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Abstract: This paper provides a novel methodology for human-driven decision support for capacity
allocation in labour-intensive manufacturing systems. In such systems (where output depends solely
on human labour) it is essential that any changes aimed at improving productivity are informed by
the workers’ actual working practices, rather than attempting to implement strategies based on an
idealised representation of a theoretical production process. This paper reports how worker position
data (obtained by localisation sensors) can be used as input to process mining algorithms to generate
a data-driven process model to understand how manufacturing tasks are actually performed and
how this model can then be used to build a discrete event simulation to investigate the performance
of capacity allocation adjustments made to the original working practice observed in the data.
The proposed methodology is demonstrated using a real-world dataset generated by a manual
assembly line involving six workers performing six manufacturing tasks. It is found that, with
small capacity adjustments, one can reduce the completion time by 7% (i.e., without requiring
any additional workers), and with an additional worker a 16% reduction in completion time can
be achieved by increasing the capacity of the bottleneck tasks which take relatively longer time
than others.

Keywords: industrial productivity; process mining; discrete event simulation; indoor positioning
systems; completion time; flexible capacity allocation

1. Introduction

Labour-intensive manufacturing systems [1], like workshops, often experience devia-
tions from planned production schedules due to human workers’ unpredictable and flexible
behaviour. This behaviour differs from automated machines, which perform tasks as pre-
scribed. Deviations can occur even with fixed task assignments due to workers’ abilities
and conduct. For example, workers can interrupt their own task and help colleagues with
tasks at other work stations when they observe that their coworkers are having difficulties.
Understanding when and why workers demonstrate flexible working practices can help
manufacturers learn and adjust their decision-making processes (e.g., re-planning the task
assignment) accordingly, leading to successful and worker-accepted process improvements.
Such human-driven strategies are more likely to succeed compared to those based on
idealised performance.

In such industrial environments, sensor technologies are key to understanding worker
behaviour and how they actually perform manufacturing tasks. Since in labour-intensive
manufacturing systems human workers are the backbone of the production process,
to understand how specific manufacturing tasks are actually being performed it is neces-
sary to track worker movements using indoor positioning systems, such as Ultra-wideband
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tags, which are becoming increasingly common in production facilities [2]. Real-time posi-
tion data from these sensors can be used to analyse how tasks are executed by workers in
labour-intensive manufacturing processes. Our paper demonstrates this using a real-world
dataset [3] of six assembly workers with an initial task assignment.

Real-time position data from workers requires analysis and data mining techniques to
derive a meaningful representation of how workers perform tasks. This paper proposes
a process mining [4] methodology to derive the sequence of assembly operations carried
out by human workers performing a manufacturing task and use this representation to
define a process model. By comparing the models derived from the human worker data
to their nominal (i.e., fixed) task assignment, deviations are identified that workers are
sometimes involved in tasks that are not assigned to them as a result of their adaptive and
collaborative behaviour. Through this comparison, it is discovered that workers exhibit
more flexibility than their assigned tasks suggest, and are capable of performing a variety
of tasks and distributing their capacity among them. Using this flexible task assignment,
we provide decision support for improving process efficiency and reducing completion
time by making minor adjustments to task capacity allocation. Previous studies [5–7] have
highlighted manpower allocation as a critical aspect of decision-making in labour-intensive
manufacturing. However, most of these studies rely on analytical models that make strict
assumptions about how workers should perform tasks. To evaluate the impact of proposed
changes to labour allocation, this paper builds a discrete event simulation using the process
model generated from worker localisation data, allowing us to assess completion time
under new capacity levels. This paper extends the initial results presented in conference
paper [8] by demonstrating the potential of worker position data for providing human-
driven decision support via data-driven process models and simulation tools.

The rest of this paper is organised as follows. In Section 2, we review the literature and
show how this paper is different from the relevant existing studies. Section 3 describes our
methodology and outlines its steps. Section 4 presents our main results. Lastly, Section 5
concludes the paper while pointing to several future research directions.

2. Literature Review

Real-time localisation of objects in manufacturing environments, such as people, ma-
chines, materials, and products is essential to achieve the objectives of smart manufacturing
and Industry 4.0 revolution which depend on the integration of knowledge about the pro-
duction environment continuously [9,10]. The specific real-time localisation system (RTLS)
technologies that enable this in manufacturing are the indoor positioning systems (IPS).
Based on the communication technology used, these systems can be grouped into Wi-Fi,
Bluetooth, radio frequency identification (RFID), VLC, and ultra-wide band (UWB)-type
technologies [11]. The position data supplied by these technologies have the potential to be
used for monitoring and control of manufacturing processes in order to improve efficiency,
detect faults or anomalies [12]. For example, tagging and tracking unfinished products
provide information, such as tact time, which enables efficiency monitoring and production
control [13].

Table 1 summarises the previous studies that made use of indoor localisation sensor
data for decision support in manufacturing.
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Table 1. Comparison to previous studies using indoor localisation sensor data for decision support
in manufacturing.

Study Sensor Technology Tracked Objects Purpose Technique of Analysis

[14] RFID products job scheduling in machines simulation
[15] RFID products re-design of workflow simulation
[16] RFID products production scheduling simulation
[17] RFID products production scheduling multi objective optimisation
[18] Fixture workstations fault detection quadratic programming
[19] UWB products lead time prediction semantic enriching
[20] Lidar and UWB workers safety monitoring supervised machine learning
[21] UWB products bottleneck identification process mining and value stream mapping
[22] UWB workers safety monitoring supervised machine learning
[23] UWB products bottleneck identification value stream mapping
Our paper UWB workers worker capacity allocation process mining and simulation

The literature summary in Table 1 suggests that the majority of the studies focus on
tracking products to monitor efficiency and provide decision support for process improve-
ment. We note the works by Nwakanma et al. [20] and Islam et al. [22] who also track
workers inside the manufacturing environments, as in our methodology. In these papers,
authors focus on monitoring safety and detecting dangerous situations. Their approach
also involves integrating data on breathing patterns of workers. In contrast, our paper
uses worker position data in conjunction with the factory plan to assess and improve
process efficiency.

