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ABSTRACT In this work, we present symbol error performance analysis of probabilistic shaping (PS)
for wireless communications in noise-limited and fading channels. Two fading models considered are the
Rayleigh and log-normal fading channels. The results are corroborated with simulation and compared with
the conventional uniformly distributed input symbols. In all channel conditions, PS results in significant
reductions in the SNR required to achieve a specific error probability compared to the conventional
uniformly shaped symbols. For example, in a noise-limited channel, PS based quadrature amplitude
modulation (QAM) signal results in SNR gains of 1.16 dB, 1.41 dB, and 1.52 dB compared to the
uniformly distributed QAM symbols at equal entropy rates of 4, 6, and 8 bit/symbol and a symbol error
ratio (SER) of 1× 10−3.

INDEX TERMS Probabilistic shaping (PS), error probability, wireless communication, Rayleigh fading,
log-normal fading.

I. INTRODUCTION

ENHANCING spectral efficiency and optimising the use
of available scarce resources are crucial requirements

of any communication systems. Yet, in the conventional data
transmission, in which each symbol (or constellation point)
is transmitted with equal probability, the distribution of input
symbols is not a perfect fit for the linear additive white
Gaussian noise (AWGN) channel. Consequently, it does not
allow for optimal utilisation of the channel capacity [1].
Moreover, in a wireless channel, the influence of fading and
multipath propagation deteriorate the system performance
[2].

The error probability of pulse-amplitude modulation
(PAM) and quadrature amplitude modulation (QAM) in
AWGN channels has been studied extensively [2]–[4]. More-
over, several works have also presented the performance
of wireless communication systems in Rayleigh and log-
normal fading conditions [5]–[7]. In [5], tight upper and
lower bounds on the error probability of coded modula-

tion schemes in Rayleigh fading channels are studied. The
average error probability in fading channels for different
modulation techniques has also been evaluated by approxi-
mating the sum of two exponential functions in [6]. For a
multiple access cellular uplink network in Rayleigh fading,
a tight upper bound symbol error probability is also derived
in [7]. However, all these studies consider only uniformly
distributed input symbols.

Optimising the distribution of source symbols through
signal shaping is crucial for enhancing communication sys-
tem performance. One shaping method that has garnered
considerable attention is probabilistic shaping (PS). It in-
volves adjusting the probabilities of occurrence of constel-
lation points to create a Gaussian-like distribution [1], [8].
Thus, resulting in non-uniform distribution of data sym-
bols. Therefore, by applying PS to QAM symbols, low-
energy symbols are transmitted more frequently than high-
energy symbols. This is realised by using a distribution
matcher, such as a constant composition distribution matcher
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(CCDM), proposed in [9], which maps input information bits
into non-equiprobable symbols with a Gaussian-like distribu-
tion. The Maxwell-Boltzmann distribution is commonly used
to generate Gaussian-like signalling which has been shown
theoretically to attain the ultimate shaping gain (πe/6 or
1.53 dB) [8], [10], [11]. PS is essentially an approach to
trade energy efficiency for spectral efficiency.

PS has shown to be an optimum technique in optical fibre
communications to achieve record-setting transmission rates
and distances [1], [12]–[14], as well as in optical wireless
communications [15]–[17]. Similarly, PS has been employed
in wireless communications to maximise transmission ca-
pacity and improve system performance. For example, PS
has contributed to a substantial improvement in transmission
capacity and system performance for high-speed Terahertz
photonic wireless communication systems in [18]–[20]. PS
has also been applied to mitigate hardware distortions in
[21]. Therefore, it is important to study the error performance
of PS in wireless communication systems in the presence of
fading. Related work in this domain include, designing PS
with constellation rotation and component interleaving for
diversity gain in [22].

In this paper, we study the theoretical symbol error perfor-
mance of PS. For such a scheme, the maximum likelihood
detection will not be applicable. Therefore, an optimum
maximum a posteriori (MAP) detector is derived. The sym-
bol error ratio (SER) of PS based uncoded QAM with
modulation order, M , (PS-M -QAM) under Gaussian noise-
limited condition is analysed, and analytical expressions are
provided. The results are compared with the conventional
uniformly distributed uncoded QAM symbols. We extend
the PS approach to Rayleigh and log-normal fading channel
conditions and derive expressions to estimate the PS per-
formance in the presence of fading. The presented analysis
is based on symbol error rate and therefore agnostic of the
choice of bits-to-symbol distribution matcher. The findings
from this study can be extended to investigate the PS bit
error rate (BER). The BER of PS depends on the choice
of distribution matcher used. Moreover, the distribution
dematcher is sensitive to errors and it usually needs to be
accompanied with forward error correction (FEC). That is,
FEC encoding along with the PS distribution matcher in the
transmitter and FEC decoder and distribution dematcher in
the receiver. The order of shaping and coding processing
steps in the transmitter and receiver is still an open and yet
interesting research to investigate [12], [23].

