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ABSTRACT One of the greatest limitations of Synthetic Aperture Radar imagery is the capability to obtain
an arbitrarily high spatial resolution. Indeed, despite optical sensors, this capability is not just limited by the
sensor technology. Instead, improving the SAR spatial resolution requires large transmitted bandwidth and
relatively long synthetic apertures that for regulatory and practical reasons are impossible to be met. This
issue gets particularly relevant when dealing with Stripmapmode acquisitions and with low carrier frequency
sensors (where relatively large bandwidth signals are more difficult to be transmitted). To overcome this
limitation, in this paper a deep learning based framework is proposed to enhance the spatial resolution of
low-resolution SAR images while retaining the complex image accuracy. Results on simulated and real SAR
data demonstrate the effectiveness of the proposed framework.

INDEX TERMS SAR, super-resolution, deep learning, CNN, COSMO-skymed.

I. INTRODUCTION
Synthetic Aperture Radar (SAR) imagery has become an
important Earth observation technique to obtain a detailed
insight of physical and shape characteristics of targets and
scenes. As the technology and its applications grow up, there
is a growing demand for SAR images with finer spatial and
temporal resolutions. On one hand, time resolution can be
addressed with a larger number of sensors deployed and,
hence, able to provide more frequent observations, on the
other hand, the spatial resolution challenge has intrinsic
limitations. Indeed, in order to obtain a fine range resolution

The associate editor coordinating the review of this manuscript and

approving it for publication was Gerardo Di Martino .

it is required to transmit relatively large bandwidths, which
is not always possible because of frequency allocation or
hardware constraints. As for the cross-range (or azimuth)
resolution, it depends on the overall synthetic aperture length
which cannot be made arbitrarily long [1]. It is thus necessary
to identify data processing based solutions to solve the
SAR spatial resolution problem with the aim to extract
finer spatial details. In recent years a number of solutions
have been proposed exploring sparsity, compressive sensing
and deep learning (DL). As an example in [2], a recovery
solution for SAR Single Look Complex (SLC) images
exploits spectrum extrapolation to achieve super-resolution
while mitigating noncoherent electromagnetic noise covering
only the higher frequency spectrum. In the last decade,
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it becomes also popular to investigate compressive sensing
to achieve super-resolution in SAR, such as in [3] where
a super-resolution reconstruction method was proposed by
combining compressive sensing with a multi-dictionary. The
method performs well when a gradient-based optimization
is used to learn the observation matrix. However, the
performance assessment does not investigate the capability
to preserve the phase information. Furthermore, this type of
methods often suffers noisy environments and have off-grid
issues.

Another interesting family of approaches is based on DL.
Actually, such techniques find their application in a very
wide field; just to name a few, DL has been succesfully
apllied to modelling of pedestrian movements [4], [5] or
gait recognition [6], [7]. Focusing on radar [8], [9], [10]
and specifically on SAR [11], [12], [13], DL exploits large
training datasets in order to infer patterns that can be then
translated into filters, the latter can then be used to process
the radar image with the aim to refine its resolution. Indeed,
DL has been used to successfully reconstruct high resolution
optical image from its low resolution sample. In [14], authors
use a frequency domain based scheme to reconstruct the
high-resolution image at various frequency bands. Further,
authors propose a method that incorporates the wavelet
transform and the recursive Res-Net. The wavelet transform
is applied to the low-resolution image to divide it into various
frequency components. To validate the effectiveness of the
proposed method, extensive experiments are performed using
the NWPU-RESISC45 data set, and the results demonstrate
that the proposed method outperforms several state-of-the-art
methods in terms of both objective evaluation and subjective
perspective. Recently, in [15], the authors proposed a novel
Convolutional Neural Network (CNN) based technique that
exploits both spatial and temporal correlations to combine
multiple images. This novel framework integrates the spatial
registration task directly inside the CNN, relying on a single
CNN with three main stages. Forced by the success on
optical images, DL has been investigated also for SAR
super-resolution. For example in [16], DL and dictionary are
combined together with the result of providing good visual
super resolution results. Another example is the framework
proposed in [17], where the authors combine the advantages
of multiple-image fusion with learning the low-to-high reso-
lution mapping using deep neural networks. A more complex
framework is proposed in [18], where a multi-component
alternating direction method of multipliers is combined with
DL in order to derive a processing framework to super-resolve
SAR images. The proposed solution exploits a hybrid echo
model to overcome the point target model limitations and
formulate the SAR imaging as a constrained optimization
problem. Such an approach could be very promising once the
method is extended to off-grid scenarios and with un-paired
data training. When available also polarimetric information
can support the development of super-resolution methods,
as in [19], where the authors propose a full-polarimetric SAR
image super-resolution reconstruction method combining a

