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An uncertainty compiler is a tool that automatically translates original computer source 
code lacking explicit uncertainty quantification into code containing appropriate uncertainty 
representations and uncertainty propagation algorithms. It handles the specifications of 
input uncertainties, and inserts calls to intrusive uncertainty quantification algorithms. In 
theory, one could create an uncertainty compiler for any scientific programming language. 
The uncertainty compiler can apply intrusive uncertainty propagation methods to codes 
or parts of codes and, therefore, more comprehensively and flexibly address epistemic and 
aleatory uncertainties. This paper explores the concept and the practicalities of creating 
such a compiler.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the 
CC BY license (http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Modern science and engineering are all about numerical calculation, and increasingly work is being done taking ad-
vantage of the power of computers. The algorithms used often rely on precise, abstract numbers – without any associated 
uncertainty. Scientists and engineers need to make calculations even when there is uncertainty about the quantities in-
volved, yet the tools they commonly use do not allow this to be done intrusively. As a result, many analysts work with 
deterministic computer codes that do not fully account for uncertainties.

Because analysts are typically unwilling to rewrite their codes – due to the time constraints or a lack of understanding 
of the uncertainty calculi available – various simple strategies have been used to remedy the problem, such as elaborate 
sensitivity studies or wrapping the programme in a Monte Carlo loop, this allows non-intrusive uncertainty propagation. These 
approaches treat the programme like a black box because users consider it uneditable. However, whenever it is possible to 
look inside the source code, it is better characterised as a crystal box because the operations involved are clear but fixed 
and unchangeable in the mind of the current user. An alternative approach is intrusive uncertainty propagation where the 
uncertain variables are replaced with objects that characterise their uncertainty and have calculations directly performed 
on them. Other changes to the code may be required to allow for optimal performance, these changes depend of the 
programming language used: whether it is duck-typed or static typed, compiled or interpreted, etc.

An uncertainty compiler is a tool that automatically translates original computer source code lacking explicit uncertainty 
analysis into code containing appropriate uncertainty representations and uncertainty propagation algorithms. It handles the 
specifications of input uncertainties, and inserts calls to intrusive uncertainty quantification algorithms in the library. The 
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Fig. 1. Normalised histogram for the Monte Carlo simulation of Equation (1) for increasing number of iterations.

uncertainty compiler can apply intrusive uncertainty propagation methods to codes or parts of codes and, therefore, more 
comprehensively and flexibly address epistemic and aleatory uncertainties.

2. The problem with Monte Carlo

The most common approach to quantifying uncertainty is to wrap code within a Monte Carlo (MC) shell. In this approach, 
the calculations are repeated with random values for selected input variables. This is done for many iterations, and the 
distribution of resulting outputs can be analysed. Such tools exist in many programming languages: DAKOTA for C++ [1], 
COSSAN [2] and UQLab [3] for MATLAB or UQpy for Python [4]. [4] give an excellent overview of many more software 
packages available for non-intrusive uncertainty quantification.

Several pitfalls make MC analyses unsuitable for uncertainty propagation, especially for epistemic uncertainty [5,6]. To 
highlight these, we shall consider an example.

Suppose we have five variables, x1, x2, . . . x5, which are known to all have a value between 0 and 1, but no further 
information is known about the values. Suppose we need to perform the calculation,

y = x1 + x2 + x3 + x4 + x5, (1)

with the knowledge that some bad thing will happen if y ≥ 4.5. Numbers can be randomly generated for x1, x2, . . . , and 
these can be used in order to calculate the value of y for N iterations. After this is complete, we can plot a histogram to 
show the distribution for y. Since we do not have any information about the distribution for x1, x2, . . . x5, it seems sensible 
to assume that all values are equally likely and use a uniform distribution. Fig. 1 shows these histograms for various N . 
From this, we can see that as N → ∞, the histogram resembles a normal distribution.