In Table 1, the work of [14–16] should be acknowledged, who, like us, utilise sim-
ulations for decision support. However, a key distinction between our approach and
theirs pertains to the modelling of worker behaviour during manufacturing tasks in the
simulation. Our paper adopts a data-driven approach that leverages worker position data
and process mining techniques. In contrast, these studies rely on manual inputs, such as
expert opinions.

Process mining algorithms automatically discover, monitor, and improve actual as-
is processes (i.e., not assumed processes) from event logs, with applications in process
analysis, improvement, compliance, and case management. In manufacturing, it is the
third largest application domain and is used to identify process deviations and detect
bottlenecks, typically relying on event logs generated by IT tracking systems of activities
performed on specific products [4]. For instance, [24] uses an order status tracking system
to create event logs for ordered products and the activities performed on them, while [25]
relies on code readers placed on machines to automatically scan product IDs and record
timestamps. [26] also includes product information. Perhaps, the most relevant study
to our paper is by Tran et al. [21], which we note in Table 1, who also uses position data
from localisation sensors to extract event logs for process mining. However, in all these
studies, the event logs are based on traces of products, whereas our methodology is based
on tracking workers.

Product positions can provide a more direct understanding of activities compared to
worker positions, but detecting manufacturing activities from worker positions requires
activity recognition. Combining process mining with activity recognition is crucial for
manufacturing, as noted in [27]. Our methodology uses the facility layout to detect activities
related to manufacturing tasks using worker position data, similar to [19,21]. A relevant
study in the context of tracking worker movement for process mining to discover process
models in manufacturing is [28]. In [28], a video-based system tracks hand movements of
workers in a manual assembly line to identify activities and create event logs. Similarly, our
paper uses process mining to discover process models and identify deviations in worker
behaviour. Additionally, our paper uses the data-driven process model to provide decision
support on capacity allocation through discrete event simulation.

Discrete event simulation (DES) models provide decision support for complex systems
by allowing what-if analyses and exploration of process redesign alternatives [29]. Tradi-
tionally, DES models are manually built using expert knowledge, but data-driven models
offer advantages [30]. Process mining, which leverages event logs from actual process exe-
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cutions, can be particularly valuable in developing data-driven DES models [31,32]. In this
approach, process models and performance information derived from process mining can
serve as the input for automating the design of simulation models. While previous studies
have focused on healthcare [33,34], applications in manufacturing are emerging [30].

The focus of this paper is to provide human-driven decision support to improve
process efficiency. However, we would like to also touch upon the link between the human-
centric decision-making and sustainability [35] and resiliency-related objectives [36]. We
note that in manufacturing systems in particular these aspects become important to aim
through human-centricity in human–robot collaboration systems [37].

3. Materials and Methods
3.1. Data

This paper uses the 2D worker position data provided in [3] which are collected
through indoor localisation sensors during a three-hours long work shift. The dataset is
generated using both UWB tags worn by workers and motion capture technologies to
track workers. Here, we use their UWB data because the motion capture system provides
fewer position samples (since it was used for only about two hours). Specifically, these
data provide the position measurements taken from each worker in x and y coordinates.
These coordinates are measured in meters by considering the anchor position (0, 0) as the
reference point on the shop floor. Figure 1 presents a scatter plot of the 2D position data
coming from one of the workers for visualisation purposes.
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Figure 1. Position Data of Worker 1.

The manufacturing process that workers are involved is an assembly line of tricy-
cles. This line consists of six different manufacturing tasks (j = 1, 2, . . . , 6) that are to be
performed by six workers (i = 1, 2, . . . , 6). Figure 2 presents the tasks and the precedence
relations between them (e.g., the axle cannot be assembled without having the lower frame).
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Task 1
Lower frame

Task 3
Saddle and pedalboard

Task 5
Front wheel axle

Task 2
Axle

Task 4
Rear wheel axle unit

Task 6
Final assembly

Figure 2. The manufacturing tasks of assembling tricycles.

In this assembly line, each worker is fixed to a single task. So, the fixed task assignment
can be described with the following matrix given in Equation (1).

Afixed = [afixed
ij ] =

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6


Worker 1 1 0 0 0 0 0
Worker 2 0 1 0 0 0 0
Worker 3 0 0 1 0 0 0
Worker 4 0 0 0 1 0 0
Worker 5 0 0 0 0 1 0
Worker 6 0 0 0 0 0 1

(1)

The manufacturing floor is divided into regions and each task has its own designated
region. The locations of these regions are shown in Figure 3.

Task 1 Task 6

Task 2

(3, 8)

(3, 1)

(3, 4)

(3, 6)

(6, 1)

(6, 8) (9, 8)

(9, 6)

(9, 4)

(9, 1)

Task 5

Task 3 Task 4

Figure 3. The locations of regions designated for tasks. (Region for Task 1 is defined as {(x, y)|3 ≤ x <

6, 6 < y ≤ 8}, for Task 2 as {(x, y)|3 ≤ x < 6, 4 < y ≤ 6}, for Task 3 as {(x, y)|3 ≤ x < 6, 1 < y ≤ 4},
for Task 4 as {(x, y)|6 ≤ x < 9, 1 < y ≤ 4}, for Task 5 as {(x, y)|6 ≤ x < 9, 4 < y ≤ 6}, and for Task 6
as {(x, y)|6 ≤ x < 9, 6 < y ≤ 8}.)

3.2. Methodology

Given this floor plan and the worker position data collected through UWB sensors,
we develop our methodology to extract process models and incorporate them in a discrete
event simulation framework to provide decision support. This methodology is summarised
in Figure 4.
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Position Data
Timestamp Worker 1 ... Worker 6
13:30:00:01 (3.2, 5.2) ......(5.3, 6.2)
13:30:00:02 .........................................

