δu between the desired 
control input command u and actuator output sat(u) is very 
small. Thus, term 1

2

∑6

i=1

�

uc,i+Δui
�2
∕�i(t) is bounded by a 

small constant, and the lumped term ℵ0 is bounded. For term 
ki

(Λi +�i)(�i −Λi)
−

1

2, when it is large than zero, one can find that 

k1 >
1

2

(
Λi + 𝛿

i

)(
𝛿i − Λi

)
. Considering Λi, �i, and �

i
 defined in 

Eq. 22, it is easy to obtain that the maximal value of function 
1

2

(
Λi + �

i

)(
�i − Λi

)
 with respect to the variable Λi, namely, its 

maximal value is (1 + δi)
2/8 (i = 1, 2, …, 6). Thus, when ki > 

(1 + δi)
2/8 (i = 1, 2, …, 6), the following stability analysis is sim-

ilar to that as presented in Case 1.1, which is omitted for 
brevity.

Consequently, based on the stability analysis in Case 1.1 and 
Case 1.2, one can find that, when ki > (1 + δi)

2/8 (i = 1, 2, …, 
6), the defined auxiliary state variable p is appointed-time con-
vergent to the steady-state performance bound within time 
instant Ta,max =  max {Ta,i (i = 1, 2, …, 6)} and all the adaptive 
parameters are uniformly ultimately bounded.

Step 2. The finite-time convergence analysis for the pose 
tracking errors χ1 and χ2.

Case 2.1: When pi = 0 (i = 1, 2, …, 6), based on Eq. 18, one 
can obtain that

Then, the following Lyapunov function is defined

Substituting Eq. 45 into the time derivative of V2, i yields

According to Theorem 4.2 in [45], one can find that the 
tracking error χ1,i will converge to zero when t ≥ Ta,max + T1,i 
with T1,i satisfying

Case 2.2: When pi ∈
(
− �

i
�i,∞, 0

)
∪
(
0, �i�i,∞

) ||�1,i
|| ≥ �0,i 

(i = 1, 2, …, 6), based on Eq. 18, one can obtain that

Equation 49 is equivalent to

Based on the above equation, when �i −
pi

|�1,i|
�
sgn(�1,i)

≤ 0, 
tracking error χ1,i is convergent. If the Lyapunov function is 
chosen in the same form with Eq. 46, substituting Eq. 50 
into the time derivative of V2,i can yield the similar form in 
Eq. 47. Thus, tracking error χ1,i is finite-time convergent within 
(Ta,max + T2,i), wherein the detailed form of T2,i is similar to T1,i 
as presented in Eq. 48. The convergence domain of χ1,i is 
expressed by

Case 2.3: When  (
�i,∞
�i

)1∕�
. According to the analysis in Case 2.2, one can find 

that when |χ1,i| < ε0, i = 
(
�i,∞
�i

)1∕�
, χ1,i is finite-time convergent 

within (Ta,max + T2,i). Thus, based on Eqs. 18 and 19, one can 
obtain that

Accordingly to the stability analysis in Step 1 and Step 2 
above, the proof of Theorem is completed.

Results
In this section, 2 simulation examples of close-range proximity 
control with a tumbling non-cooperative target are organized 
to verify the effectiveness of the proposed adaptive finite-time 
anti-saturated guaranteed control method.

Close-range proximity control with a tumbling target
In this simulation example, the chaser and target are in orbit 
around the earth, and the initial relative distance r is 0.3 km. Initial 

(44)

(45)�2,i + �i�
(
�1,i

)
= 0.

(46)V2,i =
1

2
�2
1,i.

(47)

V̇2,i =�1,i�̇1,i=�1,i�2,i

= −�i�1,i�
(
�1,i

)

= −�i�1,isgn
�
(
�1,i

)

= −�i�1,i
||�1,i

||
�
sgn

(
�1,i

)

= −�i
||�1,i

||
�+1

= −�i2
�+1

2 V

�+1

2

2,i
.

(48)

(49)�2,i+�i�
(
�1,i

)
=pi∈

(
�
i
�i,∞, �i�i,∞

)
.

(50)

�̇1,i = −

(

�i−
pi

sgn�
(
�1,i

)

)

sgn�
(
�1,i

)

= −

(

�i−
pi

||�1,i
||
�
sgn

(
�1,i

)

)

||�1,i
||
�
sgn

(
�1,i

)
.