Whatever the number of replications used in the simulation, we can estimate the probability of the bad thing happening. 
With 106 replications, this estimate is Pr(y ≥ 4.5) = 2.53 ×10−4. However, it seems reasonable to consider whether we have 
confidence that the event is so rare. We had no information about the distributions of the five values except that they were 
between 0 and 1. Nor did we know what dependencies there might be between the variables. From this information, we 
cannot rule out the possibility that each x value is much more likely to be closer to 1 than 0. Nor can we exclude that there 
is some dependence between the x values implying that if x1 is high, then all the others are also likely to be high.
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Several engineering failures were due in part to underestimating risks in ways similar to this example [7,8]. Before the 
1986 Challenger Disaster, NASA management had predicted the probability of failure with loss of vehicle and crew as 1 in 
105 flights [9]. This turned out to be a gross underestimation of the actual risk, which after the fleet’s retirement stood at 2 
in 135. The Fukushima Daiichi nuclear disaster was due in part to underestimating the risk of a tsunami of the magnitude 
that caused the disaster and failing to understand that collocating the backup generators created dependence that destroyed 
the planned engineered redundancy when the site was flooded during the event [10, p. 48].

The MC method presented in Fig. 1 is a simplistic approach. There are many different approaches that could have been 
taken to use MC to propagate the uncertainty through Equation (1) that are more advanced. It is also possible to use copulas 
to introduce dependencies between the random samples [11,12]. There are several different sampling techniques that could 
be used to generate the MC samples and offer analytical strategies for computing distributions.

Latin Hypercube Sampling (LHS) is a popular method which aims to be representative of the true variability of the in-
putted numbers [13–15]. LHS is performed by dividing the range of each random variable into N bins with equal probability 
mass, where N is the required number of samples, generating one sample per bin, and then randomly pairing the samples. 
The samples generated are uniformly distributed over each marginal distribution [4].

There are also stratification methods that aim to divide the parameter space into a set of disjoint and space-filling strata 
that draw samples from the strata. The aim is to improve the space-filling properties of the sampling and the method allows 
for weighted samples [16]. Refined stratification adaptively updates the stratification by dividing the existing strata in order 
to improve convergence [16].

Aside from MC, there are other probabilistic approaches that could be used for uncertainty propagation. For instance, 
adaptive stochastic collocation techniques may have been better at finding the extreme values in the above example [17]. 
Or polynomial chaos expansion could have been used [18]. This technique may require modifying the original source code, 
although non-intrusive methods do exist [1,19].

Depending on the needs of the analyst, it may be the case that MC simulations may be suitable to solve their uncertainty 
quantification problems. After all, MC techniques are easy, efficient, and give insights into the aleatory uncertainty that 
may be present within simulations [20]. However, if there is epistemic uncertainty since all of these different approaches 
ultimately rely on treating all the uncertainties in a probabilistic way [6,21] false confidence may occur [22].

Some models include MC simulations intrinsically with the code. For instance, stochastic physics-based codes, such as 
particle simulations used for radiation transport [23] incorporate randomness of the particle trajectory, and stochastic de-
mography models used in population viability analysis [24,25] simulate random births and deaths of organisms. Running 
these codes multiple times with the same parameters yields different results. The modelling of chaotic systems such as 
in weather forecasting also requires MC-style repetitions. However, the traditional probabilistic interpretation may still be 
questionable if the uncertainty is at least partially epistemic [26]. Stochastic codes could therefore pose some additional 
challenges for uncertainty compilers.

In general, performing uncertainty analysis by simply wrapping deterministic simulation code in a MC loop may not 
give a complete account of the uncertainties present within a simulation. The probabilities of extreme events are difficult to 
correctly estimate when there is no information about the distributions of input variables or any inter-variable dependencies.

An alternative to MC is intrusive uncertainty analysis, where the uncertainty is included directly within the code and 
calculations. This requires changing the code directly and thus it would be useful to have a compiler that is able to transform 
the code automatically. Especially since making such modifications is not as simple as replacing the variable definitions.

3. Intrusive uncertainty analysis

An alternative to Monte Carlo is intrusive uncertainty analysis, where the uncertainty is included directly within the 
code and calculations. There are numerous uncertain objects that could be used to define this uncertainty, including, but 
not limited to: probability bound analysis (PBA) [27–29], meta-distributions or second- or higher-order distributions [30–
32], fuzzy numbers [33], possibility distributions [34], consonant structures [35], info-gap models [36]. All of which have 
numerous applications within engineering [21]. However, given the aim of this paper is to discuss the feasibility of an 
automatic uncertainty compiler we shall limit this discussion to PBA.