...................................................................... Data Processing

Event Log

Task Worker ID Start Time End Time
Task 1 Worker 1 13:30:01 13:31:15
Task 2 Worker 2 .......................................
..............................................................................................................

Process Mining

Simulation Building

Discrete Event Simulation
Change Capacity
Levels and Allocation
to the Tasks

Adjust Task Completion
Distributions

Record Improvement
in Completion Time

Evaluate Completion Time

Try a New Plan

Figure 4. Methodology: using worker position data for human-driven process model discovery and
decision support with discrete event simulation.

Our methodology involves a number of steps. These are described in detail below.

3.2.1. Data Processing and The Extraction of an Event Log

UWB tags are measured at an interval of 100 ms. To align the data collected from
UWB tags attached to workers, the data interval of 100 ms is converted to seconds as no
significant changes in worker positions are expected within a second. The average position
data obtained within the same second is used as a smoothing function. If data are missing
for a worker, for example, when signals are obstructed, this is substituted with the worker’s
last known position.

An event log is generated from the synchronised second-by-second position dataset.
To assign events relating to the execution of a certain manufacturing task by workers, we
examine the proximity of workers to task regions and the duration of their stay there.
To identify whether a worker is actually performing a specific task based on their position,
the amount of time they spend in a particular region should be considered. For example, if
a worker is in one region at second t and then in another region the next second, it could
simply be due to walking past, particularly if their time in the initial region was brief. To
address this, a parameter τ > 0 is used to determine if a worker is performing a task i
at some time t if their position was within task region j at any time t

′
within the period

t, t− 1, . . . , t− τ. Here, by fixing τ to 60 s, we determine the log of events that show the
execution of a certain task by a certain worker with a start and end time. It must be noted
that τ is not set to a lower value here to avoid considering short visits to the regions of other
tasks (e.g., transfer of products and material) as workers being involved in the execution of
these tasks.

3.2.2. Process Mining to Derive Process Models

In this step, the event log is used to discover a process model of the manufacturing
process with a suitable process mining algorithm. Multiple process model discovery
algorithms, including Alpha Miner, Heuristic Miner, and Inductive Miner, are available for
discovering process models from event logs. Similar to [38], this paper applies the Inductive
Miner, since it is an improvement on the Alpha and Heuristic algorithms. The Inductive
Miner is a divide and conquer type polynomial-time algorithm that returns a process tree in
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which each activity is seen once. We refer the reader to [39] for the theoretical foundations
of this algorithm.

This paper uses the implementation of this algorithm available in ProM 6.11
(https://www.promtools.org/, accessed on 20 March 2023). The event log is provided as
a comma-separated file to ProM, as illustrated in Figure 5. Before the Inductive Miner is
applied, the converter tool in ProM is used to to convert this to XES format.

Figure 5. Inspecting the Event Log provided in CSV format in ProM.

3.2.3. Building the Discrete Event Simulation

This paper builds a simulation model based on the process model obtained from
the event log. The process model obtained from the Inductive Miner algorithm uses the
business process model notation (BPMN) [40]. This notation can consist of objects that
mark specific events, including the start and end of the process, which are denoted with
small circles; activities, which are represented with rectangles; connections and flow objects
showing the sequence relations, which are represented using arrows; and also gateways,
which are shown with smaller diamond shapes. Gateways are objects that determine
forking and merging of paths and they can model conditional events. For example, parallel
gateways (e.g., splitting or joining) are used to model the completion of parallel processes
that can only finish when each of its processes is performed.

To build a discrete event simulation framework that represents the state of the process
and events that transform the state under the transition probabilities, this BPMN notation
should be translated. Our approach models the start, end and intermediate events, and also
activities as part of the state description and uses flow sequences and their frequencies to
model the transition probabilities. We call the model of the entire process as Processmain

which consists of several subprocesses because of the parallel gateways in the process
model. The main process always starts from the same state, the start event marker in the
process model, and will end the first time the state transitions to the end state. To complete
the simulation framework the transition times should also be modelled, namely, how long
it will take until the current state s will change to another state s′ due to the completion
of a task execution event. To model the transition times, we use the mean sojourn time
information as supplied by the Inductive Miner and use stochastic distributions whose
means are fitted to these. The details of how this simulation framework is built with the
data of our case study are given in the Appendix A. We implement this simulation in C++
language, using Visual Studio.

The performance measure evaluated with this simulation is the average completion
time of the manufacturing process of assembling 6 tricycles. In this evaluation, a large
number of samples (K = 50, 000) (to reduce the standard error) are taken, from multiple
simulation runs under random seeding, and then the averages of their completion times are

https://www.promtools.org/
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calculated. The completion time of the process from each sample k is the first passage time
until Processmain reaches the end state. We denote the completion time with C(Processmain).
So, based on the simulation samples, this is measured with

C(Processmain) =
1
K

K

∑
k=1

C(Processmain
k ), (2)

where C(Processmain
k ) is the completion time measured in the kth sample.

3.2.4. Using the Simulation for Decision Support on Capacity Allocation

To facilitate the use of the simulation model for the allocation of workers to tasks, it is
necessary to establish the relationship between the labour resource (e.g., person-minutes)
and output for each stage of the process. This paper achieves this by fitting the total capacity
allocated to the tasks, as observed from the event log, to the mean sojourn times of tasks,
as provided in the process model derived with the Inductive Miner. Then, considering
that with more capacity allocated to a task the faster its execution will be, we find the
corresponding new mean task sojourn times to be used in the simulation model under a
new capacity allocation. A linear model is used for this purpose.