(51)

(52)

||𝜒2,i
|| =

|
||
pi−𝜆i𝜙

(
𝜒1,i

)|||

≤ ||pi||+𝜆i
|||
𝜙
(
𝜒1,i

)|||

= ||pi||+𝜆i
|||
b1,i𝜒1,i+b2,isgn

2
(
𝜒1,i

)|||

≤ ||pi
||+𝜆i

||b1,i𝜒1,i
||+𝜆i

|||
b2,isgn

2
(
𝜒1,i

)|||

≤ ||pi
||+𝜆i

(
b1,i

||𝜒1,i
||+b2,i

||𝜒1,i
||
2
)

< ||pi||+𝜆i

(
b1,i𝜀0,i+b2,i𝜀

2
0,i

)

= ||pi||+𝜆i

[
(2−𝛾)𝜀

𝛾−1
0,i

𝜀0,i+(𝛾−1)𝜀
𝛾−2
0,i

𝜀20,i

]

= |
|pi

||+𝜆i

[
(2−𝛾)𝜀

𝛾

0,i
+(𝛾−1)𝜀

𝛾

0,i

]

= ||pi||+𝜆i𝜀
𝛾

0,i

= ||pi
||+𝜇i,∞

≤2𝜇i,∞
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orbit elements of the 2 spacecraft are presented in Table. The 
desired final relative distance rd is set as 0.02 km. Initial quatern-
ions of the chaser and target are ϱϱc = [−0.33, −0.22, −0.22,0.89]⊤ 
and ϱϱt = [−0.31,0.55, −0.32,0.71]⊤, respectively. Inertia matrix of 

Table. Initial orbital elements.

Initial orbit elements Chaser Target

Semi-major axis (km) 7,999.961 7,999.971

Eccentricity 0.01 0.01

Inclination (deg) 50 50

Right ascension of ascending node 
(deg)

10 10

Argument of perigee (deg) 29.99 29.98

True anomaly (deg) 111.082 111.092
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Fig. 3. Auxiliary state variable p under the proposed performance functions (Close-
range proximity control with a tumbling target).
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Fig. 4. LOS states tracking their desired trajectories (Close-range proximity control with a tumbling target).
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the chaser is designed as Jc =  diag {100/6,100/6,100/6}, which is 
inaccessible to the controller. Unit vector of the feature point in 
the chaser’s body-fixed coordinate is assumed as nb = [1, 0, 0]⊤. 
During the close-range proximity process, the direction of the 
solar ray in the inertial frame is assumed to remain unchanged 

and set as � =
�√

2∕2, −
√
2∕2, 0

�⊤
. In this example, the consid-

ered target has no active control forces or torques, and is tumbling 
with a initial angular velocity ωt = [1.5,1.0,1.2]⊤ deg/s.

For the novel appointed-time convergent performance function 
in Eq. 17, the relative distance r is firstly nondimensionalized as 
r = r∕(0.5km) and the elevation and azimuth angles are specified 
in radians for the same order of magnitude. The reference points 
are designed as y0 = y1 = y2 = [0.3,0.1,0.5,1, 1, 1]⊤, y3 = 0.5y0, y4 = 
y5 = y6 = [0.01,0.02,0.02,0.01,0.01,0.01]⊤. The appointed time Ta 
for each dimension is similarly designed as Ta = 100 s. According 
to Corollary, the performance function μ(t) = [μ1(t), ⋯, μ6(t)]

⊤ 
satisfies μ(0) = y0, and μ(t) = y6 for all t ≥ Ta.

Parameters of the proposed controller (Eq. 25) are designed 
as k =  diag {300,300,300,200,200,200}, λ =  diag {0.2,0.2,0.2,
0.2,0.2,0.2}, γ = 0.8 and δ = 1, κ1 = κ2 = 0.05, κ3 = 0.1. The orbit 

0 20 40 60 80 100
–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

0.3

0.4

0.5

50 100 150 200 250 300

–2

0

2

10–5

Fig. 5. Attitude quaternion error ϱϱcev (Close-range proximity control with a tumbling 
target).
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Fig. 6. Control inputs uc and τc (Close-range proximity control with a tumbling target).
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and attitude control saturation limits are given as 4.9 N/kg and 
1.0 N·m. The corresponding simulation results are presented 
in Figs. 3 to 7.