Within PBA there are a number of key objects:

• Intervals: unknown value or values for which certain bounds are known [37].
• Probability distribution: random values varying according to specified law such as normal, uniform, binomial, etc., with 

known parameters [38].
• Probability box (p-box): random values for which the probability distribution cannot be specified exactly but can be 

bounded [27].

As intervals embody epistemic uncertainty and probability distributions represent aleatory uncertainty, p-boxes can be used 
to propagate both types of uncertainty through calculations. Libraries that add some/all of these objects are available in C++ 
[39], Python [29], MATLAB [40], R [[41] or [42]] and Julia [43].
3
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3.1. Intervals

An interval is an uncertain number representing values from an unknown distribution over a specified range, or perhaps 
a single value that is imprecisely known even though it may, in fact, be fixed and unchanging. Intervals thus embody 
epistemic uncertainty. Intervals can be specified by a pair of scalars corresponding to the lower and upper bounds of the 
interval, such as [0, 1] or [4, 5]. They can also be expressed as a value plus or minus some error, such as [5 ± 2], equivalent 
to [3, 7].

Interval arithmetic computes with ranges of possible values as if many separate calculations were made under different 
scenarios. However, the actual computations made by the software are done all at once, so they are very efficient. Basic 
binary operations (+, −, ×, ÷) can be performed using interval arithmetic:

[a,b] + [c,d] = [a + c,b + d], (2)

[a,b] − [c,d] = [a − d,b − c], (3)

[a,b] × [c,d] = [min (ac,ad,bc,bd) ,max (ac,ad,bc,bd)] (4)

and

[a,b] ÷ [c,d] = [a,b] ×
[

1

d
,

1

c

]
. (5)

If 0 ∈ [c, d] then care has to be taken with the division to avoid division-by-zero levels
Intervals can be propagated through common mathematical functions such as exp, sin, log, etc. This is relatively straight-

forward if the function is monotonic as this implies that the endpoints of the input interval correspond to the endpoints of 
the output interval. For example, when calculating the exponential of an interval,

exp ([0,1]) = [exp(0),exp(1)] ≈ [1,2.718] (6)

For non-monotonic functions, such as sine or cosine, it is not necessarily the case that the endpoints of the interval corre-
spond to the endpoints of the output function. For example, it is not the case that

sin ([0,π ]) = [sin(0), sin(π)] = [0,0] (7)

because there are many x values such that sin(x) > 0 for x ∈ [0, π ]. The true width of the interval can be calculated using 
the maxima of the function within the domain, in this case, π

2 . Hence,

sin ([0,π ]) = [0,1]. (8)

We can return to the example above to demonstrate the advantage of intervals over Monte Carlo for dealing with 
epistemic uncertainty. In the example, each variable is only known to have values between 0 and 1; therefore, they are best 
represented by the interval [0, 1]. This has the advantage of not assuming that all values within the range are equally likely 
nor making any other assumptions about the calculation. In this situation, we can calculate that y = [0, 5], and would not 
make any further assumptions about the most-likely value from within this range.

3.2. Probability distributions and probability boxes

A probability distribution is a mathematical function that gives the probabilities of occurrence for different possible 
values of a random variable. A discrete probability distribution is a mathematical function that gives the probability of each 
possible value of the variable. For a continuous random variable, the distribution specifies, by way of areas under the curve, 
the probability that the variable falls within a particular interval [44].

PBA integrates interval analysis and probability distributions using probability boxes (p-boxes) [27]. They can be consid-
ered as interval bounds on a (cumulative) probability distribution, probability distributions with interval parameters or as 
the set of possible distributions that are valid for the variable. One can think of a probability distribution as a special case 
of a p-box where the two bounds are identical.

P-boxes can be defined in situations where the shape of the distribution is unknown, but some empirical evidence about 
the data is known, such as the minimum, maximum, mean, and standard deviation. In this situation, bounds can be created 
such that they are consistent with all the available information [45,29].

Fig. 2 shows two different probability boxes, a is a normal distribution with μ = [−1, 1] and σ = [1, 2] whereas b has 
been created only knowing partial information about the variable, in this case, minimum = 0, maximum = 5, mean = 3 and 
standard deviation = 1.