CNN and residual compensation. The advantages of the
deep CNN for nonlinear model fitting are exploited in
order to perform super-resolution reconstruction on low-
resolution full-polarimetric SAR images, and then a residual
compensation is applied to the network reconstruction results.
Finally, it is worth mentioning the approach introduced
in [20], in which the authors propose amethod based onDL to
realize the reconstruction of SAR images while introducing
the use of the Structural Similarity Index Measure (SSIM)
index into the loss function, so that the reconstructed SAR
image is improved both in subjective visual and in objective
evaluation indicators.

In [21], an extension of the Deep CNN with residual net
Skip Connection and Network (DCSCN) model described
in [22] and [23] is proposed to address the SAR super resolu-
tion challenge. The proposed DC2SCN fully convolutional
neural network extends the DCSCN model by accounting
for 2 channels, for the real and the imaginary part of
the SAR SLC, respectively. This paper completes [21] by
providing the details of the DL-based framework devised to
improve the spatial resolution. More importantly, we explain
the motivations behind the proposed methodology and
demonstrate it through an extensive experimental validation
that comprises both synthetic as well as real-recorded data.
Specifically, the proposed network extends the simpler
DCSCN model, introduced in [22] and [23] for image super
resolution, and is composed by a feature extraction stage
accounting for 2 different channels, one for the real and
another for the imaginary part of the SAR SLC image. This
design choice is of primary importance in SAR applications
since data are complex and besides amplitude information,
also phase information is restored by the proposed network.
The illustrative examples not only show that the method can
provide an improved spatial resolution, but it also retains the
phase information, a fundamental property if more advanced
SAR analyses are required (e.g. interferometry).

The remainder of the paper is organized as follows: in
Section II, the proposed DC2SCN framework is introduced,
by formalizing the problem at hand and the proposed
architecture. Section III describes the assessment criteria
and quantitatively discusses the performance of the proposed
framework on both real COSMO-Skymed and simulated
SAR data.

II. THE PROPOSED METHODOLOGY
In this section, we describe the two DC2SCN channels as an
extension of the DCSCN model described in [22] and [23].
The novelty of the proposed network lies in its two-channel
architecture that allows us to handle complex data (and,
hence, the phase information). In particular, some parts of the
network are able to jointly learn the real and the imaginary
part separately while other parts are joint and are able to
learn the relationships between them leading to a much more
precise internal representation model of the signal.

The overall network consists of a combination of a
feature extraction and reconstruction tasks. The feature
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extraction part of the network learns, from the complex SAR
image, a wide range of features used by the subsequent
reconstruction part to rebuild the input SAR image at a higher
resolution.

The proposed DC2SCN variant, shown in Figure 1,
exploits two main channels, instead of a single one, for both
feature extraction and reconstruction of each SAR image
component: one for real part and the other for imaginary part
of the signal (recall that the processed SARdata are complex).

The feature extraction part is comprised, for each channel,
of a cascade of NF sets of 3 × 3 CNN, bias and Parametric
Rectified Linear Units (ReLU). The original image is used
as an input of the model allowing the network to efficiently
grasp the features. Skip connections (as already proposed
in [24] and [25]) are used to optimize the number of filters
of each CNN layer and send extracted features at each level
to the subsequent reconstruction part of the network.