The constructed auxiliary state variable p(t) is presented in 
Fig. 3, together with the corresponding appointed-time con-
vergent performance function μ(t). Apparently, p is steered to 
a small neighbourhood around origin with guaranteed pre-
scribed performance within appointed time instant Ta. The LOS 
states r, qϵ and qβ and their desired trajectories are given in 
Fig. 4. One can obtain that the LOS states can reach the desired 
trajectories before Ta = 50 s and accurately track them during 
the rendezvous process. Fig. 5 presents the tracking process of 
the attitude, and the same conclusion as the LOS states can be 
drawn. The orbit and attitude control inputs are presented in 
Fig. 6. The input saturation problem occurs at the beginning 
due to the big initial state errors. However, due to the novel 
appointed-time performance function with initial zero deriv-
ative and the proposed adaptive anti-saturation controller, the 
tracking control system is always stable and the influence of 
the saturation is reduced by the adaptive projection rule. The 
whole proximity and tracking process is presented in Fig. 7 
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Fig. 7. 3D proximity trajectory (Close-range proximity control with a tumbling target).
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Fig. 8. Auxiliary state variable p under the proposed performance functions (Close-range proximity control with a tumbling and maneuvering target).
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Fig. 9. LOS states tracking their desired trajectories (Close-range proximity control with a tumbling and maneuvering target).
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Fig. 10. Attitude quaternion error ϱϱcev (Close-range proximity control with a tumbling 
and maneuvering target).
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Fig. 11. Control inputs uc and τc (Close-range proximity control with a tumbling and 
maneuvering target).
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with the origin of coordinate fixed on the target. It is shown 
that the chaser can move along with the tumbling target and 
stay relatively still with the target, thus the proximity and dock-
ing mission is well realized.

Close-range proximity control with a tumbling and 
maneuvering target
In this simulation example, the initial system states, parameters, 
as well as the control parameters are selected the same with 
Close-range proximity control with a tumbling target, except 
for non-cooperative acceleration caused by the target. The 
acceleration at is designed as at = [1.5 sin (0.5t), −1.0 cos (1.0
t), 0.8 sin (0.3t) + 0.6 sin (0.7t)]⊤ N/kg, which means that the 
target is not only tumbling, but has large unknown maneuvers 
during the close-range proximity process. The considered 
example puts forward pretty high request to the robustness of 
the control system. The corresponding simulation results of 
this example are presented in Figs. 8 to 12.

The constructed auxiliary state variable p(t) and its perfor-
mance function μ(t) is presented in Fig. 8. The convergent pro-
cess of p(t) under μ(t) is basically the same as Fig. 3, which 
indicates that the proposed control method has strong robust-
ness against the large non-cooperative maneuver at. The LOS 
states r, qϵ and qβ and their desired trajectories are given in Fig. 
9. The dynamic performance of the tracking system is not influ-
enced by the non-cooperative maneuver, while the steady-state 
error of r(t) is obviously increased. It is noteworthy that the 
increased steady-state error is still within the prescribed stable 
region, and can be reduced by decreasing the prescribed value. 
There is not much change of the attitude tracking error in Fig. 
10, as the attitude control system is not changed. The robustness 
of the proposed method against unknown non-cooperative 
maneuver can be viewed in Fig. 11, as the unknown maneuver 
is compensated by the control inputs. Finally, the whole prox-
imity and tracking process is also presented in Fig. 12.

Conclusion
This paper has proposed a brand-new anti-saturated guaran-
teed performance control method for the close-range proximity 

operations with a non-cooperative tumbling target. An appointed- 
time convergent performance function has been design with 
initial zero derivative based on Bézier curve. Moreover, an 
anti-saturated pose tracking controller has been constructed 
to realize the performance function. Simulation examples show 
that the constructed auxiliary states are appointed-time stable 
within the designed performance functions and the proximity 
and docking mission is well realized even with the maneuvering 
non-cooperative space target.

For future work, more non-cooperative properties of the 
target can be considered, e.g. the unavailable or inaccurate rel-
ative motion states. Furthermore, as there may exist solar panels 
and manipulators around the main body of the target, the 
obstacle avoidance rendezvous control problem is worth inves-
tigating to provide a safe rendezvous trajectory for the chaser 
spacecraft.
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