P-boxes characterise both epistemic and aleatory uncertainty. A p-box can be expressed mathematically as

F (x) = [F (x), F (x)], F (i) ≤ F (i) ∀x ∈R (9)
4
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Fig. 2. Two p-boxes. (For interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)

where F (x) is the function that defines the left bound of the p-box (the red in Fig. 2a) and F (x) defines the right bound of 
the p-box (the black line in Fig. 2a).

As with intervals, standard arithmetic operations can be performed on p-boxes (and therefore probability distributions). 
For two p-boxes A(x) = [A(x), A(x)] and B(x) = [B(x), B(x)], then

C(x) = A(x) ◦ B(x) = [C(x), C(x)] (10)

where

C(z) = inf
z=x◦y

[
min

(
A(x) ◦ B(y),1

)]
(11a)

C(z) = sup
z=x◦y

[
max

(
A(x) ◦ B(y) − 1,0

)]
(11b)

if ◦ ∈ [+, ×], or

C(z) = 1 + inf
z=x◦y

[
min

(
A(x) ◦ B(y),0

)]
(12a)

C(z) = sup
z=x◦y

[
max

(
A(x) ◦ B(y),0

)]
(12b)

if ◦ ∈ [−, ÷]. Naturally, the division is only valid if 0 /∈ B [28, p. 89].
For distributions and p-boxes, if the dependence between the variables is known, then there can be a significant tighten-

ing of the bounds when performing the calculations [28]. If the dependence is not known, then Fréchet bounds can be used 
to make no assumptions about the dependencies; they are the most general case and are guaranteed to bound the correct 
answer. Fréchet is the methodology shown in equations (10), (11) and (12).

Fig. 3 shows the result of adding two separate p-boxes, A = U([0, 1], [2, 3]) and B = U([4, 6], [5, 7]), together with dif-
ferent dependencies between A and B . The Fréchet bounds enclose all the other dependencies, as it is the operation that 
is defined in equations (10), (11) and (12). Perfect, or comonotonic, is where there is perfect positive dependence between 
the two variables, with the highest possible correlation coefficient. Opposite, or countermonotonic, is perfect negative de-
pendence between the two variables with the lowest possible correlation coefficient. Independence is where there is no 
dependence between the two variables. It should not be assumed that variables are independent unless this is known be-
cause wrongly assuming independence can lead to incorrectly reducing the amount of uncertainty and understating tail 
risks.

3.3. Logical operations with uncertain objects

When making decisions, it is often the case that two values need to be compared to one another. Asking whether an 
observed value is greater than, equal to, or less than some threshold value is fundamental. For example, if a decision relies 
on some observed value X being less than 1 when we know the value of X accurately, it is easy to make such a comparison. 
However, if there is some uncertainty about the value of X , then this comparison may not be so easy.

For intervals, X = [a, b] and Y = [c, d], then

X < Y =

⎧⎪⎨
⎪⎩

1 b < c

0 a ≥ c

[0,1] otherwise

(13)
5
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Fig. 3. Addition of two p-boxes with different dependencies.

and

X > Y =

⎧⎪⎨
⎪⎩

0 b ≤ c

1 a > d

[0,1] otherwise

(14)

with 0 and 1 denoting true and false respectively, and [0,1] being the Boolean equivalent of “I don’t know”. We can call 
[0,1] the dunno interval. This implies that we cannot say whether an uncertain value characterised by an interval is larger 
or smaller than another unless the interval is entirely greater or less than the other interval. For the equality comparison,

X == Y =
{

[0,1] a ∈ Y or b ∈ Y

0 otherwise,
(15)

when asking for equivalence between intervals it is never possible to say that one value is equal to another. We can 
introduce a new Boolean operator (===) to test whether two uncertain numbers are equivalent in form,

X === Y =
{

1 a = c and b = d

0 otherwise.
(16)

The dunno interval can be converted into a true Boolean using operators such as always or sometimes

always ([0,1]) = 0 (17a)

sometimes ([0,1]) = 1 (17b)

so that we can get

always (X < Y ) =
{

1 b < c

0 otherwise
(18)

sometimes (X < Y ) =
{

1 a < d

0 otherwise.
(19)

Some methods can deal with more nuanced ways of using logical operations with intervals; see [46] as an example.
If A and B are p-boxes, equivalence can be calculated as

A > B =Pr ((A − B) > 0) (20)

A < B =Pr ((A − B) < 0) (21)

returning an interval probability. This requires different logic systems such as fuzzy logic that could be used in order to 
make logical operations [47].