We analyse the impact of a rate parameter, which is
used to find an optimum probability mass function (PMF),
on the entropy and the error performance of the system.
We also compare the SNR gain using a rate parameter
which provides an equal entropy between PS and uniformly
distributed QAM symbols. In all cases, the theoretical re-
sults are verified with Monte Carlo simulations and show
significant gains over the conventional uniformly distributed
QAM symbols. For example, in a noise-limited channel, PS-

16-QAM, PS-64-QAM, and PS-256-QAM with respective
source entropy, H = {3.6, 5.4, 7.2} bit/symbol can provide
SNR gains of about 2.12 dB, 2.89 dB, 3.45 dB compared to
the conventional uniform 16-QAM, 64-QAM, 256-QAM at
SER = 10−3, respectively. Meanwhile, comparing at equal
entropy, H = {4, 6, 8} bit/symbol between uniform 16-
QAM, 64-QAM, and 256-QAM against higher order PS-M -
QAM, PS QAM provides SNR gains of 1.16 dB, 1.41 dB,
and 1.52 dB at the same SER. These results approach the
ultimate shaping gain (1.53 dB) that can be achieved using
a Gaussian distribution over uniform distribution at an equal
entropy rate [8].

The rest of the paper is organised as follows: Section II
presents a generation and detection of PS based symbols. In
Section III, the error performance analysis of PS-QAM in an
AWGN channel condition is presented. This is then extended
to fading channel conditions in Section IV. Performance in
log-normal fading condition is presented in subsection A
while that of Rayleigh fading channel is presented in sub-
section B. Finally, conclusions are given in Section V.

II. GENERATION AND DETECTION OF PS SYMBOLS
In this section, the basics of generating PS based symbols
using a Gaussian-like input distribution is presented and an
optimum maximum a posteriori (MAP) detector is derived.

A. Generating PS Symbols
The constellation of an M -QAM can be considered as two
orthogonal

√
M -PAM constellations which are chosen inde-

pendently over a set comprising xm =
{
2m− 1−

√
M
}

,

m = 1, 2, · · · ,
√
M . In PS-M -QAM, to maximise the chan-

nel capacity of a Gaussian channel, symbols are chosen from
a Gaussian-like input distribution [8], [10]. The common
approach is to use the input distribution from the family of
Maxwell-Boltzmann distribution whose 1-dimensional form
is represented as [14], [24]:

pX (xm) =
1∑√

M
j=1 e−λ|xj |2

e−λ|xm|2 , (1)

with λ ≥ 0 representing the rate parameter. It is used to
search for the optimum PMF depending on the choice of en-
tropy, H = −

∑
xmϵX pX (xm) log2 (pX (xm)) and average

symbol energy, ξav =
∑

xmϵX |xm|2 pX (xm). Appendix A
explains the relationship between the rate parameter, variance
of a Gaussian distribution and illustrates how the Maxwell-
Boltzmann distribution approximates it. For λ = 0, the
distribution is uniform while it becomes Gaussian distri-
bution with reduced variance as λ increases. The PMF of
an M -QAM constellation is the product of the respective
constituent PAM probabilities.

B. Detection of PS Symbols
The optimum detection scheme for PS is based on the MAP
detector. This is because the detection needs to take the
priori symbol distribution into account unlike the maximum
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likelihood detector that does not [3]. In this section, the
MAP detector for PS with Maxwell-Boltzmann distribution
is discussed. The analysis is based on a one-dimensional
M -PAM signal which can be easily extended to a two-
dimensional QAM signal.

Consider an AWGN channel such that the received sym-
bols over a symbol duration are defined as Y = X+Z, where
X is the transmitted input symbols and Z is an independent
and identically distributed noise vector with zero-mean and
variance, σ2

n = N0/2 Gaussian random variable. Here,
N0 denotes the single-sided noise power spectral density.
The input symbols, X take values from {x1, x2, · · · , xm}
according to the priori PMF given by (1). The AWGN
channel can be described by its conditional distribution,
pY |X (y|xm) as [3]:

pY |X (y|xm) =
1√
πN0

e−
|y−xm|2

N0 . (2)

The MAP detector is thus given by [3]:

m̂ = arg max
1≤m≤M

[
pX (xm) pY |X (y|xm)

]
. (3)

Consequently, using (1) and (2), the MAP detector in (3) can
be evaluated as:

m̂ = arg max
1≤m≤M

[
yxm − 1

2
(1 +N0λ) |xm|2

]
. (4)

The full derivation of (4) is provided in Appendix B. The
decision region, Dm for all 1 ≤ m ≤ M and 1 ≤ m′ ≤ M
where m′ ̸= m is given as:

Dm =

{
y (xm − xm′) >

1

2
(1 +N0λ)

(
|xm|2 − |xm′ |2

)}
.

