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A two-dimensional foam system comprised of three
bubbles is studied via dynamic simulations with
the viscous froth model. The bubbles are arranged
in a staircase configuration and move along a
channel due to an imposed driving back pressure.
Depending on the bubble size relative to channel
size, the three-bubble system can undergo topological
transformations (as for a simpler staircase structure,
known as the simple lens) or it can reach a
geometrically invariant migrating state (as for an
infinite staircase structure). A methodology used
previously determined the system evolution up to
the first topological transformation, but evolution
beyond this was not studied before. To address this,
unsteady state three-bubble simulations are realized
here, extending beyond the first transformation. For
sufficiently high imposed back pressures, a sequence
of topological transformations occurs before a steadily
migrating shape is reached, typically in a topology
such that an equal number of films connect to both
channel walls.
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1. Introduction
Interaction with liquid foam (a dispersion of gas in a liquid surfactant solution) in our daily life
is unavoidable, and in addition foam is encountered in various fields, such as the food industry,
manufacturing of ultra-light materials, development of medical procedures, in the manufacture
of some pharmaceutical products, detergents, cosmetics, in the oil recovery industry, in recovery
and production of minerals, and also as a firefighting agent [1–4]. Applications in which the foam
is made to flow in specific geometries, such as a porous medium or confined channels [5,6], are of
particular interest for this work. In such applications, a key parameter to determine the dynamics
of the foam flow is the mobility, which determines for a specified driving back pressure, how fast
a foam with a specific bubble configuration moves within a channel of specific geometry [7]. Foam
mobility depends, in turn, on variables like the bubble size distribution and configuration within
the channel of transport, roughness of the channel walls, viscosity of the liquid and gas phases and
surface tension between them, liquid fraction of the foam and the number of individual bubbles
flowing together [7]. However, an important point just mentioned here is that mobility is sensitive
to bubble configuration [8,9], so that if the configuration ever changes for a given set of bubbles,
the mobility must change too. Hence knowing about any changes in bubble configuration
is important [10]. It has been observed that changing the driving pressure can cause bubble
configuration to change [11–13]. That, in turn, influences mobility and hence changes the velocity
of propagation for the set specified pressure. These sorts of pressure-induced configurational
changes and how they influence foam flow in confined channels are then the topics to be
explored here.

Changes in bubble configurations specifically involve bubble neighbour exchanges, also
known as T1 topological transformations [14]. Previous work [15,16] has, therefore, focused
on how a foam structure that propagates along a channel might either undergo T1 or resist
T1, albeit this was done in the specific case of a ‘foam’ consisting of just three bubbles. The
reason for selecting a three-bubble system in particular is that it admits a variety of topological
transformation behaviour, and (in a sense to be made precise later) sometimes behaves akin to
a system with very few bubbles and sometimes behaves akin to a system with many bubbles.
Three bubbles, therefore, constitute a rich physical system that can offer insights also into systems
containing various different numbers of bubbles: this then is the basis for choosing to study three
bubbles.

How bubble sizes relative to channel size impact on the tendency of three-bubble systems to
undergo or not undergo topological transformations, i.e. how bubble sizes affect the system’s
susceptibility or resilience to T1, is then what [15,16] studied. However, those studies considered
susceptibility or resilience to T1 starting from just one particular topological configuration.
What we study in the present work, however, is how bubble sizes coupled with distinct
topological configurations attained following a T1, might or might not lead to further T1s and
hence a sequence of even more configurations. In other words, we explore how the topological
configuration itself might affect a system’s level of resilience to T1. Knowing about resilience
to T1s of each distinct topology is of interest, since once a definitive topological configuration
is attained that is more resilient than any of its predecessors, that configuration then governs,
as mentioned above, the foam’s mobility, and so ultimately governs foam flow in confined
channels.

Background about the system to be studied, how topological transformations arise, and more
justification behind choosing to consider the three-bubble system in particular are given in the
next section. The specific open questions that will be addressed for that three-bubble system
are also detailed within §2. The remainder of this study is then structured as follows. In §3,
we introduce the topological transformation paths that the simulation results indicate the three-
bubble system is allowed to follow after the first topological transformation. The simulation
results themselves are presented in §4, and conclusions are offered in §5. Further discussions
and analysis are relegated to the electronic supplementary material.
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2. Foam flows in confined channels
The challenges of modelling how foam flows within a confined geometry can be simplified by
considering two-dimensional foam systems contained e.g. in a Hele-Shaw cell [17,18]. In this type
of container, the foam is a monolayer confined between two glass plates with a small separation in
comparison both with the cell width and with the extent of the plates along the flow direction [17]:
see the sketch in figure S1 in the electronic supplementary material. Therefore, when seen from
above the top plate, the bubble films in the foam monolayers appear to be curves of negligible
thickness (figure 1). Moreover in the two-dimensional view in figure 1, we see what appear to be
upper and lower channel walls. In reality they are sidewalls across the width of the Hele-Shaw
cell, but when working in a two-dimensional view as is the case throughout here, it is convenient
to designate them instead as upper and lower, and that is the terminology that we adopt later on.

Two-dimensional foam systems confined in channels, particularly systems with bubbles
arranged in a staircase configuration zig-zagging across the channel, are of relevance for this
study (see figure 1; in particular figure 1b is a very long staircase, whereas figure 1a is a drastic
truncation thereof). In the dry limit [20], which is what we consider here, the foam structure
is delineated via the films between bubbles. The size of each bubble is determined by the area
enclosed by its films, and is considered to be fixed over time, regardless of how the bubble moves.
Note that areas are fixed since diffusive coarsening of the bubble area is not relevant on time
scales of interest (see the electronic supplementary material, section S1, for an indication of the
time scales involved). These bubble areas can also be compared with a characteristic scale for area,
which is the square of the width of the channel. Bubble films meanwhile are driven by pressure,
are subject to surface tension forces, and also experience viscous drag [8] since they move relative
to the confining channel. Taken together all these various forces constitute a so-called viscous
froth model [21]: see the electronic supplementary material, section S1, for details. The bubble
films are known moreover to meet three by three at vertices subtending angles of 120◦ (or 2π/3),
and can also be taken to meet the channel walls subtending angles of 90◦ (or π/2): for details
see [19].

In what follows, we describe the particular system to be studied here (§2a), open questions
that we address (§2b) and the strategy for tackling those questions (§2c).

(a) Three-bubble system
The three-bubble system shown in figure 1c is what we consider here. Full details of how the three-
bubble system is configured can be found in [15,16]. However for the convenience of the reader,
these details are in the electronic supplementary material, section S2. For the moment though, we
just mention that bubbles are numbered B1, B2 and B3, where the numbers are assigned from left
to right in figure 1c. Bubbles B1 and B3 are by assumption the same size. Vertices V1, V2 and V3,
at each of which three films meet, are numbered (like the bubbles themselves) left to right. At
equilibrium, distances from vertices V1 and V2 to the upper channel wall are denoted l◦1 and l◦2,
and in addition V3 is at the same distance from the upper channel wall as V1. Here also l◦1 and
l◦2 are taken as dimensionless quantities, with the distance between the upper and lower channel
walls being treated as the unit of distance. The quantities l◦1 and l◦2 (with l◦2 ≤ l◦1 always) are just
surrogates for bubble areas [15]. Increasing l◦1 increases the size of bubbles B1 and B3. Increasing
l◦2/l

◦
1 decreases the size of bubble B2.
A driving back pressure pb (typically made dimensionless on a scale associated with capillary

effects; see section S1 in the electronic supplementary material for details) is now imposed on
the three-bubble system. This then sets it into motion and out of equilibrium: it is the viscous
drag forces in the moving system which causes it to depart from equilibrium. In this context, the
driven system has been studied before [15,16] via both steady and unsteady state approaches (see
sections S3 and S4 in the electronic supplementary material). The steady state system, as modelled
by Torres-Ulloa & Grassia [15], corresponds to driving the system with an imposed pressure
that is increased from zero only very gradually: it looks for steadily propagating solutions
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Figure 1. Foam structures in a confined straight channel, looking down at a Hele-Shaw cell from above, so the upper and lower
channel walls are in fact sidewalls of the original Hele-Shaw cell. Bubble films obey Plateau’s laws: they connect three by three
in vertices subtending an angle of 120◦ (or 2π/3), and meeting the cell’s boundaries forming an angle of 90◦ (orπ/2), even
when the foam is set into motion [19]. (a) Simple lens. (b) Infinite staircase. (c) Three-bubble system, with bubblesB1,B2 and
B3 being numbered from left to right. Here bubblesB1 andB3, both attached to the upper channel wall, are by assumption of
the same size, but bubbleB2 attached to the lower channel wall might be of different size. Assuming the distance across the
channel is one dimensionless unit, l◦1 and l

◦
2 are the dimensionless distances fromverticesV1 andV2 (also numbered left to right)

to the upper channel wall in an equilibrium state. Vertex V3 is at the same distance from the upper channel wall as vertex V1, at
least at equilibrium. The quantities l◦1 and l

◦
2 are used as surrogates of bubble areas. The simple lens is a drastically truncated

version of the infinite staircase, whereas the three-bubble case interpolates between those two systems. Both the simple lens
and three-bubble system are asymmetric, in the sense that unequal numbers of films attach to the upper and lower channel
walls.

at each imposed pressure. Like the pressures themselves, the steady velocities that result can
be made dimensionless as per the electronic supplementary material, section S1. In steadily
propagating states, the apparent velocity v along the channel direction of each film element must
be uniform over the entire structure. The unsteady state system meanwhile, as modelled and
simulated by Torres-Ulloa & Grassia [16], corresponds to imposing a driving pressure suddenly.
The system starts off at rest, but begins to evolve once the driving pressure is imposed. There is
no requirement for uniform velocity while the evolution still occurs.

Via both methodologies, the three-bubble system (at least with certain bubble size
distributions) is found to reach T1 topological transformations when a sufficiently high imposed
back pressure is imposed. The physical mechanism behind such transformations [15,16] is
imbalance in the drag forces, with the drag being tied to foam films here (see e.g. the form of
the drag term on an element of foam film as given within the electronic supplementary material,
equation (S1.1)). As a result, the side of the structure near the upper channel wall, which has
more films (as per figure 1c), experiences more drag than the side near the lower channel wall
with fewer films. Increasing the driving pressure increases the drag overall, but also increases the
imbalance in the drag. Eventually the imbalance can become unsustainable, leading to T1.

