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Abstract
Complete physics-based numerical simulations currently provide the most accurate approach for predicting
fluid flow behavior in geological reservoirs. However, the amount of computational resources required to
perform these simulations increase exponentially with the increase in resolution to the point that they are
infeasible. Therefore, a common practice is to upscale the reservoir model to reduce the resolution such that
numerous simulations, as required, can be performed within a reasonable time. The problem we are trying
to solve here is that the simulation results from these upscaled models, although they provide a zoomed-out
and global view of the reservoir dynamics, however, they lack a detailed zoomed-in view of a local region
in the reservoir, which is required to take actionable decisions. This work proposes using super-resolution
techniques, recently developed using machine learning methods, to obtain fine-scale flow behavior given
flow behavior from a low-resolution simulation of an upscaled-reservoir model. We demonstrate our model
on a two-phase, deal-oil, and heterogenous oil reservoir, and we reconstruct the oil saturation map of the
reservoir. We also demonstrate how the network can be trained using dynamic coarse geological properties
at various resolutions. The findings imply that even when coarse geological features and with limited
resolution, the super-resolution reconstructions are able to recreate missing information that is close to the
ground facts.

Introduction and Background
In recent years, there has been a lot of interest in forecasting dynamics in geological reservoirs. If we want
to produce oil from the reservoir, we first have to forecast the amount of oil present in the reservoir and
then perform a simulation to predict the amount we can produce from that reservoir. In CO2 sequestration,
we have to determine the storage of CO2 for a particular aquifer and also to find out how much CO2

we will be able to sequester in the aquifer. In Groundwater aquifers, we use several in-situ methods of
remediation, which require forecasting of water composition after treatment. For all the above cases, we
use numerical simulations because it is difficult to scale up analytical models with the increase in reservoir
complexity. In Figure 1, we show the porosity profile of typical geological reservoirs, which shows the
complexity of the geological system. These physics-based reservoir simulations that we use to understand
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the flow and transport in the reservoirs are numerically very expensive. Our solution is based on super-
resolution reconstruction; therefore, there is a need to increase the scale of dynamic properties of a reservoir,
especially the saturation and pressure from coarse-scale to fine-scale. These properties are generally scalar
or array of scalar values corresponding to each 3D unit cell representing a 3D volume of the reservoir.
Thus, the values from unit cells of one layer are popularly represented as 2D images. To represent the
values from unit cells of all layers, stacks of 2D images corresponding to each layer are used. This shows
us that the values can be represented in the form of a 2D image, and it may be possible to employ super-
resolution techniques as shown by Chaudhuri et al.(Chaudhuri, 2001) in Image Processing to increase the
resolution of these images. To reiterate, super-resolution techniques are methods that take as input a low-
resolution image and output a higher-resolution image. In the literature, this process is also closely related
to downscaling (Brouwer and Fokker, 2013; Torrealba et al., 2019). Deep-learning and computer-vision
are popularly used to solve these types of problem (Da Wang et al., 2021; Dong et al., 2015; Wang et al.,
2018a; Ledig et al., 2017; Das et al., 2021). Moreover, super-resolution techniques have been used in related
physical phenomena like fluid dynamics to enhance turbulent flow map (Bode et al., 2019; Fukami et al.,
2019; Pant and Farimani, 2020). It is important to note that since our image represents physical phenomena,
it may not be sufficient to just increase the resolution of the image without considering physical constraints
such as the conservation of mass. Thus, we look at super-resolution methods specifically developed for
reservoirs or porous media. Janssens et al. (Janssens et al., 2020) presented a method for the super-resolution
of Computed Tomography scans of rock properties such as Porosity and Permeability. As mentioned before,
it is required that we verify that the super-resolution image representing the physical properties does satisfy
physical constraints. Therefore, Janssens et al.(Janssens et al., 2020) verify that the super-resolution rock
properties have the desired behavior on Unsaturated and Two-Phase Fluid Flow. They (Janssens et al.,
2020) employs a Generative Adversarial Neural Network (GAN), Wang et al.(Wang et al., 2019) employs
a Convolution Neural Network (CNN). Purely statistical methods such as neighbor embedding algorithm
have also shown promising results for the super-resolution reconstruction of CT scan images of rock samples
as shown in (Wang et al., 2018b). However, all these methods only deal with static reservoir properties such
as Porosity and Permeability. To the best of our knowledge, there is no related work on the super-resolution
reconstruction of dynamic reservoir properties such as Saturation and Pressure. The methods employed for
the super-resolution of static properties cannot be directly employed for that of dynamic properties because
the dynamic properties need to be temporally consistent. For example, if a coarse-scale unit cell indicates
that the oil saturation is 0.8, the set of finer-scale cells which replace the coarse-scale cell should in the
aggregate, also have an oil saturation of 0.8, and if oil transfers from one cell to another from time t to
t + 1, the fine-scale values have to satisfy mass transfer equations. Thus, there is a need for a method to
reconstruct super-resolution images for dynamic reservoir properties which satisfy physical constraints. We
can derive inspiration from Xie et al. (Xie et al., 2018), which presents a method for temporally consistent
super-resolution reconstruction of fluid flow. However, this method is not specifically developed for flow
through porous media where there are stricter physical constraints to satisfy, as described above. Super-
resolution has also been employed in modeling Turbulence in Computational Fluid Dynamics. Pant et al.
(Pant and Farimani, 2020) use a U-Net CNN architecture (Ronneberger et al., 2015) to perform the up-
scaling of turbulence data and, most importantly, employ a physics-based loss function which ensures that
the super-resolution reconstruction satisfies the conservation of kinetic energy and mass.
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Figure 1—Visualization of a Reservoir Porosity.