The first step is the derivation of the task assignment matrix of the data (Adata = [adata
ij ])

based on the event log. This is obtained from the total time that workers spend for executing
each of the manufacturing tasks. Then, from this the total capacity allocated to each task in
the process observed with the data Rdata

j , ∀j = 1, 2, . . . , 6 is found via

Rj = ∑
i

adata
ij . (3)

Letting µmined
j denote the mean sojourn time of task j as obtained from the Inductive

Miner, and µnew
j the new (would be) mean sojourn time of task j under Rnew

j , a new total
capacity level for task j, we have

µnew
j =

µmined
j Rdata

j

Rnew
j

. (4)

So, our decision support involves changing the task allocation under a new task
allocation matrix Anew and having new capacity levels for the tasks Rnew

j , ∀j = 1, 2, . . . , 6,
updating the mean sojourn times of the tasks (the transition times in the simulation) in the
simulation and using the simulation to evaluate the average completion time under the
new allocation. The aim of this procedure is to find suitable allocations that will reduce the
completion time.

4. Results
4.1. Observing Deviations from the Fixed Task Assignment and Finding the Assignment from
the Data

This section explores the event log to observe and identify deviations from the fixed
task assignment, as given in Equation (1). For this, using the dotted chart visualisation
tool in ProM first, Figure 6 is presented. The first observation to make is that the supposed
task assignment is not being strictly followed, as there are deviations. Specifically, it is
observed that worker 2 joins worker 1 for task 1 at the beginning of the shift, and worker 4
sometimes takes on the responsibility of task 5. Additionally, worker 6 assists with tasks
2 and 3. These deviations may be due to the fact that the tasks assigned to workers 2,
4, and 6 are dependent on outputs from earlier assembly stages and cannot be started
independently. Additionally, it can be seen that some workers perform task continuously
throughout the shift, such as worker 5. However, we typically see that the execution of tasks
are clustered and there are breaks in between. These breaks may be due to the completion
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of the current product and switching to another, since a total of six tricycles are completed
during the shift.

Secondly, from the event log, the task assignment matrix of the data (Adata = [adata
ij ])

based on how much time each worker spends on performing each of the manufacturing
tasks is calculated. This matrix is presented in Equation (5), which again demonstrates how
workers deviate from the fixed task assignment and how much of their working capacity is
put into several tasks. According to this matrix, it is found that Rdata

j , j = 1, 2..., 6, the total
capacity put to each task according to these data as (1.28, 1.21, 1.41, 0.55, 1.32, 0.24), which
indicates flexible worker behaviour. This shows that tasks 1, 2, 3, and 5 are given similar
capacity levels, while the capacity allocated to tasks 4 and 6 is much lower. Considering
what these tasks involve (see Figure 2), we see that tasks 4 and 6 are characteristically
similar and somewhat different from other tasks such that they involve some final assembly
steps of a number of sub-assemblies. According to Adata, it seems that workers collectively
put less effort into these assembly steps.

Figure 6. Dot chart of manufacturing tasks performed by 6 workers. (The points mark the start time
of the activities (Task 1: Circle (Pink), Task 2: Square (Blue), Task 3: Up-pointing Triangle (Green),
Task 4: Down-pointing Triangle (Orange), Task 5: Diamond (Yellow), Task 6: Pentagon (Purple)).

Adata = [adata
ij ] =

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6


Worker 1 1 0 0 0 0 0
Worker 2 0.28 0.31 0 0 0.24 0.18
Worker 3 0 0 1 0 0 0
Worker 4 0 0 0 0.55 0.45 0
Worker 5 0 0 0.37 0 0.63 0
Worker 6 0 0.90 0.04 0 0 0.06

(5)

4.2. Data-Driven Process Model

It is possible to obtain a variety of different process models using the Inductive Miner.
This is made possible by varying the two filtering parameters of the algorithm. These
are the filters on the activities, namely, the manufacturing tasks, and the paths among
activities as observed in the event log. Varying the level of filtering applied affects the
quality of the obtained process models with respect to their fitness and complexity. Model
fitness, which measures the ability of the model to allow the behaviour observed in the data
(i.e., the ability to replay the sequences observed in the logs), and simplicity are among of
the most commonly considered process model quality metrics along with the quality mea-
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sures of precision (i.e., not allowing the behaviour not seen in the logs) and generalisation.
We refer the reader to [4] for more information on these four quality measures.

Specifically, with increased levels of filtering, simpler models can be obtained, however,
their fitness may be lower. Our paper applies 10% filtering on the paths and obtain a model
with 96% fitness (Figure 7). Here, we do not use the filtering on the activities so that we can
see the involvement of each manufacturing task in the process. This is preferred because
this model is to be used for building a discrete event simulation which will be used for the
capacity allocation decisions to each of the manufacturing tasks. It can be observed that the
model includes processes that are executed in parallel and forwarded to the next activity
when all the involved processes are completed, as indicated with the splitting and joining
parallel gateways. This dependency can be as a result of the precedence relations between
the manufacturing tasks, as illustrated in Figure 2.

The model in Figure 7 is used when fitting our discrete event simulation. The mean
sojourn times of the tasks µmined

j are (3.07, 4.18, 2.20, 22.15, 3.06, 3.59) in minutes. Although
this suggests that the execution of task 4 takes the longest, it must be noted that this does
not mean that the total time spent for task 4 until the process ends will be the longest. This
is because the total time spent on tasks also depends on how many times they will have to
be executed, information which is captured in the flow frequencies in the process model. It
can be seen in Figure 7 that the number of times that task 4 will be executed is much lower
than other tasks. For this reason, the flow frequencies must be accounted for, in our discrete
event simulation. This paper investigates the total time spent in tasks using our simulation.

Figure 7. The process model with mean sojourn times (in minutes) of tasks and flow frequencies
(mean sojourn times are (3.07, 4.18, 2.20, 22.15, 3.06, 3.59)).