(5)
Note that from (5), there are at most M−1 threshold points,
rth where Dm = Dm+1. In the following sections, the error
performance analysis of PS using the MAP detector rule
given by (4) is presented. In Section III, the error perfor-
mance analysis in an AWGN channel condition is presented
followed by fading channel conditions in Section IV.

III. ERROR PERFORMANCE IN AWGN CHANNEL
The symbol error probability of the detection scheme is
determined by accumulating the product of the priori dis-
tribution and the probability of error that occurs when the
received symbol is not in the Dm given xm is transmitted.
This can be written as:

Ps =

M∑
m=1

pX (xm)
∑

1≤m′≤M
m′ ̸=m

∫
Dm′

pY |X (y|xm) dy. (6)

In the following subsections, the error probability expression
is formulated for 4-PAM, which will be used as an example.
Then a general SER expression of M -PAM for an arbitrary
amplitude level M is derived.

A. Error Probability of 4-PAM
The signalling diagram of 4-PAM with amplitude levels of
xm = {±1,±3}

√
Es/ξav is shown in Fig. 1. Here, Es is the

symbol energy while the average symbol energy is denoted
by ξav. For the 4-PAM scheme, the decision boundaries are

S
av

3 E


− S
av

E


− S
av

E


S
av

3 E


1p

2p 3p

4p

1D 2D 3D 4D

1thr
2thr

3thr

FIGURE 1. PS-4-PAM with symmetrical PMF, decision boundaries and
thresholds

determined using (5) as:

D1 =

{
y < −2 (1 +N0λ)

√
Es

ξav

}
(7a)

D2 =

{
−2 (1 +N0λ)

√
Es

ξav
< y < 0

}
(7b)

D3 =

{
0 < y < 2 (1 +N0λ)

√
Es

ξav

}
(7c)

D4 =

{
y > 2 (1 +N0λ)

√
Es

ξav

}
. (7d)

Thus, the decision thresholds are rthm
= (−2, 0, 2) ×

(1 +N0λ)
√

Es/ξav for m = 1, 2, 3. Generally, the thresh-
old points of M -PAM can be induced as:

rthm
= (2m−M) (1 +N0λ)

√
Es

ξav
. (8)

Note that unlike the uniform distribution symbols, the
MAP threshold points depend on the noise level and the
shaping rate parameter, λ. This is further illustrated in
Fig. 2 considering the normalised third threshold point,
rth3 = rth3/

√
Es/ξav at different SNR per symbol

(Es/N0) conditions. For equiprobable symbols where λ = 0,
rth3 = 2. As λ increases, the threshold point increases and
moves to the outer constellation point. The increase is higher
in noisy channel (Es/N0 = 10 dB) compared to a channel
with less noise (Es/N0 = 16 dB).

Taking advantage of the symmetry in amplitude and using
(6), the error probability can therefore be evaluated as shown
in (9). In this analysis, an error detection has occurred if a
symbol m is transmitted but has been detected in Dm′ region
when it should be in region Dm. This is mathematically
described in (6). For example, the first term in (9a) describes
the case for when m = 1

(
x = −3

√
Es

ξav

)
is transmitted.

For correct detection, it should be received in region D1.
However, if it is received in region Dm′ for m′ ̸= m ( i.e.
m′ = 2, 3, 4) then error is detected. Consequently, the range
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Ps = 2p1

[∫ ∞

rth1

p

(
y|x = −3

√
Es

ξav

)
dy

]
+ 2p2

[∫ rth1

−∞
p

(
y|x = −

√
Es

ξav

)
dy +

∫ ∞

rth2

p

(
y|x = −

√
Es

ξav

)
dy

]
(9a)

= 2p1Q

rth1
+ 3
√

Es

ξav√
N0

2

+ 2p2Q

−rth1
−
√

Es

ξav√
N0

2

+ 2p2Q

rth2
+
√

Es

ξav√
N0

2

 (9b)