However, Torres-Ulloa & Grassia [15,16] found for the three-bubble system that various
different types of topological transformation are now permitted: see the electronic supplementary
material, section S2(b) and especially figure S2 for details of the transformation types. These
include not just the so-called T1c (a vertex–vertex collision as previously seen by Drenckhan
et al. [14] in a curved U-bend channel rather than the straight channel considered here), and the
so-called T1u (a vertex reaching the upper channel wall [19], which can occur for the so-called
simple lens in figure 1a), but also other transformation types as well. In particular, a T1l and a
variant thereof a T1l′ (both involving a vertex reaching the lower channel wall) could occur (see
the electronic supplementary material, sections S3 and S4, for instances in which this happened).
The various topological types are shown in the previously mentioned electronic supplementary
material, figure S2. Which T1 type actually occurs was shown to be sensitive to the set of bubble
sizes chosen relative to channel size.

For other choices of bubbles sizes, however, both methodologies (steady and unsteady state),
have found that the three-bubble system could avoid T1 altogether and reach instead, in the
limit of high imposed driving pressures, a so-called geometrically invariant state [15,16]. In this
state, bubble shapes cease to change, and the structure simply moves faster and faster as the
imposed back pressure keeps increasing (see sections S3 and S4 in the electronic supplementary
material). This behaviour (avoiding T1 altogether) is akin to what commonly happens in the
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infinite staircase (figure 1b). However, situations like these turn out to be of limited interest
in the present work, which deals with topological transformation paths (i.e. the sequences of
topological transformations that various three-bubble systems follow). If there is no topological
transformation at all, there is likewise no transformation path. For the three-bubble system
moreover, topological transformations are avoided for only a rather limited domain of bubble
sizes (see the electronic supplementary material, figure S3, and also [15]). It is more common
for the three-bubble system to undergo T1, although various different types of T1 could occur as
already noted. In each case, which outcome the system reaches depends on the size of the bubbles,
and also on the pressure imposed.

Given that both the simple lens system (figure 1a) and the three-bubble system (figure 1c)
can exhibit topological transformation, in [16], the simple lens and the three-bubble system were
compared to identify which of them is more resilient to T1. This was a delicate balance, because
on the one hand, the three-bubble system is susceptible to certain T1 types (e.g. the T1c, T1l or
T1l′ mentioned above) that the simple lens never experiences [19]. On the other hand, the three-
bubble system could, again as mentioned above, sometimes reach a geometrically invariant state
(resisting T1 altogether). What was found by Torres-Ulloa & Grassia [16] is that the simple lens
tends to be more resilient for small bubble sizes (relative to channel size), but the three-bubble
system is more resilient as bubble sizes increase.

Notwithstanding the comparative susceptibility or resilience to T1, one significant difference
between the simple lens and the three-bubble system is, however, that the simple lens can
only ever undergo a single T1, not a sequence of multiple T1s. This is because the structure
itself in figure 1a is so simple, consisting just of a so-called lens bubble at the upper channel
wall, and a so-called spanning film connecting that bubble to the lower channel wall. In the
work of Green et al. [19], in cases when the simple lens structure was observed to break up,
this was due to the spanning film running ahead of and separating from the lens bubble.
Once that has happened no further transformations can occur. Meanwhile the three-bubble
system (akin to the system studied by Drenckhan et al. [14], namely flow of a bubble train
through a U-bend) can potentially undergo a sequence of transformations. The nature of
multiple topological transformations for the three-bubble system remains an open question as is
discussed next.

(b) Open questions for the three-bubble system
The steady state solution methodology of Torres-Ulloa & Grassia [15] is only designed to track
steadily propagating solutions for the three-bubble system in a specified topology up to an
imposed pressure corresponding to a first topological transformation: it does not interrogate
what happens beyond that. Once the topology changes after a first topological transformation, the
method would need to change likewise. Moreover it is not even clear that the topology obtained
after a first topological transformation would necessarily admit a steadily propagating state at
the imposed pressure in question. If the new topology immediately after the first topological
transformation is more resilient to T1 than the original topology shown in figure 1c was, then it
is likely that a steadily propagating solution will still be available at the given imposed pressure.
However, if the new topology is less resilient than the original, then a steadily propagating state
might not be admitted, and the steady state approach is then of little use.

The unsteady state or dynamic simulation methodology of Torres-Ulloa & Grassia [16]
meanwhile can in principle track the system beyond a first topological transformation. However,
Torres-Ulloa & Grassia [16] chose to stop simulating after a first transformation. The state reached
after a first topological transformation as found by Torres-Ulloa & Grassia [16] might, however,
be merely a short-lived intermediate state that continues to break up via a sequence of further
transformations. Hence it becomes relevant to consider the entire topological transformation
path that the three-bubble system follows, not just the first transformation. This then is what
the present paper addresses.
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T1c
1

T1cc
Ø T1[cu]

T1cu'
0

T1cu'c
Ø*

T1[cuu' ]
1

T1[cuu]
b1

T1[cuu'u]
b1*

T1[cu'u!]
1

T1[cu'u!u]
b1*

2

Figure 2. Topological transformation paths for systems that undergo a T1c initially starting from the original three-bubble
topology. The meanings of all the various superscripts and subscripts in the diagram are explained in §3a and in more detail in
the electronic supplementary material, section S6. The initial staircase topology is on the left (in bold face) and starting from
there, arrows can be followed to construct the various different topological paths that are realized. BubbleB2 is shown shaded
to distinguish it from the others.

What we will demonstrate is that the three-bubble system if it undergoes topological
transformation at all, typically undergoes a sequence of transformations. After these
transformations, the system reaches one of a set of what we will call final topological states. These
constitute just a subset of the total set of topologies available to the three-bubble system. As we
will see, these final states, unlike the state in figure 1c, are characterized by their topological
symmetry: the number of films attached to the upper channel wall matches the number of
films attached to the lower channel wall, at least in those parts of the structure that continue to
propagate. As also happened with the simple lens [19] (sketched in figure 1a; see also section S1 in
the electronic supplementary material for a brief discussion of the simple lens), when topological
transformations occur, certain films might belong to bubbles that are left behind and no longer
propagate (on the basis that they no longer form structures that span the entire channel). Those
films are excluded from the topological symmetry count.

The focus of the present work then, as we have said, is on topological transformation paths (see
figures 2–6, which also will be explained in detail later). As Torres-Ulloa & Grassia [15,16] found,
the main factor determining which type of topological transformation is selected first (and hence,
in turn, which transformation path is selected) is the set of bubble sizes. However, as Torres-Ulloa
& Grassia [16] found, the value of the imposed driving pressure also plays a role. It is obvious
of course that imposed pressure must play some role because, as has been alluded to above, T1
topological transformations only ever occur in the first place when driving pressure is sufficiently
high. Given that, as already alluded to, the focus here is on topological transformation paths, the
driving pressure needs to be high enough to induce at least one transformation.

However, the behaviour with respect to pressure is more subtle than just described. It was
found by Torres-Ulloa & Grassia [16], that, given a specified set of bubble sizes, the type of
first topological transformation that a three-bubble system undergoes might be sensitive to the
imposed back pressure driving it. So for example, a T1u might be selected as the first topological
transformation for one domain of imposed pressures, but a T1c might be selected for a different
domain of pressures. Different imposed back pressures for a given set of bubble sizes can,
therefore, lead to different topological transformation paths.

This then raises a number of interesting questions. The first topological transformation that
is selected is evidently sensitive to pressure, but if the entire transformation path is now
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T1u
2

T1[uc]
2

T1[ucu]
b1T1[ucu' ]

1

T1[ucu'u]
b1*

T1[ul' ]
1

T1[ul' l]
b3

Figure 3. Topological transformation paths for system that undergo a T1u initially starting from the original topology.

considered, is it ever the case that the same set of transformations might occur, merely in a
different sequence? In other words, to what extent do the various transformation types commute
within a transformation path? Given also that, as has been mentioned, systems tend to reach
one of just a small set of final topological states, does changing imposed pressure and thereby
switching the first topological transformation type, lead the system (once the full transformation
path is considered) back into the same final topological state as before? Alternatively, does
switching the first transformation type in this fashion cause the system to branch onto an
entirely different transformation path, leading then to a quite distinct final state? Moreover, is
it possible to see second or subsequent transformations switching type as imposed pressure
changes, even though the first transformation type might not change so readily? These then are
questions to be addressed in the present work. The strategy for addressing these questions is
described next.

(c) Simulation strategy
As alluded to earlier, the model of choice (see the electronic supplementary material, section
S1) is the viscous froth model, which balances pressure, surface tension/curvature and viscous
drag forces [21], the drag forces being essential for systems that depart from equilibrium. For
simplicity, surface tensions are assumed to be uniform along films and constant over time
here, but this assumption can in principle be changed to include surfactant effects in models
[22–24]. The viscous froth model as used here is cast in a suitable dimensionless form (again
see the electronic supplementary material, section S1). For each film element we find (see
the electronic supplementary material, equation (S1.2))

v⊥ = �p − κ , (2.1)

where v⊥ is the dimensionless velocity of a film element, �p is the dimensionless pressure
difference across the film and κ is the dimensionless curvature of a film element.

The methodology used in this work to compute unsteady state simulation for the viscous
froth model is based on work developed in [19] for the simple lens, and was used in [16] for
the three-bubble system to obtain results for system evolution up to the first T1 (see section S4
in the supplementary material for a summary of those results). The same methodology is now
applied in this work to capture the dynamics of the three-bubble system as it evolves beyond the
first T1. A brief description of the method is given in section S5 in the electronic supplementary
material. Essentially what is involved here is sudden imposition of a driving back pressure pb to
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T1[l'u!]
1T1l'

0'

T1[l'u!l]
b3

Figure 4. Topological transformation paths for systems that undergo a T1l′ initially starting from the original topology.