4.3. Decision Support on Capacity Allocation with Simulation

This section conducts a series of investigations for the purposes of decision support
regarding the capacity allocation. In doing so, we consider new task assignments and
capacity allocation levels and use our discrete event simulation to evaluate the average
completion time. In every evaluation, K = 50,000 samples are taken from the simulation, as
described in Section 3.2.3. This gives a high-precision estimate on the average completion
time with standard errors falling below 1.4 min the most of the time. Nevertheless, the



Sensors 2023, 23, 4928 11 of 20

errors are provided in our results. The time unit used in the results presented in this section
is minutes.

4.3.1. Comparing the Performance under the Worker-Driven Flexible Allocation to the
Fixed Assignment

This section firstly evaluates the completion time according to the flexible allocation ob-
served in the worker data (as manifested in Adata and Rdata

j ). Secondly, the completion time

according to Afixed, namely, under Rfixed
j = 1, ∀j is evaluated. In other words, the second

evaluation measures the completion time if the workers stuck to the fixed assignment
prescribed to them and did not become involve in any other tasks besides the ones that
were assigned to them. Comparing the completion time under these two allocation schemes
is useful to understand if the flexible worker behaviour as observed in the data (and the
practice of assisting with the other manufacturing tasks when necessary) resulted in an
improved performance (i.e., completion of the day’s workload earlier).

The average completion time under the fixed allocation gives 328.6± 1.4, but this
reduces to 309.8± 1.4 using the worker-driven flexible allocation. Considering the error
margins, the difference in completion times is significant and indicates an improvement
around 5.7% in the average completion time under the flexible allocation compared to the
fixed allocation. This shows that indeed the workers’ flexible behaviour benefits the overall
efficiency of the entire manufacturing process and is a more appropriate approach than the
strict allocation of fixed assignment.

Figure 8 presents the box and whisker plots of the completion times under the fixed
and flexible allocations to illustrate the distributions of the completion times in more detail.
We find that the medians of completion times are 211 and 222 min under the flexible and
fixed allocations, respectively. Note that these values are close to the original total duration
of the work shift observed in the data, which was around 180 min (3 h).

Figure 8. The completion time under the fixed and flexible allocations (green triangles mark the
means. With 95% Confidence, the means of completion times under the fixed and flexible allocations
are in the intervals (328.5, 328.7) and (309.7, 309.9), respectively.)

The total capacity allocated to each task in the worker-driven flexible allocation
Rdata = (1.28, 1.21, 1.41, 0.55, 1.32, 0.24) is significantly different than the fixed allocation
Rfixed = (1, 1, 1, 1, 1, 1). For example, more capacity is allotted to the tasks 1–3 and 5 under
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the flexible allocation, which, at the same time, results in a lower capacity for the tasks
4 and 6 compared to the fixed allocation. Because of this, the time spent for performing
the specific manufacturing tasks in completing a day’s work would be different as well.
Figure 9 presents these task-specific times. It can be observed that how the increased
capacity for the tasks 1–3 and 5 in the flexible allocation decreases the time spent in com-
pleting these tasks, while it increases the time required for the tasks 4 and 6. In addition,
another important difference is noted in the times spent for tasks under these two capacity
allocation schemes, which is about the variance observed in the times across all six tasks.
We calculate the standard deviation of the average of the total times across tasks as 59.9
and 38.3 in the fixed and flexible allocations, respectively. This reveals that the times spent
in tasks are more balanced under the flexible allocation. It can be argued that this balancing
advantage over the fixed assignment could be a contributing factor to the lower completion
time achieved with the flexible allocation, since the completion of the main manufacturing
process depends on parallel subprocesses. More specifically, the completion time of a
parallel process involving several tasks highly depends on its bottleneck (i.e., slowest) task
since the parallel process can finish only when all of the tasks are finished and a balanced
timing of the tasks can help to reduce the time required for this completion.

Figure 9. The total time spent in manufacturing tasks in the fixed versus flexible allocations (green
triangles mark the means. Rfixed = (1, 1, 1, 1, 1, 1) and Rdata = (1.28, 1.21, 1.41, 0.55, 1.32, 0.24)).

4.3.2. How to Reduce Completion Time through Small Adjustments Based on the
Worker-Driven Flexible Allocation?

The aim of this section is to provide insights to workers based on their natural work
practices, as demonstrated in the flexible allocation Rdata, to ease their workload and finish
their shifts earlier. We achieve this by considering small adjustments on the flexible capacity
allocation Rdata, evaluating the completion time under the resulting new allocation scheme,
and investigate whether it is possible to reduce the completion time of their work through
this re-allocation of their capacity. In these evaluations, capacity adjustments that reduce
the capacity from some task j by some percentage and transfer this to some other task j′ are
considered. The completion times under the evaluated schemes that shift 5%, 10%, 20%,
and 50% capacity from one task to another are given in Table 2. Larger capacity shifts are
not shown in Table 2 as no improvements in the completion time are found.
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Given that the original un-adjusted scheme gives an average completion time of
309.8± 1.4, we see that there are adjustments that can reduce the completion time signifi-
cantly. The best adjustments that lead to the highest reductions are identified in bold in
Table 2. These adjustments, which suggest shifting capacity from task 1 to task 4, from
task 3 to task 4, from task 3 to task 5, and from task 3 to task 6, are able to achieve a
reduction between 3 and 5%. Considering the total time spent in each task (see Figure 9),
it is observed that each of these moves shifts capacity from a task taking shorter time to
a task taking a relatively longer time. For example, it is known that task 3 is the task
taking the shortest amount of time in the current assignment and this investigation finds
several re-allocations to shift capacity from this task to other tasks that take longer, such
as the tasks 4, 5, and 6. In other words, these capacity shifts are in favour of balancing the
time required to complete each one of the manufacturing tasks. The reason that they are
able to reduce the completion time could be due to this balancing effect since the process
includes parallel tasks and they are dependent on each other. When the amount of capacity
shifted is considered in these adjustments, it is found that the best reductions are possible
through smaller but considerable shifts of 20%, whereas higher shifts (50%) start to lose
their advantage in reducing the average completion time. Note that large capacity shifts
mean large reductions in capacity from the tasks and this may cause delays in the process.
For example, even when the task that the capacity is shifted to is a bottleneck and needs
capacity, a large reduction from the capacity of another task to fix this may simply shift the
place of the bottleneck without achieving significant reduction in the overall completion
time. In the last row of Table 2, we investigate a combination of the two of the best small
adjustments, shifting 20% capacity of task 1 to task 4 and 20% capacity of task 3 to task 6.
With this, the reduction in completion time reaches above 7%, making it possible to finish
their work around 20 min earlier. This shows that these small adjustments have potential to
make considerable reductions in the completion time when they are based on the workers’
behaviour as demonstrated in their movement data.