= 2p1Q

(
(1− 2N0λ)

√
2

ξav

Es

N0

)
+ 2p2Q

(
(1 + 2N0λ)

√
2

ξav

Es

N0

)
+ 2p2Q

(√
2

ξav

Es

N0

)
(9c)

FIGURE 2. The effect of rate parameter, λ and SNR per symbol (Es/N0)

on the normalised third decision point, rth3
of PS-4-PAM

of threshold for erroneous detection is [rth1 ,∞). Using the
fact that p2 = p3, as shown in Fig. 1, p2 in the second
term of (9c) is replaced by p3 and (9c) is reformulated in a
summation form as follows:

Ps = 2

3∑
m=1

pmQ

(
(1 + (2m− 4)N0λ)

√
2ϵ

Es

N0

)
. (10)

Here, Q (·) denotes the Gaussian Q-function and ϵ ≜ 1/ξav.

B. General Symbol Error Probability Expression of
PS-PAM
From the decision boundary expressions in (7), (8), and the
SER of 4-PAM in (10), regular patterns can be drawn for
general M -PAM signal. This general form of symbol error
performance of PS-M -PAM is given as:

Ps = 2

M−1∑
m=1

pmQ

(
(1 + (2m−M)N0λ)

√
2ϵ

Es

N0

)
. (11)

Note that for equiprobable symbols, λ = 0 and pm = 1/M
for all m and (11) reduces to the error probability of a
conventional uniform M -PAM.

To illustrate the impact of λ on SER given in (11),
the SER of PS-16-PAM is shown in Fig. 3 for different
λ values. The PS-16-PAM symbols are generated with

entropy rates, H = {3, 3.2, 3.6, 3.92} bit/symbol using
λ = {0.0331, 0.0250, 0.0132, 0.0047}. The SER of uniform
16-PAM (H = 4 bit/symbol) is also shown for comparison.
The result shows that PS achieves better energy efficiency
and the gain increases as the λ increases. However, it comes
at the cost of reduced net information rate: as λ increases,
H decreases. Thus, to maximise the PS gain with optimum
entropy level, the knowledge of the channel SNR response
of the system is required, from which optimum PMF and
thus the entropy is determined by the choice of optimum λ.
This optimisation process is realised by minimising the gap
between the entropy of symbols to the pre-estimated channel
capacity. An experimental study that demonstrates how PS
achieves near channel capacity transmission is presented in
[15], [17].

FIGURE 3. Error performance of PS-16-PAM at different entropy levels
and uniform 16-PAM

To evaluate the PS error performance independent of a
choice of rate parameter, comparison at equal net entropy
rates is crucial. To achieve this, a comparison of the SER
performance at equal net entropy rates is carried out by
using PS-M -PAM symbols against uniform symbols of lower
order. The results are shown in Fig. 4 and have been validated
with Monte Carlo simulations. The net entropy rates consid-
ered are H = 2 bit/symbol (PS-8-PAM and uniform 4-PAM),
H = 3 bit/symbol (PS-16-PAM and uniform 8-PAM), and
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H = 4 bit/symbol (PS-32-PAM and uniform 16-PAM). As
PS has lower H at the same modulation order, higher orders
(e.g., 2M ) will be used compared to uniform distribution,
which uses M . In all cases, PS has better SER performance
than the uniform signal with 1.13 dB, 1.37 dB, 1.43 dB
SNR gains at SER = 10−3 for H = {2, 3, 4} bit/symbol,
respectively. This validates that the SNR gain is not nec-
essarily associated with the entropy reduction. In fact, at
equal entropy rates, PS approaches the ultimate 1.53 dB
shaping gain. Higher SNR gain can be obtained by using
PS-QAM which uses two orthogonal PS-PAM constellations.
Generally, irrespective of the SER, a shaping gain can be

H = 2

H = 4

H = 3

FIGURE 4. Error performance of PS and uniformly distributed PAM for
different modulation orders at equal net entropy rates under AWGN
channel condition

found by evaluating λ which gives equal entropy, H so that
the entropy of the PS, HPS = log2 M and using this λ to
evaluate the average symbol energy of PS symbols. Fig 5
shows the shaping gain for increasing entropy values relative
to the ultimate shaping gain πe/6 = 1.5329 dB. The gain
increases with entropy until it approaches the ultimate gain
asymptotically, as shown in the inset figure.

