Feasibility of a Push-Through Hyperloop Airlock Architecture Samuel Muirhead, Dr Stephen Connolly¹

1. Department of Mechanical and Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XQ

University of **Strathclyde** Glasgow

1. What is Hyperloop?

Proposed future mode of transportation which combines magnetic levitation and vacuum tubes to sustainably move people and cargo at speed of up to 1000 kmh.

3. Project Goals

oals

- Further develop a finite element mathematical model to simulate the interaction between a Hyperloop pod and a sliding sealing vane in a Push-Through airlock.

- Compare implicit and explicit formulations and determine which method is superior in terms of precision

2. Push-Through Airlock

is the results of the optimization.

Optimsed Vane Parameters			
Initial Shear	Sweep Angle	Vane	Vane
Modulus		Compression	Thickness
4.7521 MPa	120 degrees	2.2348 mm	10.06 mm

6. Project Outcomes

- Due to incompatibilities with contact pressure results, implicit finite element solution was chosen for the analysis.
- Optimised vane 185% more effective in providing the required 200 kPa contact pressure.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 Pod Approach Velocity (m/s)

The optimised vane design was tested at different pod velocities to check the performance. In the figure above, the performance variables showed almost no change, proving its robustness.

7. Future Work

- Utilize the new value of strain to create an estimate of fatigue life of the vane component.
- Analyse the effects of abrasion on the rubber vane surface over the life-cycle of operation
- Develop the mathematical model to factor in 3D circumferential effects.