Looking at the reconstruction part, in the case of data up-
sampling, the transposed convolutional layer proposed in [26]
is generally used. However, the transposed convolutional
layer is characterized by a limited reconstruction ability
since it can learn up-sampling kernels. To improve the
reconstruction performance, it is necessary to introduce
heavy computation. For this reason, in this study, the
reconstruction part of the network is formed for each channel
by a 1×1 CNN layer in parallel with two CNN blocks (a 1×1
CNN block and a 3× 3 CNN block, each one followed by a
bias and a parametric ReLU units) that are shared by the real
and imaginary channels as shown at the center of the figure.
This shared portion of the network allows

(i) for a decrease of the computational load by reducing
the dimensions of the previous layers with a low information
loss;

(ii) the entire network to learn relationships across real
and imaginary parts of the signal thus preserving the phase
information in the course of the high resolution image
reconstruction.

For each channel an estimation of the up-sampled original
image is obtained also resorting to bicubic interpolation.
Notice that the input layer of the reconstruction network is
characterized by large dimensions since all the features are
included. For this reason a parallelized 1×1 CNN [27] is used
to reduce the dimension before generating the final images
(HX and HY ). It also enhances the final representation by
including an additional nonlinearity.

A. FORMALIZATION
Let us consider a low resolution SAR image composed of two
input layers composed by the real and the imaginary part of
XL + jY L , where j is the imaginary unit and the superscript
‘‘L’’ means low resolution. The first and only pre-processing
performed on the original image is the upscaling to the
desired higher resolution. Bicubic interpolation [28] is also
a convolutional operation implemented as a convolutional
layer. The difference in this case concerns the output size

of this layer that is larger than the input one (the stride
is fractional). To exploit the optimized implementations
available in cuda CNN, this layer is implemented using
a CNN layer but excluded from the learning process. Let
be Xu + jY u such upscaled image (superscript ‘‘u’’ means
upscaled resolution). The aim of the network is to recover an
image H(Xu,Y u;2), with 2, the network parameters, that
is as faithful as possible to the ground-truth high resolution
image, namely XH + jYH . In the following, Xu + jY u will
be still called, for simplicity, low resolution SAR image even
though has the same resolution as XH + jYH (superscript
‘‘H ’’ means high resolution). The network has to learn the
H function; such a task is accomplished, as highlighted
above, by cascading the sequence of feature extraction and
reconstruction steps.

1) FEATURE EXTRACTION
Formally, the first CNN layer of each channel of the network
is expressed as

F1X (Xu,Y u) = max(0,W1X · X + B1X )

F1Y (Xu,Y u) = max(0,W1Y · Y + B1Y )

where:
• W1X and W1Y represent the filters of the two channels,
• B1X and B2X are the corresponding biases.

More precisely, W1X and W1Y correspond both to the
dimensions of the first filters (of size f1×f1); such parameters
(including the biases B1X and B2X ) are determined during
the training process. The output is composed of o1 feature
maps and this also applies to biases whose elements are
associated position-wise to each filter. As shown in Figure 1,
we use Parametric ReLU as activation functions to the
filter responses. This output is propagated in the same way
through the subsequent layers and, at each layer, the output is
concatenated with previous using skip connections, as shown
in the figure; for example for the case of seven layers,
we have NF = 7. Obviously, it is possible to add multiple
convolutional layers to increase the nonlinearity. However,
this also increases the model size (ok×fk×fk×ok parameters
for one layer) and thus requires higher time to train the model.
In this experimentation, we used two networks of 20 and
40 total layers (hereafter called L20 and L40), respectively.