Table 2. The average completion times (in minutes) under shifting capacity between tasks based on
the flexible allocation.

Adjustment Shift 5% Shift 10% Shift 20% Shift 50%

From Task 1 to 2 308.4 ± 1.4 307.6 ± 1.4 308.1 ± 1.4 332.7 ± 1.5
From Task 1 to 3 313.4 ± 1.4 314.4 ± 1.4 317.8 ± 1.4 347.2 ± 1.5
From Task 1 to 4 302.2 ± 1.3 299.5 ± 1.3 298.3 ± 1.3 326.7 ± 1.4
From Task 1 to 5 307.0 ± 1.4 305.0 ± 1.3 303.3 ± 1.3 323.9 ± 1.4
From Task 1 to 6 303.8 ± 1.3 301.1 ± 1.3 301.6 ± 1.3 333.2 ± 1.4

From Task 2 to 1 311.2 ± 1.4 313.7 ± 1.4 320.8 ± 1.4 370.2 ± 1.7
From Task 2 to 3 311.3 ± 1.4 314.1 ± 1.4 321.6 ± 1.4 370.4 ± 1.6
From Task 2 to 4 307.3 ± 1.3 306.3 ± 1.3 309.0 ± 1.4 354.0 ± 1.6
From Task 2 to 5 307.8 ± 1.4 307.8 ± 1.4 310.7 ± 1.4 352.0 ± 1.6
From Task 2 to 6 303.5 ± 1.3 302.7 ± 1.3 307.0 ± 1.3 356.7 ± 1.6

From Task 3 to 1 308.4 ± 1.4 308.3 ± 1.4 308.9 ± 1.4 320.0 ± 1.4
From Task 3 to 2 308.8 ± 1.3 307.1 ± 1.3 305.1 ± 1.3 310.8 ± 1.4
From Task 3 to 4 302.5 ± 1.3 298.6 ± 1.3 294.5 ± 1.3 300.6 ± 1.3
From Task 3 to 5 306.2 ± 1.3 303.1 ± 1.3 298.7 ± 1.3 299.1 ± 1.3
From Task 3 to 6 302.4 ± 1.3 298.7 ± 1.3 296.8 ± 1.3 308.1 ± 1.3

From Task 4 to 1 313.3 ± 1.4 316.6 ± 1.4 325.4 ± 1.4 384.4 ± 1.7
From Task 4 to 2 311.0 ± 1.4 313.6 ± 1.4 321.1 ± 1.4 376.9 ± 1.7
From Task 4 to 3 312.2 ± 1.4 315.7 ± 1.4 324.7 ± 1.4 383.2 ± 1.7
From Task 4 to 5 309.8 ± 1.4 311.9 ± 1.4 318.3 ± 1.4 371.1 ± 1.6
From Task 4 to 6 307.7 ± 1.4 308.5 ± 1.4 314.2 ± 1.4 371.6 ± 1.6

From Task 5 to 1 314.8 ± 1.4 319.3 ± 1.4 331.5 ± 1.5 411.7 ± 1.8
From Task 5 to 2 309.5 ± 1.3 312.5 ± 1.4 322.1 ± 1.4 397.4 ± 1.7
From Task 5 to 3 313.2 ± 1.4 318.1 ± 1.4 330.6 ± 1.4 409.6 ± 1.8
From Task 5 to 4 307.9 ± 1.3 308.8 ± 1.4 316.7 ± 1.4 394.0 ± 1.7
From Task 5 to 6 305.1 ± 1.3 306.2 ± 1.3 315.9 ± 1.4 396.7 ± 1.7

From Task 1 to 4 and From
Task 3 to 6 287 ± 1.4
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4.3.3. How to Use Additional Worker Capacity Based on the Worker-Driven
Flexible Allocation?

The previous investigation provides insights for which small adjustments to the
worker-driven flexible allocation improves the completion time best such that the workers
can complete their work earlier, without requiring to hire and engage additional worker
capacity. The assembly system we analyse in this paper has, in total, six workers. This
section investigates which capacity allocation strategy would be the best if there was one
more worker available to assist in performing the tasks. For this, the worker-driven flexible
allocation Rdata = (1.28, 1.21, 1.41, 0.55, 1.32, 0.24) is considered as the current practice
under the capacity of six workers and then allocate the available one unit capacity of the
additional worker to improve this.

Firstly, the strategies that concentrate the entire additional capacity on one single
manufacturing task are evaluated (Figure 10). This shows that the best strategy is to assign
the new worker to task 5 and the second best option would be task 4. With the strategy
of assigning the entire additional capacity to task 4, the completion time reduces from
309.8± 1.4 to 273.3± 1.2, having a reduction potential around 11.6% in the completion
time. As discovered in the previous investigations, this preference for the tasks 4 and 5
seem to be in line with the logic of trying to balance the time spent on the manufacturing
tasks. From Figure 9, it is known that these tasks take the largest amount of time according
to the current practice Rdata with six workers and assigning the new worker to these would
have a balancing effect on the time spent on each one of the tasks by reducing the time for
these tasks.