C. Symbol Error Probability of PS-QAM
The error probability of M -QAM can be determined from
the error probability of

√
M -PAM with half the total energy

as [3]:

Ps|M−QAM = 1−

[
1− P

s
∣∣√M−PAM

Es/2

]2
. (12)

Using (12) and the half energy form SER of PS-M -PAM
given by (11), the SER of PS-M -QAM is obtained as:

Ps = 4

√
M−1∑
m=1

pmQ

(√
Ωm

Es

N0

)

− 4

√
M−1∑
m=1

pmQ

(√
Ωm

Es

N0

)2

(13)

2 3 4 5 6 7 8 9 10
1.25

1.3

1.35

1.4

1.45

1.5

1.5329
1.55

5 6 7 8 9 10

1.528

1.53

1.532
1.53293

1.534

FIGURE 5. Shaping gain for different entropy values. The inset figure
shows how the shaping gain approaches the ultimate gain. Dashed black
lines show the ultimate shaping gain.

where,

Ωm =
(
1 +

(
2m−

√
M
)
N0λ

)2
ϵ. (14)

For PS-4-QAM, all constellation points are in an equal
constellation ring with same probabilities. Hence, λ = 0,
ϵ = 1, and Ωm = 1. Consequently, (13) reduces to:

Ps = 2Q

(√
Es

N0

)
−Q2

(√
Es

N0

)
, (15)

which is the same as the symbol error probability of uni-
formly distributed 4-QAM.

The SER of PS-QAM given by (13) corroborated with
Monte Carlo simulation is shown in Fig. 6. For compar-
ison, the SER of the conventional uniformly distributed
QAM is also included. In this illustration, PS-M -QAM
symbols with M = {16, 64, 256} are generated with en-
tropy, H = {3.6, 5.4, 7.2} bit/symbol using rate parameter,
λ = {0.1353, 0.0408, 0.0119}, respectively. The entropy of
PS-M -QAM is thus set to be 0.9× log2 M of uniform coun-
terparts. The performance improvement from PS over the
uniformly distributed symbols is evident from the result. For
all modulation orders shown and ranges of SNR, the PS out-
performs uniform distribution. For instance, at SER = 10−3,
about 2.12 dB, 2.89 dB, 3.45 dB SNR improvement is
obtained from PS-16-QAM, PS-64-QAM, and PS-256-QAM
over the corresponding uniform QAM symbols, respectively.
Note that the amount of SNR improvement depends on the
rate parameter, λ for each modulation order, M .

The SER performance comparison is also repeated at equal
net entropy rates by using PS-M -QAM symbols against
uniform symbols of lower order (M/4-QAM) and presented
in Fig. 7. Entropy rates, H = 4 bit/symbol (PS-64-QAM
and uniform 16-QAM), H = 6 bit/symbol (PS-256-QAM
and uniform 64-QAM), and H = 8 bit/symbol (PS-1024-
QAM and uniform 256-QAM) are considered. In all cases,
PS has better SER performance than the uniform signal

VOLUME , 5

This article has been accepted for publication in IEEE Open Journal of the Communications Society. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/OJCOMS.2023.3278972

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10• 

10- 1 

10- 2 

iz 
ia< u, 

10- 3 

10- • 

10- s 
0 

-e--- PS-S-PAM (Theory) * PS-S-PAM (Simulation) 
-·-0·-· Uniform 4-PAM 
-e- PS-16-PAM (Theory) 

+ PS-16-PAM (Simulation) 
-·-£1-·-· Uniform 8-PAM 

PS-32-PAM (Theory) 
x PS-32-PAM (Simulation) 

-·..P.·-· Uniform 16-PAM 

5 10 15 
SNR (dB) 

20 

I ·, 
i 
i 

25 30 

a_'EISoc_- IUEOp«IJoumalo(tlM 
Communications Society 

-----------

Entropy, H (bit/symbol) 



Gutema et al.: On Symbol Error Performance of Probabilistic Shaping in Noise-Limited and Fading Channels

FIGURE 6. Error performance of PS and uniformly distributed QAM for
different modulation orders under AWGN channel condition

with SNR gains of 1.16 dB, 1.41 dB, and 1.52 dB for
H = {4, 6, 8} bit/symbol, respectively, at SER = 10−3.
These shaping gains are higher than PS-PAM and achieve
the ultimate shaping gain.