2) RECONSTRUCTION
In traditional reconstruction methods, the predicted overlap-
ping high-resolution patches are averaged over the upscaled
version to generate the high resolution final image. This
process can be implemented as a filter applied on a set of
generated feature maps (each region is a flattened vector
representation of a high-resolution patch). For this reason,
to build the final high-resolution image, the following
convolutional layers are used, one per channel,

OX (Xu,Y u) = max(0,WOX · X + BOX )+ Fe(Xu,Y u)

OY (Xu,Y u) = max(0,WOY · Y + BOY )+ Fe(Xu,Y u)
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FIGURE 1. The proposed architecture.

where the subscript ‘‘O’’ means output and:

• Fe is the output of the part of the network shared across
X and Y channels;

• WOX and WOY are the learnable filters of size fo × fo;
• BOX and BOY are the learnable biases vectors.

B. LOSS FUNCTION AND TRAINING
To learn the end-to-end function H, we need to estimate
the network parameters 2 = {(WiX ,WiY ) | i ∈ {1, k}} where
k is the number of layers. This can be performed by
minimizing a loss function between the reconstructed images
H(Xu,Y u;2) and the related ground truth high resolution
images (i.e., XH + jYH ). Since the convolutional neural

networks do not hinder the adoption of other kinds of loss
functions (if only the loss functions are derivable), given
a set of n high-resolution images {Xuh + jY uh } and their
corresponding low resolution images {XLh + jY Lh }, we used a
hybrid loss function based on the Mean Squared Error (MSE)
and the structural SSIM [29] as defined in:

Lhybrid =
1
n

n∑
h=1

||H(Xuh ,Y uh ;2)− (XHh + jYHh )||2 + Lssim

where n is the number of images exploited for training.
The part of loss using MSE favors higher Peak Signal-to-
Noise-Ratio (PSNR) that is a widely-used metric to evaluate
image reconstruction quality from an objective point of
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view. The second part of the loss is based on SSIM to
assign higher weights to the fuzzy boundary. Specifically,
two corresponding N × N patches are cropped from the
reconstructed SAR image components RX and RY and from
the ground truthGX andGY , which can be indicated, for each
channel, with r = {rj |j = 1, . . . ,N 2

} and g = {gk |k =

1, . . . ,N 2
} respectively. The Lms-ssim part of the overall loss

for r and g can be expressed as:

Lssim = 1−

(
2µrµg + K1

µ2
p + µ2

g + K1

)(
2σrg + K2

σ 2
r + σ 2

g + K2

)
where µr , µg, σr , σg are the mean, respectively, and the
standard deviation of r and g, and σrg is their covariance.
Finally,K1 andK2 are small constants selected to avoid divid-
ing by zero in some circumstances (in our experimentation
K1 = 0.012 and K2 = 0.032).

III. EXPERIMENTS AND RESULTS
In what follows, we present some numerical examples
to illustrate the behavior of the proposed deep network
architecture.

All the single classifiers have been developed using
PyTorch,1 Tensorflow,2 and Keras,3 which are three
open-source neural network libraries with Python bindings
(used to implement the classifiers).

For this experimentation the following two workstations
have been used:

• AMDRyzen Threadripper 3960X 24-Core, with 128GB
of RAM and two GPU NVIDIA RTX 3090 (with 24GB
of RAM);

• Intel Core i9 9940X (14 cores), with 64GB of RAM and
four GPU NVIDIA Tesla T4 (with 16GB of RAM).

To quantitatively evaluate the performance in terms of the
quality of the reconstructed super-resoluted image, hereafter
indicated as Ir ∈ CM×N , with respect to the original full-
resoluted one, namely If ∈ CM×N , we use the following
metrics:

• the Mean Absolute Error (MAE) expressed as

MAE =
1
MN

M∑
m=1

N∑
n=1

[|If(m, n)| − |Ir(m, n)|];

• the Root Mean Square Error (RMSE) expressed as

RMSE =

√√√√ 1
MN

M∑
m=1

N∑
n=1

[|If(m, n)| − |Ir(m, n)|]2;

• the PSNR, expressed in dB, defined as the ratio of the
maximum pixel intensity to the power of the distortion,

PSNR = 10 log10
max(|Ir|2)

1
MN

M∑
m=1

N∑
n=1

[|If(m, n)| − |Ir(m, n)|]2
;

1https://pytorch.org/
2https://www.tensorflow.org/
3https://keras.io/

• the SSIM, a widely used perceptual image quality
metric, that can be expressed as

SSIM = l · c · s,

with l, c, s the luminance, the contrast and the structural
changes as defined in [29].