Due to recent developments in big data and a slew of emergent Machine Learning applications in
academia and industry, data-driven-based proxies have exploded in prominence in recent decades. This
class of proxies takes a data-driven method in which a set of data observations is trained for reservoir
forecasting without relying on any specific physical equation. The training data set for the model could
be either from field observations or created with the help of a reservoir simulator. However, tree-based
methods such as random forests and gradient boosting are widespread. Castelletti et al. 2010(Castelletti
et al., 2010), most studies in this area have employed artificial neural networks (ANN) as the learning
algorithm (Ahmadi et al. (2013)(Ahmadi et al., 2013)),(Yu, Zhu, and Diao 2008(Yu et al., 2008)). To estimate
the connectivity, an artificial neural network (ANN) was used by Panda and Chopra (1998) (Panda et al.,
1998). The network's inputs were injection rates (from a time window), permeability, and thickness, and
the model's outputs were oil and water rates. By taking the partial derivative of oil production concerning
the injection rate, they were able to quantify the relative influence of each injector on the producer. A
sensitivity analysis based on a neural network was used by Demiryurek et al. (Demiryurek et al., 2008)
to quantify the inter-well connectivity between injectors and producers in a reservoir. They evaluated the
impact of the candidate injector on the target producer by varying the injection rates, i.e. the inputs to the
trained neural network model, and analyzing the outputs (production rates). Hence, by a specific amount
of injection rate change, if the production rate change is noticeable, that injector and producer are well
connected. Shahkarami et al. citepshahkarami2020applications use smart proxy models in two cases; the
first case investigated the application of a proxy model for calibrating a reservoir simulation model based
on historical data and predicting well production, while the second study investigated the application of an
ANN-based proxy model for fast-track modeling of CO2 enhanced oil recovery, aiming at the prediction
of the reservoir pressure and phase saturation distribution at injection stage and post-injection stage. In line
with the upcoming paradigm shift involving data-driven science, (Maula et al., 2020) this study aims to use
data mining and artificial intelligence to investigate the conceptual framework, development, and feasibility
of the data-driven approach in the Artificial Neural Network-based Grid-block Surrogate Reservoir Model
(GSRM) Smart Proxy. The Smart Proxy model is applied for unconventional shale gas reservoirs with
dynamic property response prediction output of grid-block pressure and gas saturation. A purely data-driven
model is a black box and hence they are often not considered reliable enough to make expensive decisions.
However, with the advent of concepts like theory-guided data science (Karpatne et al., 2017) and physics-
informed neural networks (Cai et al., 2022), hybrid models, which are driven by both data and analytical
models have become more popular as it allows these models to be more transparent and reliable.
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Preliminaries
Upscaling a reservoir model Since oil is the most complex system where there can be multiple components,
therefore, as an example, we describe the governing equations of flow in oil and gas reservoirs for
forecasting production from these reservoirs. If we consider three phases in an oil reservoir i.e., oil, gas,
and water, where oil and gas are miscible in each other and water is immiscible, then we have the following
equations to solve.