T1l
0*

T1lu!
1 T1lu!u

b2

T1lu!l
b3*

Figure 5. Topological transformation paths for systems that undergo a T1l initially starting from the original topology.

set the three-bubble system into motion. Thus pb is reset from zero to some specified non-zero
value, and held at that value. As a result, the foam films move, and some of them tend to grow
while others tend to shrink. If any film shrinks below a critical cut-off value (see the electronic
supplementary material, S5(b) for details), a topological transformation is declared.

Assuming the imposed pressure is high enough to induce a first topological transformation,
then the simulation technique should have no difficulty continuing beyond that first
transformation. In principle topological transformations must continue until the system finds
itself in a topological configuration that is sufficiently strong to resist them. Indeed, for a given
(dimensionless) imposed back pressure pb, the (dimensionless) apparent velocity v at which
film elements seem to migrate along the channel need not be spatially uniform over the entire
structure, at least not until (as already discussed in §2a) a steadily propagating structure is
reached.

Note also that a so-called bamboo configuration, with films on individual bubbles spanning
the entire channel from the upper to the lower channel wall [15] (see figures 3–5 for examples),
can propagate steadily without breaking even with arbitrarily large imposed pressures. Variants
of the bamboo configuration also admit bubbles that are left behind attached to one or
other channel wall, while the remaining films propagate steadily as a bamboo (see figures
2, 3 and 5 for examples). Hence a bamboo is a conceivable final configuration for a system
after multiple topological transformations, albeit not necessarily the only possibility, as we
will see.

To summarize, by computing unsteady state simulation, our strategy is to determine how
systems will evolve after their first topological transformation, tracking the evolution until they
reach a steadily migrating configuration for the specified imposed back pressure: a system might
typically undergo a sequence of different topological transformations before reaching such a state
(see §3 for details). Dealing with multiple topological transformations, rather than just a single
transformation, is then the key novel aspect in what follows.
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3. Multiple transformations: identifying permitted paths
As mentioned in §2a and as also detailed in section S2(b) in the electronic supplementary
material, the first topological transformation that the system can undergo can be of four distinct
types (see figure S2 in the electronic supplementary material): T1c (vertex–vertex collision),
T1u (transformation at the upper channel wall at the downstream end of the structure), T1l
(transformation at the lower channel wall at the downstream end of the structure) and T1l′ (like
T1l but happening further upstream). When considering subsequent transformations within a
sequence of multiple transformations, however, yet another transformation type also becomes
common, namely the T1u′ (like T1u but happening further upstream): see figures 2 and 3 for some
examples involving the T1u′ .

The type of first topological transformation and the types of any subsequent topological
transformations selected depend on bubble sizes and also upon the different back pressures that
are imposed. To interrogate this, we have generated a large body of simulation results (see section
S8 in the electronic supplementary material). Before we can consider the results in detail (which
we do in §4), we need a notation to describe the various topological transformation paths as
predicted by our simulations. In what follows, therefore, the different paths will be identified
based on the historical sequence of topological configurations that the system is observed to
undergo.

(a) Designating topological paths and topological states
The notation we employ for topological transformation paths is consistent with the notation
already established above and in the electronic supplementary material, section S2(b), for the first
topological transformation. Specifically an individual topological transformation in the historical
sequence of transformations will be denoted with the subscript c if it involves a collision of
vertices, by the subscript u if the vertex furthest downstream reaches the upper channel wall, and
by the subscript l if the vertex furthest downstream reaches the lower channel wall. If, on the other
hand, a vertex further upstream reaches either the upper or the lower channel wall, the topological
transformation will be specified with the subscript u′ or l′, respectively. Therefore, the topological
path of systems that have undergone more than one different topological transformation could
be denoted as e.g. T1cu′uu or T1l′ul.

Figures 2–5 (as discussed in detail in §3b to follow) sketch the possible topological
transformation paths, with an overall summary in figure 6. All the paths shown in these
figures are actually observed for at least some choices of bubble sizes and some choices of
imposed driving pressure. Transformations that are topologically feasible but never actually
observed dynamically via the simulation methodology (the methodology itself is described
in section S5 in the electronic supplementary material) are not shown here. For example the
dynamics would not typically favour transformations that involve bubbles near the upper
channel wall (where there are more films and hence more viscous drag) running increasingly
far ahead of and overtaking bubbles near the lower channel (fewer films and less drag). In
summary, figures 2–6 include only those transformations that the dynamics actually manages to
select.

Over and above what is shown in §3b below, we have extended the discussion of multiple
topological transformations as follows (details are relegated to the electronic supplementary
material, section S6: some readers may find it helpful to consult that section immediately). When
systems undergo more than one topological transformation we use a special notation to identify
configurations that are topologically equivalent, despite possibly being reached by different paths
(see section S6(a) in the electronic supplementary material for details). Briefly, however, a square
bracket around the subscript in figures 2–6 indicates a path that is topologically equivalent to at
least one other path. In addition, an overbar on the first two transformations in the path indicates
they are topologically interchangeable. Understanding that various different topological paths
commute also helps us to draw a clearer distinction between the concept of a ‘topological path’
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staircase

T1c
1 T1cc

Ø

T1cu'
0

T1cu'c
Ø*

T1[cu'u!]
1 T1[cu'u!u]

b1*

T1[cu]
2

T1[cuu' ]
1

T1[cuu'u]
b1*

T1[cuu]
b1

T1u
2

T1[uc]
2

T1[ucu' ]
1 T1[ucu'u]

b1*

T1[ucu]
b1

T1[ul' ]
1 T1[ul' l]

b3

T1l'
0'

T1[l'u!]
1 T1[l'u!l]

b3

T1l
0* T1lu!

1 T1l'u!l
b3*

T1lu!u
b2

Figure 6. Full set of topological transformation paths observed for the three-bubble system starting from a staircase structure.
Remember that it is not necessary to follow each path to the end. Topologically equivalent states reached by different paths are
shown connected vertically by lines: for more information see also figure S14 right at the end of the electronic supplementary
material.

and the concept of a ‘topological state’. As we explain further in the electronic supplementary
material, section S6(a), a topological state is the topology that results when a particular topological
path is followed. The path defines the state, but not vice versa, since a given state might be reached
by various different paths.

Clearly the subscript notation we have defined thus far pertains to paths. Our aim, therefore,
in what follows is to augment that notation using superscripts to designate particular states.
Both subscripts and superscripts, therefore, appear in figures 2–6 (see §3b). The advantage
of augmenting the notation in this fashion is that we can then use a common notation
interchangeably to represent either ‘topological paths’ or ‘topological states’ depending on which
concept is being discussed.

Towards that end, we identify a number of topological final states which by their nature
typically manage to avoid undergoing any further transformations. These final states can
be divided into two types: so-called ‘endpoint states’, which cannot undergo any further
transformations whatsoever, and so-called ‘metastable states’, which resist breaking, but which
can still be broken in principle. As will become apparent, much of what follows focuses on final
states like these.

(Details of some endpoint states can be found in sections S6(b)–S6(c) in the electronic
supplementary material). In this context, the superscript Ø and a variant thereof Ø∗ will be used
to indicate systems that break up completely and cease to propagate (examples can be found in
figure 2). The superscripts b3, b2 and b1 meanwhile indicate bamboo states (mentioned already in
§2c), with either three bubbles, two bubbles or one bubble still moving. Variants b3∗ and b1∗ also
exist. These bamboo states (see various examples in figures 2–6), once formed will propagate but
can never be broken.

Moving on to consider topological states more generally (not just endpoint states), properties
that various states have that might help them either to avoid further topological transformations
or be particularly susceptible to them are discussed in sections S6(d)–S6(g) in the electronic
supplementary material. One useful measure here is a topological asymmetry index (see section
S6(d) and also section S6(f) in the electronic supplementary material), which is simply the
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difference between the number of films attaching to the upper channel wall and the lower channel
wall, but counting only those films that actually propagate. Where relevant, i.e. with the exception
of endpoint states which already have their own bespoke superscripts as mentioned above, the
value of the asymmetry index is shown as a superscript in figures 2–6.

It turns out that states with non-zero asymmetry index are often rather short-lived, so it
is instead the states that are symmetric topologically speaking (i.e. having zero asymmetry
index) which are deemed as being of particular importance. The bamboo states are themselves
topologically symmetric, but there are other topologically symmetric states as well, as section
S6(e) in the electronic supplementary material describes. These are identified also in figures 2,
4 and 5 shown with a superscript 0 (or variants thereof 0′, 0∗). We also refer to these particular
states as ‘two-bubble’ states because they involve two bubbles stacked across the channel, with a
third bubble either upstream or downstream but not impacting on how the other two bubbles are
configured. Such states are difficult to break, meaning they are selected very often as final states.
Electronic supplementary material, section S6(e), designates the 0, 0′ and 0∗ states as ‘metastable’,
a terminology already alluded to above, which will be employed also in what follows. Even
though these states often resist breaking, they can still be broken under certain circumstances,
although the particular circumstances causing them to break may need to be analysed carefully
(for more information see the electronic supplementary material, section S7 and in particular
section S7(b)). Transformation paths (themselves denoted by subscripts) which involve breaking
metastable states are designated as ‘counterintuitive’ (see the electronic supplementary material,
sections S6(e) and S7(b) for details) and, where relevant, in figures 2, 4 and 5 a superscript ‘!’ is
placed upon the already existing subscript to highlight them. The superscript ‘!’ is placed at the
specific step in the path which breaks the metastable state.

This then completes a description of the notation deployed in figures 2–6 (further details being
found in the electronic supplementary material, section S6), so now we can proceed to present
the figures themselves in §3b below. An overall summary of all the discussion here is then offered
in §3c.

(b) Diagrams of topological transformation paths
Here we sketch diagrammatically all the possible topological transformation paths that the three-
bubble system has been observed in simulations to undergo starting initially from the original
staircase configuration (i.e. starting from equilibrium) with a range of bubble sizes, and then
imposing a wide range of driving back pressures (see also analysis of particular paths in section
S7 plus a full dataset in section S8 in the electronic supplementary material). As mentioned, there
are some transformations that are topologically feasible, but which have not been observed (being
dynamically unfavourable), and they are specifically not described here. We show the paths
broken down into four different types of initial T1s (see figure S2 in the electronic supplementary
material for the initial T1s and see also figures 2–5 for the resulting paths). Specifically, in figure 2
we show the possible paths for systems that start with T1c, in figure 3 those starting with T1u, in
figure 4 those starting with a T1l′ , and finally in figure 5 those starting with T1l. The full set of
paths is summarized in figure 6: see also figure S14 on the landscape format page right at the end
of the electronic supplementary material.