H = 8
H = 4 

H = 6

FIGURE 7. Error performance of PS and uniformly distributed QAM at the
same net entropy values

IV. ERROR PERFORMANCE IN FADING CHANNELS
In a fading wireless channel, the received instantaneous
signal power is scaled by |h|2, where h, the channel coeffi-
cient, is a random variable. Thus, the instantaneous SNR per
symbol is defined as γ = |h|2 Es/N0, and the average SNR
per symbol becomes γ = |h|2Es/N0. Due to the impact
of fading on the received signal amplitude, the decision
threshold of M -PAM given in (8) for noise-limited condition
will now change to the generalised form given by:

rthm
= (2m−M)

(
|h|2 +N0λ

) 1

h

√
Es

ξav
. (16)

The effect of h and λ on the normalised third decision
threshold point, rth3

is demonstrated in Fig. 8. For this
instance, SNR = 10 dB is considered. For equiprobable case

FIGURE 8. The effect of rate parameter, λ and SNR per symbol, Es/N0 on
the normalised third decision point, rth3

of PS-4-PAM

(λ = 0), and strong attenuation (h = 0.5), the threshold is
rth3

= 1 as against rth3
= 2 with h = 1. This figure shows

that the threshold is no longer fixed but varies with h for
any given λ and N0. In noise-limited case, this depends on
the SNR and λ as it was shown in Fig. 2.

The average symbol error probability in the a fading
channel then becomes [2]:

Ps|Fading =

∫ ∞

0

Ps (γ) pγ (γ) dγ, (17)

where pγ (γ) is a probability density function (PDF) of
the instantaneous SNR which depends on the nature of the
fading channel. Ps (γ) is evaluated by the SER expression
defined in (6) and takes into account the impact of fading
on decision thresholds given by (16). However, this leads
to an expression which is not tractable. Therefore, in the
following subsections, we present a suboptimum tractable
SER of Rayleigh and log-normal fading channel conditions
with suboptimum decision threshold that is based on (8). It
should be noted that the analysis can be easily extended to
other fading models.

A. Log-normal Fading Channel
The average symbol error probability in the presence of log-
normal fading can be evaluated using (17). The PDF of log-
normal fading, pγ (γ) is given by [25]:

pγ (γ) =
1√
2πσ2

I

1

γ
exp

(
− (ln (γ/γ0)− µ)

2

2σ2
I

)
, γ ≥ 0

(18)
where µ = −σ2

I/2 and σγ are the mean and standard
deviation of ln I , respectively. From (13) and (18), the
SER of PS-M -QAM in log-normal fading channel can be
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evaluated, using a Gauss-Hermite quadrature integration [26,
equation 25.4.46], as:

Ps ≈
4√
π

N∑
n=1

wn

√
M−1∑
m=1

pmQ
(
Γn

√
Ωmγ

)

− 4√
π

N∑
n=1

wn

√
M−1∑
m=1

pmQ
(
Γn

√
Ωmγ

)2

(19)

where,

Γn = I0 exp

(
νn

√
2σ2

I − σ2
I/2

)
. (20)

Here, {νn} and {wn} denote the zeros and weights of
the N th-order Hermite polynomial with n = 1, 2, · · · , N ,
respectively. The accuracy of (19) depends on the order of
the Hermite polynomial.

The SER performance comparison between PS-QAM in
log-normal fading channel (expression (19)), validated with
Monte Carlo simulation, and the corresponding uniformly
distributed symbols is shown in Fig. 9. For this figure,
the fading variance, σ2

I = 0.1 and Hermite polynomial
order, N = 20, which gives effective approximation to a
numerical integration, are considered. Using similar input
rates as in the AWGN case, the PS-M -QAM symbols with
entropy, H = {3.6, 5.4, 7.2} bit/symbol are generated for
M = {16, 64, 256} respectively. The result demonstrates
performance improvement from PS compared to the uniform
distribution. At SER = 10−3, for instance, PS-16-QAM,
PS-64-QAM, and PS-256-QAM yield SNR gains of about
2.02 dB, 2.83 dB, 3.40 dB compared to the uniformly
distributed QAM symbols, respectively. At the same SER
and σ2

I = 0.1, the fading penalty (which quantifies the
additional SNR required due to fading at the same BER as
the noise-limited case) is about 4.5 dB for both schemes.
These results reveal that PS can efficiently improve system
performance in a log-normal fading channel as well.