(1)

(2)

(3)

where ϕ is the porosity of the porous medium. Sw is a water saturation, So,Sg are saturation of liquid (oil)
and vapor (gas) phases in the reservoir. , ,  are Darcy velocities of the liquid phase, water phase,
and vapor phase in the reservoir. Bo is an oil formation volume factor (ratio of some volume of reservoir
liquid to the volume of oil at standard conditions obtained from the same volume of reservoir liquid). Bw is
a water formation volume factor (ratio of the volume of water at reservoir conditions to the volume of water
at standard conditions). Bg is a gas formation volume factor (ratio of some volume of reservoir vapor to the
volume of gas at standard conditions obtained from the same volume of reservoir vapor). Rs is a solution
of the gas in the oil phase (ratio of the volume of gas to the volume of oil at standard conditions obtained
from some amount of liquid phase at reservoir conditions). Rv is a vaporized oil in the gas phase (ratio of
the volume of oil to the volume of gas at standard conditions obtained from some amount of vapor phase
at reservoir conditions).

Figure 2—Conceptual illustration of the upscaling process.

This equation governing the flow of a fluid in a reservoir results from a combination of Darcy's law
and the conservation of mass equation for that phase. Running the numerically expensive simulation to
solve the above equations is also challenging. This is because (1) reservoirs are huge, and very large grids
size is used for discretization, (2) the reservoirs are heterogeneous. Therefore multiple production scenarios
are needed using different well locations or well-operating conditions, which makes the simulation task
enormous (Liu and McVay, 2010). At present, (Britto et al., 2020) we can find several commercial software
dedicated to oil reservoir simulations such as STARS of CMG, ECLIPSE-100 of Schlumberger, REVEAL
of Petroleum Experts. ECLIPSE Compositional simulator (E300) is used for CO2 sequestration. The main
variables here are the pressure and the saturation of the wetting fluid, calculated by the implicit pressure
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and explicit saturation (IMPES) method, where water pressure is the implicit variable, and water saturation
is the explicit variable.

Petrophysical properties of geological reservoirs, such as porosity and permeability, are generally
available on a fine scale. However, upscaling of these properties is required to attempt the numerical
simulations due to the large size of these reservoirs. However, we see that upscaling leads to the loss
of information and heterogeneity. Upscaling, or homogenization, is substituting a heterogeneous property
region consisting of fine grid cells with an equivalent homogeneous region made up of a single coarse-grid
cell with an effective property value. Equivalent, in this case, means either volume or flux must be the same
in the fine-scale and upscaled model, depending on the type of property that is to be upscaled. Upscaling
is performed for each of the cells in the coarse grid and each of the grid properties needed in the reservoir
flow-simulation model. Therefore, the upscaling process is essentially an averaging procedure in which
the static properties (Eg. Porosity and permeability) and dynamic properties(Eg: saturation and Pressure)
characteristics of a fine-scale model are to be approximated by that of a coarse-scale model. A conceptual
illustration of the upscaling process is shown in Figure 2.