4. An automatic uncertainty compiler?

Strategies are needed that automatically translate source code into code with appropriate uncertainty representations 
and propagation algorithms. [48] introduced a MATLAB toolbox to perform automatic uncertainty propagation based upon 
the unscented transform. However, more general approaches are needed. This section discusses the prospect of creating an 
automatic uncertainty compiler to perform intrusive uncertainty analysis with crystal box codes (when the source code can 
be viewed but is considered fixed and uneditable). Such a compiler would handle the specifications of input uncertainties 
and insert calls to an object-oriented library of intrusive uncertainty quantification (UQ) algorithms. This approach could 
theoretically work with any computer language and any flavour of intrusive uncertainty propagation.

Such a compiler will have to perform several tasks:
6
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Fig. 4. The steps that an uncertainty compiler needs to take in order to take the simple pseudocode script in the top left, extract the assignments (green 
line), add in the user-specified uncertainty (red line), translate the uncertainties into the original language (pink line) and then merge into the original 
script (blue line), making appropriate additional changes so that the code runs optimally.

1. Read the input source code to identify the variables in any assignment operations which may have uncertainty associ-
ated with them.

2. Replace or modify some or all of these assignments according to options and specifications provided by the user,
3. Translate the expression trees, with amended assignments, into the target language equipped with its intrusive UQ 

library, and
4. Optimise the output code to ensure that code will run robustly and not be artifactually inflated.2

5. Once this trans-compilation has occurred, the output script can be run identically to the original code. As the uncer-
tainty quantification is included directly within the simulation, the outputs will contain expressions of the associated 
uncertainty and be guaranteed to include the correct answer.

Further details of the precise requirements for each of these steps will follow, but, at this stage, it is helpful to consider 
a simple pseudocode script, as shown in the top left corner of Fig. 4. In this plot, the first step (represented by the blue 
line) requires the compiler to read the input script and then detect and extract the assignment operations. These include 
lines 1 and 2, but not those that assign a value based upon a mathematical expression (line 5), a function or directly from 
another variable. In theory, such variables could also be edited by the user.

These extracted variables then need to have any required uncertainty added. These uncertainties must then be translated 
to the source language and merged with the original script to produce a new script, as shown at the bottom of Fig. 4. This 
translation may include altering any functions that depend on the amended variables. In this case, the infix operators in the 
definition of d in line 5 (+,*) have been recognised and replaced with an explicit call to the UQ library functions (add,
mul) which also have as an argument the dependence operation that is to be used. The lower panel of Fig. 4, the value ‘f’ 
of this argument corresponds to making no assumption about the intervariable dependence between a and b, and perfect 
dependence (comonotonicity) between their product and the variable c.

2 Artifactual uncertainty is when the size of the outputted uncertainty is overly wide as an artifact of the calculation and not as a result of the true 
uncertainty present.
7
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Table 1
Matrix showing dependencies between several 
variables. (f - Fréchet, i - Independence, o - Op-
posite, ≡ - Equal in value, 0 - implies that there 
is no correlation between the two variables.)

a b c d e

a i ≡ f o
b i i f 0
c ≡ i f o
d f f f f
e o 0 o f

5. Reading and modifying

The first stage that the compiler will need to perform is to be able to read the script and detect the assignment operators 
that might have some uncertainty about them. Only numeric objects should be highlighted, not characters, strings or other 
non-numeric classes. In strongly typed programming languages like C, FORTRAN, and Pascal, the task of distinguishing 
numeric from other types of objects is easy. In Python, R, Julia or any other dynamic duck-typed language, the object type 
is not detectable until runtime and can even change during execution. This means that it may be difficult for the reader to 
detect.3