In each case, systems can undergo up to three or four transformations in the path depending
on the initial T1 type. However, not all transformation paths involve that many transformations.
Often (as we will see later on) systems follow a path involving just one or two transformations,
not three or four of them.

An example of how to read figure 2 is given below, with figures 3–5 being read in a similar
fashion. In figure 2, we start in the initial staircase topology (see the state indicated with bold
lines towards the left), then we follow an arrow to the right (T11

c ). After that we could choose,
for instance to follow an arrow downward (T10

cu′ ). A possible next step would then be to follow
an arrow upward and to the right (T11

[cu′u!]), and from there to follow another arrow downward
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Table 1. Number of instances of topological transformation paths of each type for different imposed back pressure pb. For each
pb, we consider l◦1 ∈ [0.1, 0.2, . . . , 0.9, 0.96] and l◦2 /l

◦
1 ∈ [0.1, 0.2, . . . , 0.9] (i.e. 90 cases in total). Note that T1Øcc (figure 2)

and T1b2lu!u (figure 5) states are allowed paths also, however, not for the specific pressures shown here. Additionally, note also
that there is another way of reaching the b1∗ bamboo state, namely T1b1∗[cu′u!u] (figure 2), although again not seen for the specific
pressures here. Full datasets are in section S8 in the electronic supplementary material. Note moreover that× here means
no T1.

T1\pb 10 20 40 80

T1Ø∗
cu′c 0 1 2 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b1[cuu] 0 1 1 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b1[ucu] 31 28 21 14
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b1∗[cuu′u] 0 1 2 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b1∗[ucu′u] 0 2 5 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b3
[ul′ l]

1 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b3
[l′u! l]

1 0 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b3∗lu! l 1 2 2 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T10
′
l′ 0 0 0 2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T10∗l 6 7 7 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T10cu′ 3 28 43 56
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

× 47 20 7 6
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total 90 90 90 90
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(T1b1∗
[cu′u!u]). If instead, from the T11

c state, we were to follow an arrow upward we would reach

T12
[cu]. Selecting an arrow downward and to the right would lead to T11

[cuu′] (equivalent to T11
[cu′u!]

but reached by a different path). A downward arrow now leads to T1b1∗
[cuu′u] (likewise equivalent

T1b1∗
[cu′u!u] but reached by a different path). In any case, following all the various arrows in each

of figures 2–5 it is possible to construct the full set of possible paths and possible states that are
observed, summarized in figure 6. It should be remembered, however, that it is not necessary
for paths to follow all arrows shown all the way to the end. In the example described above for
instance, the topology might well stop evolving upon reaching T10

cu′ for instance, rather than
necessarily continuing on to T11

[cu′u!] or T1b1∗
[cu′u!u].

(c) Summary of topological paths and states
This now completes the designation (via subscript notation) and diagrammatic representation
of the various topological paths that systems are observed to take, based on our simulation
results. We have also identified (via superscript notation) the topological states that the various
paths access. Further detailed discussion of topological paths and topological states is given in
section S6 in the electronic supplementary material. A key point, however, is that out of the
many different states that systems access in the diagrams while following their topological paths,
only a subset of them are expected to be final states with the system then propagating steadily
without further topological transformations occurring (further details of which states simulations
actually select as final states can be found in table 1 which is discussed further later on; typically
topologically symmetric states are favoured as final states).
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Unsteady state simulation results are now analysed to explore not just the sets of topological
transformation paths that systems follow, but also how often they are followed. Likewise the
analysis tells us not just the sets of final states that systems reach, but also how often they are
reached. The complete details for all the cases studied in this work are summarized in section S8
in the electronic supplementary material, covering a wide domain of bubble sizes and imposed
back pressures, i.e. a wide domain of l◦1, l◦2/l

◦
1 and pb values. An illustration of the behaviour in

just a selection of these cases is presented next in §4.

4. Results and discussion
We now proceed to present simulation results for specific imposed back pressures and for values
of l◦1 ∈ [0.1, 0.2, . . . , 0.9, 0.96] and l◦2/l

◦
1 ∈ [0.1, 0.2, . . . , 0.9]. As in [16], the rationale for choosing l◦1 =

0.96 in particular is that it accesses some states that the other l◦1 values considered do not reach.
Section 4a focuses on results in detail for just a small selection of imposed pressures. Section
4b meanwhile focuses on many more imposed pressures but looks at information from a more
statistical point of view. Finally §4c considers the mobility of various states that result. Further
information helping to explain the system behaviour in detail is discussed in section S7 in the
electronic supplementary material. Moreover, although the focus throughout is on topology and
to a lesser extent on mobility, it is also instructive to consider system energy, which is done in
section S9 in the electronic supplementary material.

(a) Topological transformation paths for a selection of pressures
In figures 7–10, we indicate the various topological transformation paths that are seen for
different imposed back pressures pb ∈ [10, 20, 40, 80], recalling that pressures here are taken to
be dimensionless on a scale associated with capillary effects (see the electronic supplementary
material, section S1, for details of how the system is made dimensionless; the same approach
was used by Torres-Ulloa & Grassia [15,16], and the domain of dimensionless pressures explored
was comparable with the domain that is considered here). Data presented in figures 7–10 are
expressed in the form of phase diagrams, namely the topological path followed in each case at
each pressure pb as a function of l◦1 and l◦2/l

◦
1. Remember here (see section S2 in the electronic

supplementary material) that, with the distance between upper and lower walls scaled to unity,
varying l◦1 and l◦2/l

◦
1 just corresponds to varying bubble areas. The notation on the phase diagram

matches the superscript and subscript notation already defined in §3, although the symbol T1 is
omitted in the diagram itself in order to save space. A summary of the different T1 paths for each
pb considered is given in table 1.

Here, as we have said, we present an illustration of the possible outcomes for just four distinct
pb values. However, other paths can also be followed, if values of pb different from those in figures
7–10 are considered. This is detailed in section S8 in the electronic supplementary material. For
the four distinct pb values to be considered here though, we start in §4a(i) with an overview of the
paths followed, then §4a(ii)–(iv) give the paths for each of the pressures. After that, §4a(v)–(vi)
give populations of states for each path, and populations transitioning between paths.

(i) Overview of topological transformation paths

Before we proceed there is a notational convention that we clarify in order to facilitate the
discussion. A topological path involving multiple steps, or indeed multiple steps that occur
towards the start of a given topological path, will be denoted by multiple subscripts plus a
superscript: that notation has been defined already in §3. Meanwhile the first step in a topological
path (the path itself might or might not involve multiple steps) will be denoted with a single
subscript plus a superscript, e.g. T11

c , T12
u, T10∗

l or T10′
l′ . The symbols T1c, T1u, T1l or T1l′ or indeed

T1u′ (without a superscript) meanwhile denote generic transformation types, which might occur
as the first step in a path, but which might instead occur as a subsequent step. These generic
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1.0
pb = 10

0.8

0.6

0.4

0.2

0 0.2 0.4

l°2/ l°1

0.6 0.8 1.0
l°1

Figure 7. Topological transformation paths for values of l◦1 ∈ [0.1, 0.2, . . . , 0.9, 0.96], and l◦2 /l
◦
1 ∈ [0.1, 0.2, . . . , 0.9], in each

casewith pb = 10. Topological states are also indicated alongwith the paths. Cases shown in bold are in buffer regions inwhich
it is already known that different transformation types compete (see section S3(b) in the electronic supplementary material).

1.0
pb = 20

0.8

0.6

0.4

0.2

0 0.2 0.4

l°2/ l°1

0.6 0.8 1.0
l°1

Figure 8. Topological transformation paths and topological states for values of l◦1 ∈ [0.1, 0.2, . . . , 0.9, 0.96], and l◦2 /l
◦
1 ∈

[0.1, 0.2, . . . , 0.9], in each case with pb = 20. Cases shown in bold are in buffer regions in which different T1 types are known
to compete. Cases enclosed in a box are those which differ between the present pressure pb = 20 and the pressure pb = 10
in the previous figure, albeit excluding situations for which pb = 10 did not exhibit any T1 at all. The box is drawn just around
the transformation path, if a different transformation path results in the same final outcome, i.e. the same topological state.
Otherwise the box is drawn around both the path and the state.

transformation types do not carry a superscript, because the superscript required depends on the
topological state, which cannot be specified unless we know the full sequence of transformations
up to and including any given point in a given path.

An important observation we make from figures 7–10 is that the overwhelming majority of the
cases considered that manage to undergo topological transformations at all, end up propagating
in states with a topological asymmetry index of zero, implying equal numbers of propagating
films attaching to upper and lower channel walls. There are a few cases in which systems break up
in a fashion such that no films propagate at all: these are denoted Ø or Ø∗ (see also figure 2), and
they have themselves been discussed in sections S6(b) and S7(a) in the electronic supplementary
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Figure 9. Topological transformation paths and topological states for values of l◦1 ∈ [0.1, 0.2, . . . , 0.9, 0.96], and l◦2 /l
◦
1 ∈

[0.1, 0.2, . . . , 0.9], in each case with pb = 40.

1.0
pb = 80
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0 0.2 0.4

l°2/ l°1

0.6 0.8 1.0
l°1

Figure 10. Topological transformation paths and topological states for values of l◦1 ∈ [0.1, 0.2, . . . , 0.9, 0.96], and l◦2 /l
◦
1 ∈

[0.1, 0.2, . . . , 0.9], in each case with pb = 80.

material. Overall, however, it is clear from figures 7 to 10 that three-bubble systems have a
strong preference for selecting propagating states that are topologically symmetric. This includes
systems that finish in a bamboo-like configuration, labelled as b1 and b3 (or variants thereof
b1∗ or b3∗). These are topological endpoint states permitting films to propagate under any
imposed driving pressure without any film deformation at all, and hence without any possibility
of further topological change (see section S6(c) in the electronic supplementary material). Not
all the symmetric states selected are, however, topological endpoint states: often systems select
metastable states instead such as T10

cu′ , T10′
l′ or T10∗

l . These are all topologically symmetric
(see figures 2, 4 and 5 for how they are configured), and so (as section S6(e) in the electronic
supplementary material describes) tend to resist breakage in practice, even though in principle
they could still be broken.