Regardless of its flaws, the main advantage of upscaling a fine-scaled reservoir model is that the time
required for the simulation reduces significantly, although the simulation results are now approximate.
Machine Learning Machine learning techniques are a group of algorithms that can transform data into
useful information. They are a type of approach in which solutions are derived primarily from data rather
than physics-based models. Machine learning was first used in the mainstream in the 1990s, with the most
popular example being the email spam filter (Lantz, 2019). Advances in computer processing capacity and
machine intelligence have contributed to a wider wave of evolving big data applications in technology
and business, including self-driving vehicles, facial recognition, text prediction, and natural language
processing, over the last decade. While these machine learning models have shown tremendous success,
it is important that we are aware of the inaccuracies of prediction and develop our algorithms around it,
for example in (Das et al., 2022), the authors use high-fidelity simulation when the learned models may
be inaccurate. Several authors have successfully used data-driven approaches to solve the challenges of
geological reservoirs. Holdway et al. (Holdaway, 2014), and Cao et al. (Cao et al., 2016) use the popular
machine learning algorithm Artificial Neural Network (ANN) to forecast production for existing and new
wells in unconventional oil/gas reservoirs using inputs like geological maps, production history, pressure
data, and operational constraints. The workflow entails using these data sets to train and refine the ANN
model, which is then used to forecast the good output performance of both existing wells and new wells
based on the history of neighboring wells drilled in similar geological locations. The results of the neural
network model's final prediction were compared to those of the exponential, harmonic, and hyperbolic
models, and the neural network achieved much more accurate predictions than the other three conventional
empirical models.

The data-driven technique, which was used in reservoir studies, has various advantages and
disadvantages. Linear Regression is very simple, computationally inexpensive, and used for quick, simple
prediction of linear data. However, they are inaccurate in some cases and also use limited attributes in
representation. Decision Trees are used for classification and regression analysis. It performs well, despite
missing data and various kinds of data formats and is also pretty robust in the presence of noise. However,
decision trees are prone to data overfitting data and also have a high number of attributes that can hurt the
performance of the tree. Support Vector Machines(SVM) is used for non-linear and linear data sets with
noisy data and give high-accuracy regression. SVM is even robust in the presence of data inaccuracies and
fast evaluation of learned target function. It has a small drawback of computationally intensive training.
Artificial neural network(ANN) is highly versatile and useful in parameter optimization, regression, and
classification. ANN is robust in performance despite the noise, and the algorithm of ANN is highly durable
and can maintain performance despite failure in a specific layer. However, for disadvantages, ANN is
difficult in the interpretation of the procedure of obtaining results, and training the data is computationally
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intensive. A simple structure of a neural network is shown in Figure 3 with a hidden layer and output. Genetic
Algorithms(GA) are used for optimization, parameter selection, and when data is not uniform. It has high
accuracy in parameter selection, low memory usage, and robustness despite outliers. GA is computationally
intensive, and it has a probability of premature solution convergence.

Figure 3—Simple neural network structure used in (Jia et al., 2016).

Machine learning, despite its enormous promise, has limitations. Most notably, it is largely incapable
of extrapolating accurately outside of the ranges it has been trained (Lantz, 2019). The structuring and
cleaning of large quantities of data is another major problem in machine learning applications (Rahm and Do,
2000). While this issue is not specific to machine learning algorithms, many datasets contain a high degree
of obscure or redundant information that can negatively impact the performance of learning algorithms.
((Wuest et al., 2016)). Although machine learning approaches are often more realistic alternatives, they are
not as accurate as complete physics solutions. Furthermore, most machine learning applications necessitate
a large number of features to accurately replicate the output response surface. As a result, there are three
major concerns: First, the dimensionality of the feature space increases the likelihood of extrapolation.
Second, the amount of computing resources available grows exponentially.

Third, since these techniques rely on larger parameter spaces, they are more susceptible to overfitting.
The realism of the forecasts is another major problem in machine learning applications.

Problem Formulation
The goal of this work is to develop a reconstruction method that satisfies hard physical constraints, such as
conservation of mass, critical for dealing with saturation profiles.

Given a fine-scale two-phase, dead-oil reservoir model. Let the oil saturation map of the reservoir after
simulation be SHR. The saturation map is in the form of a rectangular grid where each layer along the z-axis
is represented as a 2-D image IHR. Thus,  where d represents the number of layers
in the saturation map. Now, let the saturation map of the same reservoir but using an upscaled model be
SLR. Hence, SLR is a corresponding low-resolution version of SHR. Similarly, for each layer i,  is a low-
resolution image corresponding to . However, unlike (Ledig et al., 2017), this low-resolution image is not
generated from the high-resolution version. Instead, it is generated by another process. The correspondence
is generated because both these images represent the same physical reservoir after simulation. Since the
saturation map provides the ratio of the volume occupied by oil in each grid cell, we can compute the mass
of the oil as shown in Equation 4. Thus, let the mass calculated from a given saturation map be m(ILR).