Figure 10. The average completion time (in minutes) after adding the capacity of the additional
worker to the worker-driven flexible allocation through single-task assignment (The standard errors
vary between 1.2 and 1.3 min)

As demonstrated in the data, it is known that workers can flexibly allocate their
capacity and become involved in multiple tasks during their shift. Keeping this in mind,
flexible strategies that assigns the new worker to more than one task are investigated next.
Figure 11 considers strategies that split the capacity in two in order to support two different
manufacturing tasks. It can be observed that the strategy that assigns the half of the new
worker’s capacity to task 4 and the other half to task 5 is the best. Moreover, it seems that
this split strategy reduces the completion time much better than the single-task assignment
strategies of assigning the entire capacity to task 4 or task 5, achieving a reduction of around
16.8%. Even more flexible allocations that would assign the new worker to more than two
tasks have the potential to reduce the completion time more. However, this can create a
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complicated situation for the new worker in terms of scheduling and time management.
Moreover, because of these challenges it may not be possible to realise the high-reduction
potential of such multi-task assignment strategies are beyond the scope of the current work.

Figure 11. The average completion time (in minutes) after adding the capacity of the additional
worker to the worker-driven flexible allocation through two-tasks assignment (The standard errors
vary between 1.1 and 1.3 min).

5. Conclusions and Discussion

This paper presents a novel methodology for supporting human-driven decision-
making in labour-intensive manufacturing processes by analysing worker position data.
This involves integrating process mining and discrete event simulation to identify opportu-
nities to improve capacity allocation decisions. Our main goal is to demonstrate the value
of using localisation sensor data for data-driven decision-making in manufacturing, with a
focus on improving process efficiency. By showcasing the benefits of this technology, our
aim is to help manufacturers make informed decisions about whether to invest in indoor
localisation sensors or not.

This methodology is applied to a real-world dataset involving six workers performing
six manual manufacturing tasks to assemble tricycles with a fixed assignment in which
each worker is responsible for performing one of the tasks. Our first identification is that
workers demonstrate a much more flexible behaviour than the fixed task assignment and
involve in various tasks. By putting this flexible assignment observed in the data in the
centre, this paper provides decision support on how to reduce the completion time of
the manufacturing process through small adjustments on the capacity levels that workers
allocated to the tasks. In our capacity adjustment investigations, we first show that with
small adjustments of shifting capacity between two manufacturing tasks one can reduce the
completion time by 7%, without requiring any additional workers. Secondly, we investigate
the situation where there is one more worker available to support the manufacturing process
and show that this additional capacity can reduce the completion time by more than 11% if
the new worker is to be assigned to a single task, while this can reach above 16% if two
tasks are assigned.

Our work presented in this paper has certain limitations. Firstly, our approach for
detecting specific manufacturing tasks performed by workers may face challenges with ac-
curacy. This is because our approach relies on position data provided by sensors and the fac-
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tory layout, which dictates the regions where workers can perform each task. For instance,
inaccurate sensor data or workers performing tasks outside their designated zones may
result in inaccuracies or failures in detecting activity events. Another limitation of our
research is the allocation of worker capacity. While suggesting adjustments to the capacity
levels allocated to tasks, we only consider the total available capacity of workers. This may
overlook scheduling decisions and inefficiencies that may arise due to complications in
assigning workers to multiple manufacturing tasks.

Future research can delve into decision support on dynamic capacity allocation
and/or worker assignment strategies. This paper used the entire data coming from a
work shift to find a process model representing the process from beginning to end. How-
ever, to understand the changing work patterns in time, the data can be split into several
segments in time and, instead of deriving a single process model, one can obtain multiple
models with process mining, by considering the event logs of each segment separately.
In this way, one can build models of the process segmented in time and investigate dynamic
strategies that can vary in time. For example, it could be that allocating more capacity to
the first task is beneficial during the first hour of the shift but not so in the last hour. Having
separate models as these would be useful for finding such insights that might improve the
process efficiency better. Furthermore, there might also be some research possibilities for
using the worker position data for other types of decision-making in manufacturing rather
than worker capacity allocation to tasks. For example, one can investigate the decisions
regarding the products, such as how many products to manufacture in a day or when
to start the activities for each new product. Given that indoor localisation sensors are
becoming commonplace in manufacturing environments due to their affordability and
recent advances in this technology, it is of interest to investigate the potential of worker
position data to inform and improve the manufacturing processes. Another possibility
for future research can involve the implementation of the capacity adjustment strategies
provided in this paper as suggestions to the workers in the considered assembly line. After
the suggestions have been placed, new position data can be collected from workers to
observe how they change their work practices and to see how much improvement has been
achieved. The new data can then be also used for deriving process models and building a
discrete event simulation for decision support using our methodology to provide further
suggestions for process enhancement.
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RTLS Real-time localisation system
IPS Indoor positioning system
RFID Radio frequency identification system
UWB Ultra-wide Band
DES Discrete event simulation
BPMN Business process model and notation

Appendix A

Appendix A.1. Details of the Discrete Event Simulation

We build our discrete event simulation according to the process model presented in
Figure 7. We use the flow frequencies to model the state transitions. To be used in modelling
the transition times, we consider the mean sojourn times of tasks µj, j = 1, 2, . . . , 6. When
the simulation is to be used under the capacity allocation as observed in the data (Adata),
we let µj = µdata

j , and when we investigate the performance under a different capacity
allocation, we let µj = µnew

j (see Section 3.2.4).

The entire process, which we denote by Processmain contains task 3 and three parallel
subprocesses. The first of these involves task 2 (Process1), the second one involves task
5 (Process2) and the last subprocess (Process3) has its own subprocesses. This one either
finishes without involving any manufacturing tasks (see the first flow with frequency 4)
or involves three parallel subprocesses. The first of these (Process3,a) involves task 1, the
second one (Process3,b) involves task 4, and, lastly, the third one (Process3,c) involves task 6.