Moreover, to evaluate the ability to identify a weak target
from a nearby strong one, the Peak Side Lobe Ratio (PSLR),
considering an azimuth or a range section of the image,
expressed in dB, is calculated as

PSLR = 10 log10
m0

m1
,

with m0 the peak intensity of the greatest sidelobe and m1 the
peak intensity of the mainlobe.

Another metric of interest for isolated bright point targets
is the spatial resolution measured as the distance between the
points with intensities 3 dB below the maximum intensity of
the main lobe peak in the azimuth and/or range sections [30].

A real recorded dataset is used to train the networks and
is discussed in detail in Subsection III-A. The first part of
the analysis (Subsection III-B) is aimed at showing the super
resolution behavior of the proposed architecture by using
synthetic data adhering to the nominal design assumptions,
whereas, in the second part (Subsections III-C and III-D) the
performance are assessed exploiting real SAR data.

A. REAL DATASET
The data used in the experiments are SARSLC images sensed
by COSMO-SkyMed (CSK) in the StripMap (SM) acquisi-
tion mode [31]. The SM mode implements approximately
a spatial resolution of 3 × 3 m in ground coordinates. The
dataset that we take into account is made by 10 scenes of
different sizes acquired over Northern Italy. Since each whole
scene consists of wide geographical areas containing millions
of pixels, the images are divided into blocks of size 512 ×

512 pixels, hereafter referred to as tiles. Precisely, the whole
dataset is divided into a total of 20239 tiles. Figure 5 shows
the entire first scene that covers the river Po valley inNorthern
Italy. This scene covers an area of about 50 × 65 km and is
made by 1344 tiles.

We trained the network employing degraded resolution
SAR images. Spatial resolution degradation was done in both
the range and azimuth directions. In this context, we focused
the images by employing adapted filters that consider half-
band, for both range and azimuth. The same images, that
we focused at half spatial resolution, were also focused at
maximum resolution, namely using all the available chirp and
Doppler bandwidth. The maximum resolution images were
used as ground truth during the training phase of the neural
network.

Precisely, we selected 16191 tiles for training and val-
idation and 4048 tiles for test. This experimental setup
allowed for an extensive training of the network as well as
a computational efficiency.
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TABLE 1. Hyper-parameters optimized during assessment.

FIGURE 2. Simulated targets images with −25 dB noise power (original
resolution).

Finally during the training process we optimize the most
relevant hyper-parameters of the network reported in Table 1.
Specifically, for each network of a given number of layers
(20 and 40), we find the values of dropout and learning rate
leading to the best performing model.

B. PERFORMANCE EVALUATION ON SIMULATED DATA
The simulation setup is designed to match the same
characteristics of the CSK SAR sensor. We simulate a tile

FIGURE 3. Simulated targets images with −25 dB noise power (degraded
resolution).

with two sinc spread functions point targets with equal power
intensity and a gaussian noise is added.

Three different cases are considered for the simulationwith
different distances between the two targets, namely, 0 m,
10 m and 20 m, at the three instantaneous PSNR levels of
5 dB, 15 dB and 25 dB. In Figures 2 and 3, the simulated
normalized images with −25 dB of noise power and at the
three distances in the subplots are shown, with the original
and the degraded resolutions, respectively. As expected, at
0 m a single bright target is visible. At 10 m, it is interesting
to notice that only with the full resoluted image, it is possible
to discriminate the two targets. At 20 mwith both the original
and the degraded resolutions, the two targets are clearly
separated.
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FIGURE 4. Simulated azimuth targets’ sections.