Objects that are collections of numeric values, such as arrays, lists and dictionaries, will require special attention. It may 
be necessary to look at what is inside the lists and highlight those with numeric objects within to allow the individual 
objects to have any uncertainties added. For vectors and matrices in general, one could consider the elements of the vector 
or matrix as value for which there could be uncertainty. For example, if

x =
(

5 3
2 1

)
. (22)

The compiler would have to extract the individual elements the uncertainty about x could be expressed. It would therefore 
be possible for the matrix to be made up of mixed uncertainty objects, e.g.

x =
( [4.5,5.5] N(3,1)

about 2 1

)
. (23)

Alternatively, it could be the case that all elements have the same uncertainty, something which should be possible to 
specify. This approach would, in theory, enable large linear algebra operations to be performed, although computational 
expense and dependency issues may make these operations particularly challenging to implement and require alternative 
algorithms to be used.

Once these objects have been extracted, they should be expressed within a language that enables users to specify the 
uncertainties associated with the extracted variables. This language should be simple and independent of the source lan-
guage and does not need to be a textual programming language; instead, it could be a visual language as part of a graphical 
user interface. Every type of uncertainty that is expressible within this language must be supported by an object constructor 
in the uncertainty library written in the source language.

Additionally, if there is any dependency between any two variables, then the language needs a way for users to specify 
what these are. A natural way to do this is for the reader to produce a matrix of all linked variables and their associated 
dependencies. For example, as line 3 of Fig. 4 specified that c = 3 * a the compiler could detect that there is perfect 
dependence between them. The user can then edit this matrix to specify any known dependencies, as shown in Table 1. 
Fréchet would be used for calculations between variables that do not have specified or detectable dependencies.

In general, dependence between uncertain quantities can be expressed through the use of correlation coefficients or cop-
ulas or bounds on copulas more generally [49–51,12]. This can include named copulas such as independence, opposite and 
perfect (as shown in Fig. 3) or other copula families parameterised by a numerical correlation coefficient [29]. Independence 
implies the correlation is zero, although zero correlation does not imply independence. Likewise, a correlation of one implies 
perfect dependence, but, depending on the copula family, perfect dependence may not imply correlation one. The symbol 
≡ can be used to indicate that the variables are equal in value, i.e., equal in distribution and perfectly positively correlated.

The dependency matrix can be checked for feasibility by asserting that it is positive semi-definite and that there are no 
conflicting dependencies within the table. For example, the matrix shown in Table 2 is not logically consistent for continuous 
variables. This is because a high value of x implies a high value of z, since they are positively dependent on each other. 
Meanwhile, a high value of z implies the value of y must be low due to their opposite dependence. Hence, there must also 
be dependence between x and y, not the independence specified in the table.

In order to make specifying the uncertainty as simple as possible, users should be able to input their uncertainties using 
natural language expressions such as about or almost. Humans are more likely to express their uncertainties in terms of 

3 However, when it comes to translating and writing, duck typed languages are easier to implement.
8
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Table 2
Dependency matrix that does not 
make logical sense. (i - Indepen-
dence, p - Perfect, o - Opposite).

x y z

x i p
y i o
z p o

Table 3
Hedge expressions and their mathematical equivalent. Note: 
d is the number of significant figures of x.

Hedged Numerical Expression Possible Interpretation

about(x) [x ± 2 × 10−d]
around(x) [x ± 10 × 10−d]
count(x) [x ± √

x]
almost(x) [x − 0.5 × 10−d, x]
over(x) [x, x + 0.5 × 10−d]
above(x) [x, x + 2 × 10−d]
below(x) [x − 2 × 10−d, x]
at most(x) [0, x]
at least(x) [x,∞]
order(x) [x/2,5x]
between x and y [x, y]
k-out-of-n KN(k,n)

Fig. 5. Result of using the automatic uncertainty compiler on a simple pseudocode script.

hedged expressions around a round number rather than as a percentage or probability. Table 3 lists some hedge words and 
their possible interpretations. Hedge words can be interpreted as intervals or p-boxes [52,53].