Finally, the problem is to generate a high-resolution image ISR given only the low-resolution image ILR

such that

1. The reconstruction closely approximates the true high-resolution image IHR.
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2. The reconstruction obeys conservation of mass, i.e. m(ILR) = m(ISR)

Approach
In this work, we will build upon the super-resolution GAN (SRGAN) (Ledig et al., 2017), and find an
efficient way to add the physical constraints.

Physical Constraints Constraints in Machine Learning optimization are usually in the form of soft
constraints, i.e. as a component in the loss function which the algorithm attempts to minimize without the
guarantee that the constraints will be satisfied. So, we add the mass-balance soft constraint such that the
total oil mass of the reservoir according to the oil saturation reconstruction should be equal to the total mass
of the reservoir according to the low-resolution saturation profile. To that end, we first compute the mass
of oil mo, given the oil saturation so in each grid-cell according to PVT relations Equation 4. In our case,
we are dealing with two-phase flow and dead-oil.

(4)

where po = Pressure of oil, ρS,o = Surface density of oil, ρo = Density of oil,
bo(po) = Shrinkage factor of oil, so = Saturation of oil, ϕ = Rock porosity, Vc = Volume of a grid cell,
vo = Volume of oil and mo = Mass of oil.

Why GANs?
Using the same terminology as used in the SR-GAN paper (Ledig et al., 2017), where ILR, IHR and ISR

are the low-resolution image, the corresponding high-resolution target image and the super-resolution
reconstruction output of the Generator model respectively. The high-resolution images are only available
during the training. In (Ledig et al., 2017) ILR is obtained by applying a Gaussian filter to IHR followed by
downsampling. It is important to note here that this is not how we generate low-resolution images for the
case of oil saturation. In our case, however, IHR is obtained by running a fine-scale simulation with some
initial reservoir conditions. The corresponding ILR is obtained by running a coarse-scale simulation of the
same reservoir but with upscaled values for the rock porosity and permeability. We use this method because
this is how the data will be in a real-world application. This detail is important because the corresponding
images IHR and ILR even though they belong to the same reservoir, initial conditions are obtained by running
two independent simulations. As a result, these independent simulations do not ensure that the mass of oil
remaining in the reservoir will be equal. This is an artifact of the dataset generation process, which definitely
can be improved to ensure the ideal condition where the mass of oil should be equal in both IHR and ILR. We
will definitely search for a better dataset-generation process. In our dataset, this discrepancy is not large,
and the mass difference is around 3% of the mass in ILR. Thus, we believe we can disregard this discrepancy
and focus on the deliverable where we want our model to generate consistent reconstructions, i.e. the mass
of oil in ISR should be equal to that of ILR. This deliverable is important because when someone uses our
model for a oil saturation profile ILR, the reconstruction ISR should not show more or less amount of oil in
the reservoir as compared to the input. The above information is critical to understand our GAN training
strategy. We know that GAN training involves alternatively training a discriminator  and a generator
network  to solve the adversarial min-max problem:

(5)

where θG and θD are the parameters of the generator and discriminator respectively, and  is the
distribution of target high-resolution images and  is the distribution of the images generated by the
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generator. In practice, this is broken down into the loss functions used to first back-propagate through the
discriminator network and then the generator.

Loss function of the Discriminator As shown in Equation 5 the Discriminator is trained for the objective

this comes from the formula of binary-cross-entropy (BCE) loss when we label the images IHR as real target
value of 1) and label the generated images  as fake (target value of 0). We essentially train the
Discriminator to identify apart the fake images  from the real images IHR.

Loss fuction of the generator On the other hand, we train the generator to fool the Discriminator such
that the Discriminator cannot identify apart the fake images  generated by the generator. This
forces the generator to make fake images that look similar to the real ones. In other words, it forces the
generator to make the distribution pG(ILR) be similar to the training data distribution ptrain(IHR). Thus, the
adversarial loss function  (which is the second term in Equation 5) used while training the generator is

(6)

This loss function attempts to motivate the generator to create images that the Discriminator would label
as real in order to fool the Discriminator. While training the generator though, we add other loss functions,
and specifically, the authors of SR-GAN use two additional loss functions, namely: pixel-wise MSE loss

 and VGG Content loss .