To model Processmain we use four states (s ∈ S = {0, 1, 2, 3}). Here, 0 represents the
start state, state 1 models the execution of task 3, state 2 represents the splitting parallel
gateway and 3 marks the exit state. Let us first describe the transition probability matrix
(P = [ps,s′ ]s,s′∈S) among these four states. Following the flow frequencies, we find that
p0,1 = 1, p1,2 = 1, p2,1 = 8/9, p2,3 = 1/9, and p3,3 = 1, as it will be always the case that
the exit state can only transition to itself. The remaining of the probabilities are all equal
to zero. Note that this defines a proper state transition matrix as ∑s′∈S ps,s′ = 1 for any

s ∈ S and ps,s′ ∈ [0, 1], ∀s, s
′
. Let us now describe the transition times (Ds) from each state s.

In our model Ds represents the time it takes to complete the activities involved at that state,
state s, which can be above zero only for the states involving manufacturing tasks. Here,
these are the states 1 and 2. So, for other states Ds = 0. For D1, we need to consider the
time required to perform task 3. Using the mean sojourn time µ3 in a normal distribution
with σ standard deviation, we have D1 ∼ N(µ3, σ). For D2, we need to consider the time it
takes to complete all of the subprocesses, since this one is a parallel gateway. Representing
the time it takes to complete Processn, n = 1, 2, 3 with C(Processn), this time is modelled
as D2 ∼ Max(C(Process1), C(Process2), C(Process3)). Each sample k of this simulation is
used to find C(Processmain

k ), which is the first time that the process will enter the exist state,
state 3. For this, we start with a counter variable C which is set to zero initially. As the
process moves between states, the counter is increased with the transition times each time
the process moves into a state which involves manufacturing tasks. The first time that the
process steps into the exit state, we stop the process and let C(Processmain

k ) = C. We must
note that since the transitions are probabilistic and also the transition times are modelled
using random variables, the completion time is non-deterministic; however, we use the
averages of these samples to measure the mean completion time (see Section 3.2.3).

We now describe the subprocesses and how to find their completion times, which we
need to find Max(C(Process1), C(Process2), C(Process3)) each time the main process tran-
sitions to state 2, the parallel gateway state. The steps we take to model these subprocesses
are very similar to those described above for the main process. Let us start with Process1 in-
volving task 2. We use four states (s ∈ S = {0, 1, 2, 3}) to model Process1. Here, 0 represents
the start state, state 1 represents the intermediate step after the start state, state 2 models the
execution of task 2, and, finally, state 3 marks the exit. We find the transition probability ma-
trix as follows. We have p0,1 = 3/9, p0,3 = 6/9, p1,2 = 1, p2,1 = 17/20, p2,3 = 3/20, p3,3 = 1
and all the remaining probabilities are zero. Let us now describe the transition time for
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the task related state 2. As this state relates to task 2, we have D2 ∼ N(µ2, σ). Let us now
describe how we model Process2 involving task 5. We use four states (s ∈ S = {0, 1, 2, 3})
to model Process2. Here, 0 represents the start state, state 1 represents the intermediate
step after the start state, state 2 models the execution of task 5, and finally state 3 marks
the exit. The transition probability matrix is as follows. We have p0,1 = 6/9, p0,3 = 3/9,
p1,2 = 1, p2,1 = 38/44, p2,3 = 6/44, p3,3 = 1 and all the remaining probabilities are zero.
Let us now describe the transition time for the task related state 2. As this state relates to
task 5, we have D2 ∼ N(µ5, σ).

To model Process3, we use three states (s ∈ S = {0, 1, 2}). Here, 0 represents the start
state, state 1 represents the splitting parallel gateway, and state 2 marks the exit. We find the
transition probability matrix as follows. We have p0,1 = 5/9, p0,2 = 4/9, p1,2 = 1, p2,2 = 1
and all the remaining probabilities are zero. Here, state 1 involves manufacturing tasks.
However, this is a parallel gateway involving the subprocesses Process3,a, Process3,b, and
Process3,c. Thus, we have D1 ∼ Max(C(Process3,a), C(Process3,b), C(Process3,c)) and each
time the process steps into state 1, we must find this maximum from the simulation
models of the subprocesses Process3,a, Process3,b, and Process3,c. Let us now describe these
subprocesses of Process3. Process3,a involving task 1 can be modelled by using three states
(s ∈ S = {0, 1, 2}). In its transition probability matrix we have p0,1 = 1, p1,0 = 20/25,
p1,2 = 5/25, p2,2 = 1 and all the remaining probabilities are zero. Here, state 1 relates
to task 1 and, thus, we have D1 ∼ N(µ1, σ). We use four states (s ∈ S = {0, 1, 2, 3}) to
model Process3,b involving task 4. In its transition probability matrix we have p0,1 = 3/5,
p0,3 = 2/5, p1,2 = 1, p2,1 = 1/3, p2,3 = 2/3, p3,3 = 1, and all the remaining probabilities
are zero. Here, state 2 involves a manufacturing task, task 4. So, we let D2 ∼ N(µ4, σ).
Likewise, we use four states (s ∈ S = {0, 1, 2, 3}) to model Process3,c involving task 6.
This time in its transition probability matrix we have p0,1 = 2/5, p0,3 = 3/5, p1,2 = 1,
p2,1 = 23/26, p2,3 = 3/26, p3,3 = 1 and all the remaining probabilities are zero. In this
model, state 2 involves manufacturing task 6, thus we let D2 ∼ N(µ6, σ). Similarly to the
main process, we use a counter variable to find the completion time of Process3,a, Process3,b

and Process3,c each time we need to sample C(Process3) and then consider the maximum
of this.

So, to find D2 of the main process each time the process moves into state 2 we find
the completion time of Process1, Process2, and Process3 from the sampling of their own
simulation models described above and then we consider their maximum.
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