FIGURE 9. Error performance of PS and uniformly distributed QAM for
different modulation orders in log-normal fading channel with σ2

I = 0.1

The SER performance comparison is repeated at equal net
entropy rates by using entropy rates H = {4, 6, 8} bit/symbol
which are used in the AWGN case. The result is presented
in Fig. 10. In all cases, PS QAM provides SNR gains of
0.98 dB, 1.33 dB, and 1.47 dB for H = {4, 6, 8} bit/symbol,
respectively, at SER = 10−3. However, the SNR gains
are lower than the respective AWGN cases. Overall, the

H = 4 

H = 6

 H = 8

FIGURE 10. Error performance of PS and uniformly distributed QAM at
equal net entropy values in log-normal fading channel with σ2

I = 0.1

performance of PS in terms of the SNR gain across different
fading variances is evaluated. Here, the SNR gain refers
to the improvement in SNR achieved by using PS-based
QAM instead of uniformly distributed QAM to achieve a
specific BER. The results indicate that the performance of
PS is superior to that of the uniform signal in all cases.
Figure 11 presents the SNR gain required to achieve a
SER of 10−3. The result shows that the highest gain is

FIGURE 11. The amount of SNR gain from using PS over uniformly
distributed QAM at equal net entropy values and SER = 10−3 in
log-normal fading channel with different σ2

I

achieved at H = 8 bit/symbol, and despite the increase in
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Ps ≈ 2

√
M−1∑
m=1

pm

(
1−

√
Ωmγ

2 + Ωmγ

)
−

√
M−1∑
m=1

p2m

(
1−

√
Ωmγ

2 + Ωmγ

(
4

π
tan−1

(√
2 + Ωmγ

Ωmγ

)))

−

√
M−1∑
j=1

j−1∑
i=1

pjpi

[
2− 4

π

(√
Ωiγ

2 + Ωiγ
tan−1

(√
2 + Ωiγ

Ωiγ

)
+

√
Ωjγ

2 + Ωjγ
tan−1

(√
2 + Ωjγ

Ωjγ

))]
(22)

fading variance, the gain remains fairly consistent. However,
the gain is relatively lower for lower entropy, such as
H = 4 bit/symbol, and as the fading variance increases, the
gain decreases. This corresponds to the result in Fig. 5, which
shows that the shaping gain is higher for larger H values and
approaches the ultimate gain.

B. Rayleigh Fading Channel
The PDF of the instantaneous SNR for the Rayleigh fading
channel is given by [2]:

pγ (γ) =
1

γ
exp

(
−γ

γ

)
, γ ≥ 0. (21)

Using (13) and (21) in (17), the symbol error probability
of PS-M -QAM in Rayleigh fading channel is estimated as
given in (22).

Figure 12 shows the SER PS-QAM evaluated by (22)
and its Monte Carlo simulation validation. To illustrate,

FIGURE 12. Error performance of M -QAM for different modulation orders
in Rayleigh fading channel. The inset shows the SER above 35 dB SNR

the PS-M -QAM symbols are generated using entropy,
H = {3.6, 5.4, 7.2} bit/symbol for M = {16, 64, 256},
respectively, similar to the AWGN cases. The theoretical
uniformly distributed QAM performance under the Rayleigh
fading condition is also plotted for comparison. The result
demonstrates performance improvement from PS compared
to the uniform distribution. At a particular SER of 10−3 ,
for instance, PS-16-QAM, PS-64-QAM, and PS-256-QAM
yield SNR gain of about 1.63 dB, 2.59 dB, and 3.27 dB

compared to the respective uniform QAM symbols. While
at the same SER, the fading penalty is about 21 dB for both
schemes. These results demonstrate that PS can effectively
improve system performance in a Rayleigh fading wireless
channel.

The SER performance comparison at equal net en-
tropy rates is presented in Fig. 13 using entropy rates
H = {4, 6, 8} bit/symbol similar to AWGN case. In all

H = 4 

H = 6

H = 8

FIGURE 13. Error performance of M -QAM at equal net entropy values in
Rayleigh fading channel. The inset shows the SER above 35 dB SNR

entropy values, despite the SNR gains are much lower than
the AWGN case, PS has better SER performance than the
uniform signal with SNR gains of 0.27 dB, 1.02 dB, and
1.33 dB for H = {4, 6, 8} bit/symbol, respectively, at
SER = 10−3.