(7)

(8)

Please refer to (Ledig et al., 2017) for details regarding these loss functions. Finally, the loss used to train
the generator is lSR named the perceptual loss where α1 = 10, α2 = 2×10−6, and α3 = 10−3 are scaling factors.

(9)

These additional loss function terms do not affect the GAN training as similar to , the losses 
and  motivate the generator to make images which are similar to the target distribution ptrain(IHR). In
summary,

•  motivates the generator to make pG(ILR) similar to ptrain(IHR).

•  and  motivates the generator to make ISR similar to IHR.

Finally, we can talk about the mass balance loss function
. We add this additional term to the perceptual loss
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(10)

We argue that  too motivates the generator to make pG(ILR) similar to ptrain(IHR) and like
the additional terms  and  does not adversely affect the GAN training. As described above if mass
of oil in ILR is equal to that of IHR, then the above argument is true, and the loss function will attempt to
make ISR similar to IHR. However, if the masses are not equal then the loss function in combination with 

and  will attempt to make ISR similar to some version  of IHR, where the mass of oil  is equal

to that of ILR. Although  but  will lie in (or very close to) the distribution ptrain(IHR) because
any mass corrected version of IHR can be achieved by slightly adjusting the pixel values of the image while
still keeping them within [0, 1]. We tune the α4 to have a very low effect as compared to the other loss
components. Also, we initially before even starting the GAN training, we train the generator alone without
the mass balance term for a couple of epochs until it performs decent enough for the task of super-resolution
reconstruction. When the additional mass balance loss term is added, we do not observe any instability in
the min-max GAN training.

Experiments and Results Dataset Generation We want to create a dataset with a wide variety of
saturation profiles. Here is a sample data point Figure 4. To that end, we use a very large reservoir model
with highly heterogeneous geology and various simulation parameters to generate variety in the saturation
profile. For collecting data we use OPM (Open Porous Media). OPM is open-source software, therefore we
will be using this in our study. OPM (Rasmussen et al., 2021) flow attempts to reflect reservoir geology,
fluid behavior, and well and production facility descriptions in the same way as commercial simulators do,
so it includes fully implicit discretization of black-oil style models as well as industry-standard input and
output formats. The Fine-scale (FS) model we use is the SPE Model 2. We then crop this model to generate
many small fine-scale reservoirs with the following details: Number of Grids: 30 × 110 × 5, Grid Cell
Dimension: 20ft × 10ft × 2ft. We then upscale the model (US) with the following details: Number of Grids:
15 × 55 × 5, Grid Cell Dimension: 40ft × 20ft × 2ft. In total (60/30 × 220/110 × 85/5) = 68 reservoir rock
configurations are generated from the SPE10 model 2. We also set up one producer well and one injector
well with the random location and run the simulation. In total, we change the following parameters: porosity,
permeability, producer well location, and injector well location. This results in 6000 models each of FS and
US, which were simulated for 20 years.

Generalizability of our Learned Super-Resolution Model We want to emphasize a small detail in
the dataset generation process which promotes the generalizability of our model. Recall that our goal is
to develop a model which can take a low-resolution saturation profile from the simulation of an up-scaled
model and convert it to a high-resolution saturation profile to approximate the results of the corresponding
fine-scale simulation. This is done so that a user would not have to run the computationally expensive
and time-consuming fine-scale simulation, and yet obtain the approximate fine-scale results from super-
resolution of computationally cheaper upscaled simulation. Thus, when we train our model, we want to
ensure that the model can generalize to new geology and well conditions, such that anyone can directly use
our learned model for their reservoir data without the need to re-train our model for their data.

Because retraining would require them to run training data involving fine-scale simulation results and
thus would defeat our purpose. To this end, we investigate three levels:

• First we train the model for fixed geology. This will help us understand the baseline complexity
of the problem.

• Next, we change the geology to make the model more generic.

• The saturation profiles however also depend on the operating configuration of the reservoir like
well BHP. Thus, finally, we will study how we can make the model generic to these parameters.
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Figure 4—Visualization of a sample Oil Saturation Profile input and the desired high
resolution output. We also show the highly non-uniform porosity profile and well locations.