In Figure 4, the central azimuth sections are shown for
instantaneous PSNR, defined as the peak signal power over
the noise power, equal to 5 dB, 15 dB and 25 dB at the
top, center and at the bottom, respectively. The original full-
resoluted, the degraded, and the reconstructed with L20 and
L40 sections are plotted with red, blue, black, and violet lines,
respectively. The yellow box, identify the peaks locations,
and in the case where the distance is 0 m, the peaks are
overlapped.

The results show that the L20 and L40 configurations
are able to reconstruct the original resolution as well as
to discriminate the two targets for both 10 and 20 m of
distances.

FIGURE 5. Full scene: white boxes indicate the 25 tiles analyzed in
Table 2. The intensity image is represented with a zoomed color scale
from 0 to 5 for image enhancement.

C. PERFORMANCE EVALUATION ON REAL DATA
The 25 tiles highlighted in the boxes in Figure 5 are here
considered for assessing the performance of the proposed
architecture on real recorded data. Particularly, in Table 2,
the PSNR [dB], the RMSE, the MAE and the SSIM are
evaluated using both L20 and L40 configurations which are
compared with the corresponding degraded images used as
input. This is done to evaluate the gain obtained through the
reconstructed resolution of the two networks. The Root Mean
Squared (RMS) values of thesemetrics are also computed and
reported as the last row of the table.

The experimental results show an increase in the values
of PSNR and SSMI for all the tiles and for both L20 and
L40 configurations. The RMS PSNR gains of 13.97 dB and
12.54 dB with respect to degraded image are obtained by L40
and L20, respectively. As for the SSIM, the RMS value for the
degraded image is 0.17 whereas 0.60 and 0.67 are obtained
with L40 and L20, respectively. Both the RMSE and MAE
metrics also confirm the superiority of L40 with respect to
L20 with slightly lower values.

In Figure 6, the tile 267 of the full scene in Figure 5
is shown representing a mixed urban and vegetated area.
Particularly, from the top sub-image to the bottom one, the
original full-resoluted image, the degraded image and the
reconstructed images with L20 and L40 are shown. From
visual inspection, it is possible to notice a smoothing effect
on the degraded resoluted images whereas for both the
reconstructed resolution image finer details of the urban area
are more visible.
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TABLE 2. PSNR [dB], RMSE, MAE, SSIM for real data: degraded, L20 and L40.

In Figure 7, the histograms of the phase errors for the
tile 267 are shown. From figure’s inspection, it is clear
that the super-resolution of the image produces a phase
error correction with respect to the degraded image, for
both L20 and L40 with most of the errors concentrated
between 0 and π/8 (near 56% and 63% for L20 and L40,
respectively).

Moreover, a zoom plot on a bright target of the degraded
image is shown at the top in Figure 8. At the center of
the same figure, the interpolated azimuth sections for the
four images are shown. In this case, the PSLR values are
−12.9809 dB, −5.9038 dB, −13.0155 dB and −13.0461 dB
for the original full-resoluted image, the degraded image and
the reconstructed images with L20 and L40, respectively.
In terms of 3 dBmain lobe amplitude, 40 interpolated azimuth
pixels (corresponding to 4 original azimuth pixels) for the
degraded are found whereas 20 pixels are obtained for both
L20 and L40 which coincide with the full resolution of the
original image. At the bottom of Figure 8, the phase values are
reported. Interestingly, it can be noticed that the reconstructed
phases show a very good agreement with respect to the
original one. On the contrary, the degraded phase shows a
phase step of π in the correspondence of the main lobe
position (azimuth pixel 234).

These results confirm that the proposed architecture is able
to super-resolve as well as to reconstruct both the module and
the phase of the SAR complex data.