V. CONCLUSION AND FUTURE WORK
In this work, the symbol error performance analysis of
PS with MAP detection scheme has been presented. The
analysis is also extended to Rayleigh and log-normal fading
channels. The symbol error performance of PS is analysed
and closed-form analytical expressions validated with Monte
Carlo simulations are provided. This study presents a frame-
work that demonstrates how PS trades energy efficiency
(SNR required to achieve a given error performance level)
for spectral efficiency and how the design parameters are
chosen. These include analysing the effect of the shaping
rate parameter, which set the PMF and hence the source
entropy and spectral efficiency, on the error performance of
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the PS scheme. The result is then compared with the error
performance of the traditional uniform distribution. We also
compare the SNR gain using a rate parameter which provides
an equal entropy between PS and uniformly distributed QAM
symbols. Our results show that PS outperforms uniform
distribution and it reduces the SNR required to achieve a
specific error probability significantly. In AWGN channel,
PS-16-QAM, PS-64-QAM, and PS-256-QAM with respec-
tive entropy, H = {3.6, 5.4, 7.2} bit/symbol result in SNR
gains of 2.12 dB, 2.89 dB, 3.45 dB compared to the uniform
16-QAM, 64-QAM, 256-QAM at SER = 10−3, respectively.
Moreover, SNR gains close to the ultimate 1.53 dB shaping
gain have been demonstrated by comparing the PS and
uniform symbols at equal entropy rates. Using equal entropy,
H = {4, 6, 8} bit/symbol between uniform 16-QAM, 64-
QAM, and 256-QAM against higher order PS-M -QAM, PS
achieve SNR gains of 1.16 dB, 1.41 dB, and 1.52 dB.

The findings of this study have important practical applica-
tions in communication systems. The gain in SNR resulting
from the use of PS can significantly improve the noise or
fading resilience of the system, leading to more reliable and
efficient data transmission. This is particularly important in
scenarios where power consumption is a critical factor, as
PS can enable the design of more energy-efficient wireless
communication systems. Alternatively, the increase in SNR
can be utilised to improve the achievable information rate
without the need to increase the transmitted signal power.
This is especially relevant in high-speed applications, where
the use of PS can allow for higher data rates and more
efficient utilisation of the available bandwidth. Overall, the
findings suggest that PS can offer significant benefits for the
design and optimisation of communication systems, leading
to more robust and efficient communication in various prac-
tical applications.

Another possible area of future research would be to
investigate the bit error performance of the PS. The BER
analysis of PS will be based on the choice of the distribution
matcher and FEC. Combining shaping with coding with
optimal rates will enhance the SNR gain further.

Appendix A
Maxwell-Boltzmann and Gaussian Distributions
The Maxwell-Boltzmann distribution provides a Gaussian-
like distribution for input symbols. It can be shown that the
Maxwell-Boltzmann distribution approached the Gaussian
distribution depending on the modulation order, M and the
rate parameter, λ. Assume a Gaussian distribution given by:

f (x) = a exp

(
−1

2

(
x− b

c

)2
)
. (23)

Since PS symbols are symmetric about x = 0, it is possible
to use b = 0. For (1) to approach the Gaussian distribution

in (23), we have:

a =
1∑M

j=1 e
−λ|xj |2

, (24a)

c =
1√
2λ

. (24b)

Figure 14 shows a PS-based 8-PAM symbol distribution
generated with a rate parameter, λ = 0.0435 and its Gaussian
fit, f (x) using a = 0.2393, b = 0, and c = 3.3906.

-7 -5 -3 -1 1 3 5 7
amplitude

0

0.05

0.1

0.15

0.2

0.25

pr
ob

ab
ilit

y

PS-8-PAM Gaussian Fit: f(x)

Gaussian Fit: f(x)
PS-8-PAM

FIGURE 14. PS-8-PAM probability distribution and its Gaussian fit

Appendix B
Derivation of MAP Detector Rule
Substituting (1) and (2) into (3), the full derivation of the
MAP detector rule given by (4) is presented as follows:

m̂ = arg max
1≤m≤M

[
1∑M

j=1 e
−λ|xj |2

e−λ|xm|2 1√
πN0

e−
|y−xm|2

N0

]
(25a)

(a)

= arg max
1≤m≤M

[
e−λ|xm|2e−

|y−xm|2
N0

]
(25b)

(b)

= arg max
1≤m≤M

[
ln

(
e−λ|xm|2e−

|y−xm|2
N0

)]
(25c)

= arg max
1≤m≤M

[
−λ |xm|2 − |y − xm|2

N0

]
(25d)

(c)

= arg max
1≤m≤M

[
−N0

2
λ |xm|2 − 1

2
|y − xm|2

]
(25e)

= arg max
1≤m≤M

[
−N0

2
λ |xm|2 − 1

2

(
|y|2 + |xm|2 − 2yxm

)]
(25f)

(d)

= arg max
1≤m≤M

[
yxm − 1

2
(1 +N0λ) |xm|2

]
. (25g)

In the above simplification, the following assumptions are
carried out; (a): positive constants does not change the value
and hence are dropped, (b): ln (·) is an increasing function,
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(c): N0/2 is a positive number and multiplying by a positive
number does not affect the result, (d): |y|2 is the same for
all m and hence it is dropped.
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