The fact that, if systems undergo topological transformation at all, then they eventually find
themselves in states with zero asymmetry index, implies that all the (asymmetric) intermediate
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states that systems pass through on their way to an eventual (symmetric) state, are presumably
less resilient than the original three-bubble staircase configuration was. In other words, even
though the original three-bubble state is not entirely resilient to T1 and can be broken, it is
typically more resilient than any asymmetric daughter states that derive from it, e.g. T12

u or T11
c

on their own, or else combinations of them such as T12
[uc], T11

[ucu′], T12
[cu], T11

[cuu′], all of which
within figures 7–10 always break further. If we look moreover at a much bigger sample of data
(see tables S1–S10 in section S8 in the electronic supplementary material, including many more
imposed pressures than are analysed in figures 7–10, specifically incrementing pressure in integer
steps) we see a few isolated cases of systems remaining in asymmetric states (T12

u, T12
[uc], T11

[ul′]
in particular). However, this turns out to occur in very restricted domains of bubble sizes l◦1, l◦2/l

◦
1

and driving pressures pb. The overwhelming preference for evolving into topologically symmetric
states is clear.

In the steady state approach of Torres-Ulloa & Grassia [15], regions of parameter space which
are firmly T11

c , T12
u, T10∗

l or T10′
l′ (as the first T1 transformation) were found. However, there were

also so called buffer regions between them, within which different T1 types compete (see section
S3 in the electronic supplementary material for details, in particular section S3(b)). States within
the already identified buffer regions [15] are highlighted with boldface in figures 7–10. In these
buffer regions and nearby to them, it has been shown [16] (for the first T1 at least) that the T1 type
predicted by unsteady state simulation often differs from the T1 type predicted by the steady
state approach, and moreover the T1 type selected by the unsteady state simulation could readily
switch from one type to another as pb varied.

By the same token, and via the same unsteady state simulation approach considered here,
transitions between entire topological transformation paths are possible just by varying pb. These
are highlighted in boxes in figures 7–10, which adopt a subscript and superscript notation that
was established in §3. More specifically a topological path is highlighted in a box in figures 8–10
if it differs from the topological path at the next pressure down in figures 7–9. A box just around
the subscript alone shows a different topological path, but the final state is the same, while a box
around both subscript and superscript is used if the path is different and the final state is also
different.

Referring back to the various open questions posed in §2b, our data (see the electronic
supplementary material, section S8, for details) now permit us to address many of them. There
are for instance cases in which for a given l◦1 and l◦2/l

◦
1, different pb values eventually lead the

system to the same final state but via different routes. Such a case is l◦1 = 0.3 and l◦2/l
◦
1 = 0.6

(see the electronic supplementary material, table S3), which has no T1 up to pb = 11 (consistent
with figure 7 for l◦1 = 0.3 and l◦2/l

◦
1 = 0.6), undergoes T1b1

[ucu] for pb ∈ [12, . . . , 24] (consistent with

figure 8), but T1b1
[cuu] for pb ∈ [25, . . . , 31]. Changing driving pressure, therefore, leads in this

instance to the same state reached via different paths. Beyond that, however, changing pressure
causes this system to branch to a different final outcome, i.e. T1b1∗

[cuu′u] for pb ∈ [32, . . . , 44] (which
is evident from figure 9). Reaching this different outcome has resulted from a change in the third
transformation in the path, keeping the first two intact. This same outcome is reached again
(but via a different path T1b1∗

[cu′u!u]) for pb ∈ [45, . . . , 49]: the change is now seen from the second
transformation in the path. Meanwhile for pb ∈ [50, . . . , 80], the outcome is different yet again,
namely T10

cu′ (which is evident from figure 10). Details of behaviours such as these are given
in tables S1–S10 in the electronic supplementary material for pressures up to pb = 80 in integer
steps. In the sections that follow, however, we focus specifically, as we have said, just on selected
pb values pb ∈ [10, 20, 40, 80], and how systems behave for those particular pressures. Note also
that previous work [15,16] has found that pb = 80 often tends to be sufficient for large pb limiting
behaviours to emerge.

(ii) Topological transformation paths for pb = 10

In figure 7 (for pb = 10), we can see that for small values of l◦1 and l◦2/l
◦
1 (bottom left region of

the phase diagram), systems undergo T1b1
[ucu], where bubbles B1 and B3 are left behind (attached
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together), while bubble B2 keeps flowing in a bamboo configuration (see figure 3 for a sketch of
the path followed). In this region of the phase diagram, it turns out [15] that geometrically bubble
B2 is rather larger in area than B1 and B3, and manages to slip away from those other bubbles
relatively easily.

Still with small l◦1, when bigger values of l◦2/l
◦
1 are considered (i.e. values of l◦2/l

◦
1 closer to unity),

the system does not undergo any topological transformation, at least not for pb = 10, which is
as expected from Torres-Ulloa & Grassia [15]: small l◦1 but large l◦2/l

◦
1 resists the first T1 out to

large pb (see the electronic supplementary material, sections S3 and S4). This behaviour has been
attributed [15] to the geometric placement of vertex V3 on bubble B3. Despite that bubble being
small in area, the vertex is placed still some distance away from the bubble’s downstream edge
such that it is less easy for bubble B2 to slip away.

As l◦1 increases, T1b1
[ucu] is still obtained for small values of l◦2/l

◦
1 (see figure 3), but as l◦2/l

◦
1

increases, systems stop undergoing topological transformation at least for pb = 10 as is considered
here. For even larger values of l◦2/l

◦
1, the systems undergo T10

cu′ in a few cases. Geometrically, these
particular cases correspond to bubble B2 now being a little smaller in area than B1 and B3, and the
topological transformation can be traced back again to vertex placement [15]: vertices V1 and V2
are close together and collide easily. The final result is that bubble B1 is left behind and bubbles
B2 and B3 keep flowing attached together in a two-bubble structure spanning the channel, see
figure 2. This is a topologically symmetric state: as mentioned earlier, it is a metastable state that
is difficult to break. However, it is not formally an ‘endpoint state’ that could never be broken.

Still consulting figure 7, for yet bigger values of l◦1 (e.g. l◦1 ∈ [0.8, 0.9]), systems resist topological
transformation for a larger domain of l◦2/l

◦
1 values, but T1b3

[ul′l]
and T1b3

[l′u!l]
are observed for l◦2/l

◦
1 =

0.1. These transformation paths lead to an ‘endpoint state’, namely a bamboo configuration with
bubble B2 at the leading edge of the structure (figures 3 and 4). Geometrically all bubbles are
of large area in this region of the phase diagram [15], so it is not surprising that a bamboo state
is reached: large bubbles tend to prefer bamboo states, rather than staircase structures that zig-
zag across the channel [9]. What is perhaps less obvious is how bubble B2 manages to overtake
bubble B3 entirely to finish at the downstream end. The answer, however, can be traced back
to the fact that l◦2/l

◦
1 is small, meaning that the original three-bubble structure is almost at the

point of breaking into two separate simple lenses. Even though it does not actually break in that
particular fashion, it is still the case that the downstream film of B2 along with bubble B3 almost
form a simple lens, that can evolve, at least to some extent, independently of what bubble B1 is
doing. This is what then permits bubble B2 to run ahead. Further discussion of this is given in
section S7(b)iii in the electronic supplementary material.

Finally for values of l◦1 = 0.96 but still with l◦2/l
◦
1 = 0.1 we obtain neither T1b3

[l′u!l]
nor T1b3

[ul′l]
(both

bamboo structures with bubble B2 at the downstream end as we have mentioned). Instead the
system undergoes T1b3∗

lu!l (figure 5), which corresponds to a bamboo configuration with bubble
B2 now in the middle of the structure. Reaching a bamboo is unsurprising, since again we are
dealing with large area bubbles, which often have a preference for bamboo. The reason that T1l
or more specifically T10∗

l is selected as the first transformation is due to vertex V3 being placed
very close to the lower channel wall meaning that it can slip easily off the rest of the structure [15].
The reason why subsequent transformations occur even after that to give T1b3∗

lu!l , is considered in
section S7(b)ii in the electronic supplementary material. Certainly for the same l◦1 = 0.96 value, as
l◦2/l

◦
1 increases, the system undergoes just T10∗

l without any transformation after that: as one of the
identified metastable states, this T10∗

l should manage to resist further transformations effectively.
Meanwhile for l◦1 = 0.96 with l◦2/l

◦
1 > 0.7 no T1s are observed, at least not for pb = 10 considered

here.
Even though we have discussed various topological transformation paths that are realized

here, an important observation is that for pb = 10 (the specific driving pressure considered in
figure 7), many systems still manage to avoid topological transformation altogether (systems that
avoid T1 are denoted ×). In figure 7, transformations are most likely to be avoided if we select
intermediate to large l◦1 values and intermediate to large values of l◦2/l

◦
1. As we will see in what

follows, increasing pb makes it increasingly difficult for T1 to be avoided.
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A final comment we make is that when pb = 10 we observed two different systems (one for l◦1 =
0.8 and l◦2/l

◦
1 = 0.1 following a path T1b3

[ul′l]
, and one for l◦1 = 0.9 and also with l◦2/l

◦
1 = 0.1 following

T1b3
[l′u!l]

)
reaching a b3 bamboo state by different routes (see figures 3 and 4 to understand the

paths followed). It turns out that there can be multiple paths to other bamboo states also. When
pb = 20 or pb = 40 (as is studied next), very occasionally b1 is reached by T1b1

[cuu] (such is the case
for l◦1 = 0.4 and l◦2/l

◦
1 = 0.5 for pb = 20, and for l◦1 = 0.2 and l◦2/l

◦
1 = 0.7 for pb = 40), but far more

often it is reached by T1b1
[ucu] (see figures 2 and 3 for the paths followed). When pb = 20 or pb = 40,

there are also different routes to b1∗, the path T1b1∗
[cuu′u] (such as the case for l◦1 = 0.5 and l◦2/l

◦
1 = 0.4

for pb = 20, and for l◦1 = 0.3 and l◦2/l
◦
1 = 0.6 for pb = 40) being less frequent than T1b1∗

[ucu′u] (again see
figures 2 and 3 to understand what the paths involve).