Figure 5—SR-GAN architecture from (Ledig et al., 2017).

The following images Figure 6 show some qualitative examples. The colormap visualization shows the
value of saturation at each location of a single reservoir layer. First, we show that the low-resolution profile
(LR) lacks a lot of detail as compared to the high-resolution profile (HR). Thus, to reiterate, the goal of my
work is to recover the lost details from the low-resolution image. The super-resolution reconstructions (SR-
SAN and UNET) are the output of the two models respectively. We can observe that the output of UNet is
blurry and lacks details. However, the output of the SR-GAN architecture shows that the model was able
to reconstruct the details and generate a reconstruction that is visually very similar to the high-resolution
ground truth. This is because Mean based losses used in UNet training trains the network primarily for
low-variability features (dominant features which appear across multiple training examples), while the
Discriminator based losses used in SR-GAN can make the images also capture high-variability features
(features which are more specific to individual training example). From the quantitative analysis Table 1,
we observe that the SR-GAN model trained with our dataset works better than a pre-trained SR-GAN model
used to reconstruct camera images. This indicates that the super-resolution task involving reservoir data
has more domain-specific information which warrants special consideration. The qualitative analysis also
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shows that even though the peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) values get
reduced upon the introduction of mass balance constraints, the most important value regarding the error in
mass balance (M1) reduces significantly.

Table 1—Quantitative results for SR-SAN model.

Sensitivity of Discriminator to various data-augmentation techniques: As mentioned earlier, we use
methods described in (Zhao et al., 2020) to generate augmented datasets with differentiable functions. Here
are a list of functions that we attempted and Table 2, summarizes their affect in performance.

Table 2—Performance increase due to various data-augmentation methods.

Random Translation: New augmented dataset is created by translating the high-resolution profile by
multiple of two, say (2a, 2b) and the corresponding low-resolution profile by (a, b), in both (x, y)-axes
respectively. Here a, b are chosen randomly. This translation augmentation helps the network not overfit
to spatial patterns specific to the dataset. This augmentation can be used during the discriminator training
as it is differentiable.

Random Rotation: Since, the augmented dataset represents underlying physical data that is
compartmentalized into three-dimensional grid cells; therefore, rotations that are multiples of 90° degrees
are only considered. However, we do not apply this augmentation based on (Zhao et al., 2020) as this
augmentation is not differentiable.

Random saturation: We also apply random perturbations in the saturation values as well however, these
random perturbations are made such that the total mass of oil is not changed based on Equation 4. In order
to do this, we change the porosity of the cell appropriately. We first make the random change in the high-
resolution profile and then replicate the same change in porosity and saturation in the low-resolution profile
such that the mass of oil is not changed. Again, this transformation is differentiable.
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Random global change in oil saturation: We also randomly raise or lower the oil saturation globally
in the high-resolution profile and correspondingly adjust the low-resolution profile to ensure mass-balance.
Table Table 2 provides the performance difference with each type of data augmentation.

Figure 6—Qualitative result for UNet.

Conclusion
1.The output of the SR-GAN architecture shows that the model was able to reconstruct the details and
generate a reconstruction that is visually very similar to the high-resolution ground truth. This is because
Mean based losses used in UNet training train the network primarily for low-variability features (dominant
features which appear across multiple training examples), while the discriminator based losses used in
SR-GAN can make the images also capture high-variability features (features which are more specific to
individual training example). 2.From the quantitative analysis, we observe that the SR-GAN model trained
with our dataset works better than a pre-trained SR-GAN model used to reconstruct camera images. This
indicates that the super-resolution task involving reservoir data has more domain-specific information,
which warrants special consideration. 3.The qualitative analysis also shows that even though the peak signal-
to-noise ratio (PSNR) and structural similarity (SSIM) values get reduced upon the introduction of mass
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balance constraints, the most important value regarding the error in mass balance (M1) reduces significantly.
In this work we only upscaled saturation but another key dynamic property is pressure. So in future work we
will explore how we can perform super resolution for both pressure and saturation together, while making
sure that physical constraint are met.
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