D. INTERFEROMETRIC ANALYSIS ON REAL DATA
In this subsection, the real data experimental analysis is
enriched to demonstrate the robustness of the proposed
architecture using a different real SAR dataset. The selected

scenario used, here, is composed by a mixed urban/desertic
area over Dubai. More precisely, a couple of CSK Spotlight
(SP) images acquired over the same area using two different
temporal observations and, at fixed spatial baseline, is used
to demonstrate the capability of the interferometric phase’s
preservation.

The training network, used here, is the same as the previous
experiments. Please notice that the data type (SP in place of
SM) from CSK used for testing here is different and also the
scenario is different (Po valley in place of Dubai). This is
done to prove the robustness of the architecture to data type
changes.

The interferogram using the half spatial resolution images
(degraded as in the previous subsections and used as input
for reconstruction) is reported in Figure 9(b), whereas the
interferogram generated using the images reconstructed by
the L40 network is represented in Figure 9(c). Figure 9(a)
shows the phase interferogram generated using the original
full resoluted images, reported for comparison purposes.

Finally, from visual inspection, it is possible to appreciate
that, when the degraded images are used to generate
interferogram, some fine details on the relative phase
information are lost; on the contrary, the reconstructed
L40 interferogram is very compatible with the original
one.

In Figure 10, we report the phase line and phase gradient
at range pixel 450 and with azimuth ranging between 1 and
350 pixels of the previous interferograms (original, degraded
and reconstructed L40). From Figure 10(a), it is possible to
observe that the reconstructed profile phase closely follows
the slow phase changes. While using the degraded profile we
would not be able to reconstruct the phase information, the
reconstructed profile still contains the original information.
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FIGURE 6. Tile 267 of the full scene in Figure 5.

This is quite evident by looking at Figure 10(b) where we
show the phase gradient plots. It is clear that the degraded

FIGURE 7. Histograms of the phase errors of tile 267.

FIGURE 8. Bright target in tile 267.

gradient phase profile (brown dashed line) exhibits a variation
range greater than the reconstructed one (dotted black line).
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FIGURE 9. Phase interferograms using two different temporal
observations and at fixed spatial baseline.

The RMSE values, computed over 350 samples, with respect
the original phase, say φo, and defined as√√√√ 1

350

350∑
n=1

[φo(n)− φk (n)]2, k ∈ {d, s}

for the degraded phase, φd , and the L40 reconstructed
phase, φs, are 0.3383 and 0.0863, respectively. Thus, the
improvement with respect to the degraded image is about one
order of magnitude.

FIGURE 10. Phase line and phase gradient: range line 450, azimuth
interval [1,350]. Phases are from the interferograms in Figure 9 (original
phase in blue line, degraded phase in brown dashed line and
reconstructed L40 phase in black dotted line).

IV. CONCLUSION
In this paper a novel convolutional neural network archi-
tecture, called DC2SCN, is introduced to reconstruct
super-resolution SLC SAR images. It is important to
highlight that, unlike existing works dealing with optical
images or amplitude data, the proposed framework processes
complex data, namely both real and imaginary parts, in order
to reconstruct not only the amplitude but also the phase
information that is of primary importance in advanced SAR
applications such as interferometry. To this end, the proposed
method employs two channels to deal with both real and
imaginary parts of the SAR image and combines a feature
extraction stage with a reconstruction stage in order to
rebuild a super-resolved SAR image. At the analysis stage,
both simulated and real data have been used to assess
quantitatively the effectiveness of the proposed framework.
In particular, on simulated data it has been shown how the
framework is able to enhance image resolution in different
noise conditions, while real COSMO-skymed SAR data
have been used to extensively assess the performance of
the network. Different figures of merit have been used to
asses the performance over rural and anthropized areas, all
confirming the capability of the proposed framework to
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reliably create super-resolution images. Finally, the capability
to preserve phase information has been also demonstrated,
thus remarkably, the output of the proposed processing chain
can be used for advanced SAR techniques.
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