(iii) Topological transformation paths for pb = 20

In figure 8 (for pb = 20), we can see similar results to those in figure 7 (for pb = 10), at least for
small values of l◦1. The transformation path T1b1

[ucu] is observed for a large domain of l◦2/l
◦
1 values,

while no T1s are observed for large l◦2/l
◦
1. As l◦1 increases from small values towards intermediate

values, we find some cases (see cases enclosed in a box in figure 8) in which systems have chosen
different topological transformation paths with also a different final state in comparison to those
chosen for pb = 10. There is also a case (box enclosing just the subscript but not the superscript)
for which different paths are observed but the same final state is reached.

In particular (consulting the various cases enclosed in boxes within figure 8 but focusing still
on intermediate l◦1 values) we see that these transitions between different paths tend to occur
in the region (indicated in bold face) in which different T1 types are known to compete (see
section S3 in the electronic supplementary material and in particular section S3(b)). One example
is T1b1

[ucu] (at pb = 10) changing to T1b1
[cuu] (topologically equivalent to T1b1

[ucu]) at pb = 20. Another

example is T1b1
[ucu] (at pb = 10) changing to either T1b1∗

[cuu′u] or T1b1∗
[ucu′u] at pb = 20 (these b1∗ states

are topologically equivalent to each other, but not equivalent to T1b1
[ucu]). Yet another change seen

is T1b1
[ucu] (at pb = 10) to T10

cu′ (at pb = 20): this represents a switch from a bamboo to a topologically
symmetric two-bubble state, which is one of the states designated as metastable.

As l◦2/l
◦
1 increases, again for intermediate values of l◦1, the topological transformation path

T10
cu′ becomes more frequent. There is also just one case in figure 8 (specifically for l◦1 = 0.3 and

l◦2/l
◦
1 = 0.9) in which following T10

cu′ a system manages to undergo an additional transformation
afterwards, leading to T1Ø∗

cu′c. When that happens (see figure 2 and also section S6(b) in the
electronic supplementary material), the system breaks up entirely and stops migrating, while
bubbles B1 and B3 are detached from each other but connected to the upper channel wall, and
bubble B2 is connected to the lower channel wall.

In the regime of l◦1 and l◦2/l
◦
1 in which this occurs, all bubbles are of quite small area [15]. In

that case, in the equilibrium state, bubble B2 in particular needs to be highly elongated in order
to span almost the entire channel width but still maintain small area. There is then a significant
energetic benefit in detaching B2 from B1 and B3, and allowing each of the bubbles to retreat to
their respective channel walls (figure 2). Even though the T10

cu′ state is topologically symmetric
and hence usually difficult to break, if the bubbles are of such small area that they must also be
highly elongated in the T10

cu′ state, there is an advantage in reaching the T1Ø∗
cu′c state. Indeed there

is a set of minimum bubble areas for the T10
cu′ state to be allowed to exist without breaking, with

breakage also being sensitive to pressure around that minimum. This is discussed in electronic
supplementary material, section S7(a), and the T1Ø∗

cu′c state seen here is actually around that
minimum.

As l◦1 further increases from intermediate towards large values, particularly for l◦1 = 0.8 and
l◦2/l

◦
1 = 0.1, in figure 8 we see a transition from T1b3

[ul′l]
(at pb = 10) to T10

cu′ (at pb = 20). For the

same l◦2/l
◦
1 = 0.1 but now for l◦1 = 0.9, we see a transition from T1b3

[l′u!l]
(at pb = 10) to no topological

transformation at all (at pb = 20). Although it may seem unusual that subjecting a system to higher
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driving pressure prevents rather than induces topological transformation, the behaviour has been
seen before by Torres-Ulloa & Grassia [16]. For l◦1 and l◦2/l

◦
1 values in this part of the phase diagram,

it has been demonstrated that additional steady solution branches are permitted for the original
three-bubble topology, but these new branches only appear above a certain pressure [16].

For l◦1 = 0.96 (the largest l◦1 value we consider) and l◦2/l
◦
1 = 0.2 we see a transition from T10∗

l
(at pb = 10) to T1b3∗

lu!l (at pb = 20). For the same l◦1 = 0.96 but values of l◦2/l
◦
1 > 0.2, we still, however,

observe T10∗
l as the most common topological transformation type. In fact in figure 8 for pb = 20

shows this transformation to be more prevalent than in figure 7 for pb = 10, because cases with
l◦2/l

◦
1 ∈ [0.8, 0.9] have begun undergoing T1s as well.
Finally, in figure 8, we still see a reasonably significant region in the phase diagram for which

T1 transformations are resisted altogether (denoted by ×) even up to pb = 20. However, this region
has definitely shrunk relative to the pb = 10 case. The principal reason why this region has shrunk
is because the path T10

cu′ is now much more frequent.

(iv) Topological transformation paths for pb = 40 and pb = 80

For pb = 40 and pb = 80 (in figures 9 and 10, respectively), for small values of l◦1 and a wide range
of l◦2/l

◦
1 values, we can again see that the T1b1

[ucu] is the most common path. On the other hand,

for intermediate to large l◦1 values and large l◦2/l
◦
1 values, T10

cu′ becomes the most frequent path,
particularly at pb = 80. The region (denoted by ×) which still manages to resist T1 shrinks a great
deal.

Transitions between different paths (cases enclosed in boxes) are again observed from figure 8
(for pb = 20) to figure 9 (for pb = 40), and then to figure 10 (for pb = 80). Again these tend to
be located within or at least near buffer regions (shown in boldface) in which different T1s are
competing (see details in section S3(b) in the electronic supplementary material and also [15]). In
figure 9, starting with small l◦1 values, we note for l◦1 = 0.2 and l◦2/l

◦
1 = 0.7, and also for l◦1 = 0.3 and

l◦2/l
◦
1 = 0.6, topological paths change from T1b1

[ucu] (at pb = 20) to T1b1
[cuu] or to T1b1∗

[cuu′u] (at pb = 40).
For these same l◦1 and l◦2/l

◦
1 values, a new transition to yet another path is observed at pb = 80

(figure 10), in which both become T10
cu′ .

We now examine both figures 9 and 10, in the domain of small values of l◦1 and large values
of l◦2/l

◦
1. As in figure 8 (for pb = 20), cases in which systems reach T1Ø∗

cu′c are again observed. As
mentioned earlier, these cases correspond to bubbles with small area retreating to their respective
channel walls (see also figure 2), which is energetically favourable for small bubbles. Further
discussion of this can be found in the electronic supplementary material, section S7(a).

Moving on to intermediate l◦1 values, namely l◦1 ∈ [0.4, 0.5, 0.6] and selected values of l◦2/l
◦
1 ∈

[0.1, 0.2, 0.3, 0.4], transitions from T1b1
[ucu] (at pb = 20) to T1b1∗

[ucu′u] and T1b1∗
[cuu′u] (at pb = 40) are

observed. For the same values of l◦1, but slightly larger values of l◦2/l
◦
1, we observe some cases

in which T1b1∗
[ucu′u], T1b1∗

[cuu′u] and T1b1
[cuu] (at pb = 20) become T10

cu′ in figure 9 (at pb = 40).

In figure 10 (for pb = 80), we again observe transitions from T1b1
[ucu] (at pb = 40) to T1b1∗

[ucu′u] (at
pb = 80), specifically for l◦1 ∈ [0.2, 0.3, 0.4] and small to intermediate l◦2/l

◦
1. For values of l◦1 up to 0.6

and a variety of values of l◦2/l
◦
1, there are also transitions observed from T1b1∗

[ucu′u], T1b1∗
[cuu′u] and

T1b1
[cuu] (at pb = 40), to T10

cu′ (at pb = 80).
On the other hand, in figure 10 for pb = 80, with somewhat larger values of l◦1 ∈ [0.7, 0.8, 0.9] and

also values of l◦2/l
◦
1 ∈ [0.1, 0.2], no topological transformations at all are observed. This includes

cases such as l◦1 = 0.7 and l◦2/l
◦
1 ∈ [0.1, 0.2] for which pb = 40 in figure 9 (and also pb = 20 with

l◦1 = 0.8 and l◦2/l
◦
1 = 0.1 in figure 8) would lead to T10

cu′ . Some of these cases that survive intact
for large imposed pb are within the region predicted by Torres-Ulloa & Grassia [15] to have no
T1 whatsoever (albeit this prediction came from a steady state methodology, not the unsteady
methodology used here). Examples are l◦1 ∈ [0.8, 0.9] and l◦2/l

◦
1 = 0.2. Other cases, however, such

as l◦1 = 0.7 and l◦2/l
◦
1 = 0.2, and also l◦1 ∈ [0.7, 0.8, 0.9] and l◦2/l

◦
1 = 0.1, are outside that region, so the

methodology of Torres-Ulloa & Grassia [15] would predict T1. As already mentioned though,
it is known via [16] that in cases such as these, a new steady state solution branch avoiding
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topological transformation is still possible, but this branch only appears beyond a certain driving
pressure: as such the methodology used in [15] would not detect it.

Considering now l◦1 = 0.96 (i.e. the largest l◦1 value studied here), although no differences are
seen between figures 8 and 9 (comparing pb = 20 and pb = 40, respectively), as we move from
pb = 40 (in figure 9) to pb = 80 (in figure 10), we see a significant number of changes. In particular,
numerous T10∗

l transformations are replaced by T10
cu′ for l◦2/l

◦
1 ∈ [0.3, 0.4, 0.5, 0.6, 0.7, 0.9], albeit

not for l◦2/l
◦
1 = 0.8. In effect one type of metastable state (shown in figure 5) is being replaced by

another (in figure 2). Finally, again for l◦1 = 0.96 and but now for small values of l◦2/l
◦
1 ∈ [0.1, 0.2],

we see a transition from T1b3∗
lu!l (at pb = 40) to T10′

l′ (at pb = 80). A bamboo endpoint state (figure 5)
is thereby being replaced by a metastable one (figure 4).

(v) Number of cases for each topological transformation path

Note that for pb ∈ [10, 20, 40, 80] at least, all the states that undergo topological transformation
whatsoever eventually end up with zero asymmetry index, i.e. equal numbers of propagating
films attached to the upper and lower channel walls. Even those cases with no films migrating at
all (denoted T1Ø∗

cu′c) have an asymmetry index of zero by default since there are no propagating
films to count on either wall.

Out of the propagating states, a large number of them are bamboo states, designated with
superscript b1 (or b1∗), or else b3 (or b3∗). These are topological ‘endpoint states’ that can
propagate at any velocity without deforming and hence without undergoing any further T1.
However, the number of such cases decreases as pb increases, giving way for the most part to
T10

cu′ instead, which becomes very common indeed. The exact numbers for each of the different
states is shown in table 1. Note that some states (e.g. the T1Ø

cc state or the T1b2
lu!u state) are not seen

in table 1 as they do not occur for the limited set of pressures considered there.
Transitions between the different states with varying pressure are discussed next, and are also

discussed further in §4b.

(vi) Number of transitions between topological transformation paths

In table 2, we compare states that change their T1 transformation path between pb = 10 and
pb = 20, between pb = 20 and pb = 40, and between pb = 40 and pb = 80. Specifically we quantify
at the higher pressure, cases in which the transformation type seen at the lower pressure was
different. We also include cases in which there is no transformation (denoted by ×) at the
higher pressure but there is a transformation at the lower pressure. Cases in which there are
topological transformations at higher pressure but not at low pressure are specifically excluded,
as it is common that a threshold driving pressure is needed before a T1 is induced. We also
count not just the number of transitions between transformation paths, but also the number of
them taking place within buffer regions in which, as predicted by Torres-Ulloa & Grassia [15],
various T1 types are known to compete (see section S3 in the electronic supplementary material
and in particular section S3(b)). The buffer region cases are shown within table 2 to the right
of ‘|’.

It is evident from the table that the majority of the transitions between transformation paths
are observed at large pressures (from pb = 40 to pb = 80), and moreover switching into T10

cu′

is common. At lower pressures, fewer transitions between different topological transformation
paths are seen, however, out of those that do occur, a significant number of them are in the
aforementioned buffer regions. Therefore, if a transition between transformation paths takes place
at all, it is likely that it happens in the buffer regions. Conversely, if a given system falls within
these buffer regions, it is also likely that a transition between topological paths will occur.

To conclude, looking at figures 7–10 and also table 1, we can see that topological
transformations only rarely happen singly, but more often happen as a sequence in a path
resulting eventually in a state that is topologically symmetric. More insights into why particular
sequences of topological transformations occur can be obtained by examining the energy of the
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Table 2. Via unsteady state simulation for different pressures, out of a sample for each pressure of 90 cases with various l◦1
and l◦2 /l

◦
1 values, it is shown howmany transitions between topological transformation paths are seen between two pressures.

The table is sorted according to the state into which the system switches. Far fewer than the total 90 cases considered exhibit
transitions between topological paths between the pressures shown. The values to the right of the ‘|’, indicate which of the
transitions between different topological paths are (according to Torres-Ulloa & Grassia [15]) in buffer regions in which different
T1 types compete. Note that out of 90 cases in total, just nine of them fall into buffer regions (as can be seen in figure 10 by
counting up the boldface cases). Not all nine of these buffer region cases, however, exhibit transitions between topological
paths between the pressures shown.

pb 10–20 20–40 40–80

T1b1[ucu] → T1b1[cuu] 1|1 1|1 0|0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b1[ucu] → T1b1∗[cuu′u] 1|1 2|1 0|0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b1[ucu] → T1b1∗[ucu′u] 2|1 5|0 6|0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b1[ucu] → T10cu′ 2|0 0|0 1|1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b3
[ul′ l]

→ T10cu′ 1|1 0|0 0|0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b1[cuu] → T10cu′ 0|0 1|1 1|1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b1∗[cuu′u] → T10cu′ 0|0 1|1 2|1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b1∗[ucu′u] → T10cu′ 0|0 2|1 3|0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T10∗l → T10cu′ 0|0 0|0 6|1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T10∗l → T1b3∗lu! l 1|0 0|0 0|0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b3∗lu! l → T10
′
l′ 0|0 0|0 2|0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T1b3
[l′u! l]

→ × 1|0 0|0 0|0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

T10cu′ → × 0|0 1|1 2|1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

total transitions 9|4 13|6 23|5
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

three-bubble system, which in this context is just the sum of all film lengths. This is discussed in
section S9 in the electronic supplementary material, where it turns out that attaining topological
symmetry also enables energy to relax. Full details are given in the electronic supplementary
material, section S9.

(b) Statistics of T1 behaviour for varying imposed pressures
After having examined the T1 behaviour in detail for specific pb values over the complete l◦1
and l◦2/l

◦
1 domain (see figures 7–10, and also tables 1 and 2), in figure 11 we show the system

behaviour in a more general statistical fashion albeit for many more pressures than before.
Specifically what we show is, for any given integer value of the imposed back pressure varying
from pb = 0 to pb = 80, the number of occasions on which each topological transformation path
(figures 2–5) is realized for systems within the parameter space l◦1 ∈ [0.1, 0.2, . . . , 0.9, 0.96] and
l◦2/l

◦
1 ∈ [0.1, 0.2, . . . , 0.9] (90 cases in total for each pb, see data in section S8 in the electronic

supplementary material). Results are discussed below.
We note from figure 11a that the majority of the systems show no T1 at all for small pb

values (see solid line). However, for systems that do exhibit T1 for small pb, the preferred path
corresponds to T1b1

[ucu] (see dashed line in figure 11a). As pb increases, however, roughly for values

of pb > 20, the preferred path becomes T10
cu′ (see dash-dotted line in figure 11a), while the number

of T1b1
[ucu] cases decreases. Roughly for pb > 20 also, T10

cu′ becomes more common than having no
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Figure 11. Number of instances of topological transformation paths for each imposed back pressure pb ∈ [0, 1, . . . , 80].
For each pb value we show the number of cases within the parameter space l◦1 ∈ [0.1, 0.2, . . . , 0.9, 0.96] and l◦2 /l

◦
1 ∈

[0.1, 0.2, . . . , 0.9] (i.e. 90 cases in total for each pressure). In (a) we show the most frequent cases (including×which means
no T1), in (b) we show the various b1 and b1∗ bamboo states, in (c) we show the b3, b3∗, b2 and T10′l′ states, and finally in (d)
we show first cases that end in a topologically asymmetric state, namely T12u, T1

2
[uc], T1

1
[ul′]

, and also cases in which the structure

breaks and stops propagating (T1Øcc and T1
Ø∗
cu′c paths).

T1 at all. Topological path T10∗
l also increases in frequency for small pb but then stays at constant

frequency for a wide range of pb values (see dotted line in figure 11a), and finally its frequency
starts decreasing for large pb values.

In figure 11b on the other hand, we again show the number of topological transformation
paths (out of 90 in total) for each different pb, but considering those paths leading to various
single-bubble bamboo b1 and b1∗ states not already plotted in figure 11a. Here we can see
topological paths, such as T1b1∗

[cuu′u] (dash-dotted line), T1b1∗
[cu′u!u] (dashed line) and T1b1

[cuu] (dotted
line), which are observed intermittently over the studied pb domain: again, however, there are
seldom more than just a couple of these paths at any given pb. On the other hand, we also observe
from figure 11b that the number of T1b1∗

[ucu′u] (solid line) cases increases as pb increases.
In figure 11c, we show some of the very infrequent paths, noting that out of 90 cases total

considered at each pressure, each of the cases here occurs at most a couple of times. Many of
the paths here lead to bamboo states. The topological path T1b3∗

lu!l is not seen for very small or
very large pb values, but is found to persist over a wide domain of intermediate pb values (see
the thick solid line in figure 11c). Topological paths T1b3

[l′u!l]
and T1b3

[ul′l]
are also seen but just for

small pb values (see the dash-dotted line and dotted line, respectively, in figure 11c). Topological
path T1b2

lu!u (solid line) is observed over just part of the studied pb domain, excluding, however,
small and very large pb values. Finally, topological path T10′

l′ (giving a metastable state, rather
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than a bamboo) is observed for large pb values (and for at least one small pb value as well), but
not for intermediate values (see the dashed line in figure 11c).

Figure 11d considers cases that either end up topologically asymmetric, or else break apart
completely and do not propagate at all. Topological states T12

u are seen in figure 11d (see the thick
solid line), however, just for small domains of pb at relatively low pressures. It is clear then that
the T12

u state can sometimes be more resistant to topological transformations than the original
three-bubble staircase structure was. However, the T12

u is clearly not resilient to topological
transformations in absolute terms, since none of the T12

u states survive out to more than a few
units of pb. Other topologically asymmetric paths, such as T12

[uc] and T11
[ul′]

, are only ever observed

for small values of pb (see the dash-dotted and dotted line, respectively, in figure 11d). Regarding
cases that break up and do not propagate at all, in figure 11d we sometimes see T1Ø

cc for small pb
(dashed line), but never more than one at any given pb, and none at all as pb increases. Meanwhile,
topological path T1Ø∗

cu′c (solid line in figure 11d) is not seen for pb < 20, but becomes a little more
frequent as pb increases.

Looking at figure 11 overall, remembering we start from a staircase with a topological
asymmetry index of unity, there is a clear preference for eventually reaching topologically
symmetric states (assuming any topological transformations happen at all). Nonetheless, during
the course of the evolution, the level of topological asymmetry (i.e. the value of the asymmetry
index) can still sometimes increase, temporarily at least. For instance, this happens with paths
beginning with T12

[uc] as the first two steps, which are seen often (as well as for paths beginning

with T12
[cu], which are seen occasionally also). Paths beginning in this fashion tend to be favoured

for small l◦1 and small l◦2/l
◦
1 (figures 7–10). Bubbles B1 and B3 are then of small area, but bubble B2

is larger. On the other hand, a different path T10
cu′ tends to be favoured for larger l◦1 and larger l◦2/l

◦
1

(again see figures 7–10), with bubbles B1 and B3 then being larger in area, while bubble B2 can
be smaller. There is certainly no temporary increase in asymmetry index in this particular case.
Moreover as driving pressure pb increases (and thus velocity and hence viscous drag likewise
increase to compensate), systems can switch away from paths beginning with T12

[uc] (or T12
[cu]) as

the first two steps, towards T10
cu′ instead. Hence temporary increases in topological asymmetry

become less common in the high driving pressure scenario.

(c) Mobility of final topological states
For each different set of bubble sizes that we have considered, and for each different pressure
applied, we either do not have any T1, or else systems undergo what is typically a sequence of
T1s to reach a final topological state. Here we compute the mobility (i.e. ratio of final propagation
velocity to driving pressure, namely v/pb) for various final states. Short-lived intermediate states
are, therefore, omitted from this analysis. Whenever the final topology changes, the mobility also
changes, i.e. mobility will be sensitive to the particular sequence of topological transformations
(if any) that occurs.

(i) Determining mobility for high driving pressures and/or high velocity

Both velocity and pressure are taken to be dimensionless quantities here (see the electronic
supplementary material, section S1, for details of how the system is made dimensionless, and
in particular the electronic supplementary material, equation (S1.2), which is the dimensionless
governing equation, also given earlier as equation (2.1)). Hence mobility is likewise taken to be
dimensionless. For simplicity, we compute mobilities just for systems moving in the high driving
pressure limit, or equivalently in the limit of high propagation velocity [25]. In this particular limit
and in the dimensionless system studied here, the pressure difference �p across any given film
turns out to equal v cos φ, where v is apparent propagation velocity along the channel (uniform
over the entire structure in the final state) and φ is the angle that the film tangent makes to
the vertical between lower and upper channel walls: see [25] for details. Note that in the high
driving pressure limit, φ can vary from film to film, but is asymptotically spatially uniform along
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any individual film except in a small region at each film’s upstream end [15,19]. If we consider
pressure differences film by film, and sum them for each film that is crossed moving across the
entire structure from upstream to downstream, we obtain the imposed pressure pb. Based on this,
the mobility v/pb is then the reciprocal of the sum of the cos φ values. The mobility is lower when
more films are crossed. Also films that are oriented with their tangent pointing directly across the
channel from wall to wall have more impact on reducing mobility than films that are oriented
obliquely.

All of this allows us in what follows to obtain analytical estimates of mobility, and moreover
the resulting mobilities in this particular high driving pressure limit [25] turn out to depend
solely on topology, not on individual bubble sizes. We can also calculate a mobility in this
fashion even for the original three-bubble topology, supposing it reaches a geometrically invariant
state that resists T1 even at high driving pressure [15]. We can also evaluate mobilities for
metastable systems (with topological asymmetry index of zero, see section S6(e) in the electronic
supplementary material for details) reaching various final states T10

cu′ , T10′
l′ and T10∗

l (see figures
2, 4 and 5, respectively). Bamboo structures (see section S6(c) in the electronic supplementary
material), namely b1 (or b1∗), b2, b3 (or b3∗), are also considered here (figures 2–6). These
bamboo states (which can be reached by various topological paths) once realized move at any
driving pressure without changing either their topology or geometry. Their mobility is, therefore,
independent of whether it is computed in the high driving pressure limit or at any other pb.

(ii) Mobility of various structures for high driving pressure and/or high velocity

Mobility of bamboo states is easy to determine because no films are oblique. We can, therefore,
readily demonstrate that the (dimensionless) mobility of the b3 (or b3∗) bamboo structures is 1/4
(four films to cross from upstream to downstream), whereas by analogous arguments the mobility
of the b2 bamboo is 1/3, and the mobility of the b1 (or b1∗) bamboo is 1/2. Based on Torres-Ulloa &
Grassia [15], the mobility of the original three-bubble staircase structure, assuming it reaches a
high driving pressure without breaking up, is also 1/2 (at least two films to cross upstream to
downstream).

On the other hand, the mobility of the T10
cu′ state (again in the high driving pressure or high

velocity limit) can be determined by considering that this corresponds to crossing two films, but
one of them (at the upstream end) being oblique with an orientation angle of π/6 between the
film tangent and the vertical (see figure S5b in the electronic supplementary material for a sketch).
Therefore, based on the aforementioned rule of the reciprocal of the sum of the cosines, we find
that the dimensionless mobility of the T10

cu′ state corresponds to (1 + √
3/2)−1 ≈ 0.5359. States

T10∗
l and T10′

l′ topologically consist of films that are propagating within state T10
cu′ plus a film

spanning across the channel downstream in the case of T10∗
l , or upstream in the case of T10′

l′ .
Therefore, in each case there are three films to cross, but one of them being oblique to the channel.
Hence the mobility of both states T10∗

l and T10′
l′ is (2 + √

3/2)−1 ≈ 0.3489. What is interesting from
the above analysis is that the T10

cu′ state is the one most commonly selected (particularly at higher
driving pressures) and is also the state with the highest mobility.

5. Conclusion
We have studied the evolution over time of a two-dimensional three-bubble evolution as it flows
within a confined straight channel, due to an imposed back pressure pb. Evolution from the
equilibrium topology is realized via unsteady state simulation with the viscous froth model. The
equilibrium system itself is defined by fixing the distances from vertices to the upper channel
wall, either l◦1 (for vertex V1 and V3) or l◦2 (for vertex V2, with l◦2 < l◦1). Distances l◦1 and l◦2/l

◦
1 are,

therefore, used as surrogates of bubble areas. As in a previous study [16], here we consider a wide
domain for l◦1 and l◦2/l

◦
1, namely l◦1 ∈ [0.1, 0.2, . . . , 0.9, 0.96] and l◦2/l

◦
1 ∈ [0.1, 0.2, . . . , 0.9] (90 cases in

total). Each case is considered by suddenly imposing a dimensionless back pressure somewhere
in the domain pb ∈ [0, 1, . . . , 80], with pb considered in integer increments.
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At sufficient imposed back pressure, topological transformations occur such that bubbles in
the structure rearrange. How the system evolves up to the first topological transformation has
been studied before [16], including via the unsteady state simulation technique as employed
here. Up to four different T1s were found for different combinations of l◦1 and l◦2/l

◦
1, and also for

different imposed pb values. Our unsteady state simulation methodology nevertheless also allows
us to look beyond the first transformation, towards sequences of transformations, and thereby to
elucidate topological transformation paths: this is what has been achieved here. Typically the
transformation paths involve systems evolving through a sequence of short-lived intermediate
states before settling into an eventual final topological configuration. Once the final topological
configuration is identified, it is also possible to identify the mobility (ratio of velocity to pressure
imposed) for each of the final configurations. Certain configurations have been found to be more
mobile than others.

We defined a topological asymmetry index based on the difference between numbers of
films connected to the upper and lower channel wall, counting only moving films, omitting
bubbles that have been left behind and are no longer moving. In the initial staircase topology,
the asymmetry index was necessarily non-zero based on having three (i.e. an odd number of)
bubbles present. Topological asymmetry can drive topological transformation on the basis that
having more films on one side of a structure than the other leads to more viscous drag on that
side and hence bubbles falling behind the rest of the structure.

That the asymmetry index is a useful measure was demonstrated by the fact that for almost
all the topological transformation paths that we examined, the asymmetry index at the end of
the transformation path turned out to be zero. There were, however, distinct ways in which the
asymmetry index could become zero.

One possibility was for the system to reach what we called a topological endpoint state,
in which the structure has arranged itself into a very simple configuration such that any
films that propagate will do so at any velocity whatsoever without needing to deform (and
therefore without any possibility of further T1). Typically the endpoint states involve bamboo
type structures, possibly with one or more bubbles left behind on channel walls.

Another option was for the system to reach what we called a topologically symmetric
metastable state (albeit not an endpoint state). In such states, even though further deformation
(depending on imposed driving pressure) and further transformations remain possible in
principle, they tend not to happen in practice, since the symmetry allows the system to propagate
over a wide domain of driving pressures without breaking. Typically in such states, two bubbles
are stacked across the channel, with a third one either immediately ahead of them or immediately
behind them or else left behind altogether.

Indeed a very commonly occurring example of a topologically symmetric state was the T10
cu′

state (figure 2), which happened over a wide domain of bubble sizes (figures 7–10), and was
especially common at large imposed driving pressures. This state was also found to offer the
highest mobility compared with the other alternatives. To reach this state, bubbles must first
reconnect via a vertex–vertex collision T11

c and then a bubble is shed from the back of the structure
via a T1u′ to achieve topological symmetry.

It is interesting to speculate what might happen to a long train of bubbles rather than
just the three-bubble state considered here. The experimental study of Drenckhan et al. [14]
showed a sequence of T1c transformations (i.e. a sequence of vertex–vertex collisions) working
its way along the train. Admittedly the cited study involved geometric asymmetry (flow around
a bend) rather than topological asymmetry as is considered in the present work. However,
a chain of T1c transformations plus a T1u′ could ensure topological symmetry. Specifically
the chain of T1c transformations (vertex–vertex collisions) would allow bubbles on the side
of the channel with fewer films and thereby less drag to overtake bubbles on the other side
with more films and thereby more drag. Meanwhile the T1u′ (shedding a bubble from the
back of a train containing an odd number of bubbles, leaving that backmost bubble behind)
would ensure that only an even number of bubbles continue to propagate, hence permitting
topological symmetry. This then would seem to be a suitable way to generalize the T10

cu′
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state that is commonly observed in the present work to a situation with more than three
bubbles.

Finally it is interesting to draw a speculative analogy between the systems studied in this
work (clusters of bubbles moving in a microfluidic channel) and the field of sub-atomic, high
energy physics [26]. We have identified a bubble structure which if subjected to enough ‘energy’
(i.e. enough imposed pressure) breaks up through a sequence of short-lived intermediate states,
eventually finding itself in a more favourable topological configuration. However, the sequence
of intermediate states and the eventual configuration that is reached depends on the ‘energy’ (i.e.
the imposed pressure) to which systems are subjected in the first place, just as would also happen
in high energy physics. In the context of foam physics, the simple lens of Green et al. [19] is the
‘hydrogen atom’ (i.e. the simplest structure containing the various elements of a foam), whereas
the three-bubble case becomes the ‘three-bubble problem’ [15,16] (i.e. the situation at which
complexity first onsets). By analogy then, unsteady state dynamics with multiple topological
transformations for three-bubble systems (or indeed for more general N-bubble systems) could
perhaps be considered the ‘large hadron collider’ of foam physics.
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