Often it is the case that all code is not contained within one script. For example, classes and functions are often placed 
in other files to improve readability or avoid repetitions. Ideally, the compiler would be able to read several scripts simulta-
neously and allow users to express the uncertainty whilst remembering the context for all the individual objects. It is also 
often the case that scripts read data from other files when running. Under this scenario, it would be difficult to express the 
uncertainty directly within the script, although import functions could be modified to add in the uncertainties. For instance, 
anytime a floating-point number is read from the file, its significant digits could be interpreted to specify an interval around 
the value. So, for example, the value ‘3.56’ would be understood as the interval [3.555, 3.565]. Another approach might be 
to parse the data file and add the uncertainties into the file directly. Doing so would require changing the import function 
to be able to handle uncertain data files.

It is also possible to completely automate the uncertainty compilation. Under default settings, this would replace floating-
point constants with intervals interpreted from the significant figures used in the source code assignments and use that 
information as a proxy for the uncertainty (for an example, see Fig. 5). In this mode, each individual task happens con-
currently without requiring any further input from an end-user. When using this mode, the compiler must tread carefully 
around mathematical constants such as π or e for which there is no uncertainty. In the example, the compiler has printed a 
warning above c = 3.14 to highlight the assumption that has been made. The compiler would allow users to specify what 
values are precise constants. It is also worth noting that since c has no uncertainty the addition operation does not need 
to be replaced with a function with specified dependence arithmetic. Fréchet has been used for the dependence between a
and b,

For-loops and functions are potential stumbling blocks for any uncertainty compiler. Fig. 6 shows a simple pseudocode 
script with a function and a for-loop. Within the first for-loop, each i is simply a control variable with a start and end 
variable. The individual value of i is irrelevant and, as such, would have no uncertainty about it. The second for-loop is 
a “for each”-loop, implying that the code needs to do something for each value within some iterable object. Under this 
scenario, it may be the case that there is uncertainty about the object within the list. In Fig. 6, the code is setting the value 
of initial_velocity as each value within the list for each iteration of the for-loop. It may be the case that there is 
9
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Fig. 6. Pseudocode script with functions, if-statements and for-loops.

uncertainty within the object, ergo the compiler should recognise this and allow users to change the code such that the 
objects within the list can have uncertainty added to them.

Local variables within functions will also have to be handled. For example, the function in Fig. 6 has two local variables,
s for the distance that the object travels and g for the acceleration due to gravity. It is conceivable that both of these 
variables have some uncertainty associated with them, and the compiler needs to be able to detect the variables and offer 
the ability to edit them so that uncertainty is handled.

If-statements and other logical control structures may also pose issues for such an uncertainty compiler. In line 16 of 
Fig. 6, the logical operators within the statement would need to change to ensure that the statement runs as expected (see 
Section 3.3). Ideally, the analyst would decide what should happen if the statement a < b returned a [0,1] result by using 
the adverb operators discussed in Section 3.1. This may require additional editing to deal with situations where an uncertain 
result should be handled differently from a certain true or false or when p-boxes return probabilities for the comparison.

6. Translating and optimising

Once the uncertainty has been specified, it will need to be translated into the target language. Assuming that there exist 
appropriate uncertainty objects within the source language, this need not be difficult. The more difficult task is modifying 
the code such that it runs optimally.

The nature of these modifications depend on the specifics of the language the code is written in. In languages such 
as C++, it may be the case that the modifications required are small because native languages features such as operator 
overloading and templates can be used to increase the flexibility of the existing code [54,55]. With operator overloading, 
the behaviour of operators can be customised for specific types of data, allowing for more efficient calculations that are 
tailored to the needs of the uncertainty objects desired. Templates, on the other hand, enable generic programming, which 
means that a single function or class can be used with multiple data types, reducing the amount of code that would need 
to be modified by the compiler to enable intrusive uncertainty analysis.

When performing uncertainty analysis it would be ideal to always obtain best possible results that are guaranteed to 
bound the true value without overestimating the uncertainty. The uncertainty can be inflated or artifactually high if careful 
consideration of the dependence between, and repetition of, uncertain numbers is not undertaken.

There are a couple of approaches that could be used to handle dependency issues. The simplest approach is to replace 
the infix operators with the function calls that take as an argument the dependency calculi needed for the operation. For 
instance, in Fig. 4, the calculation

d = a * b + c

has been replaced by the compiler to

d = add(mul(a, b, method = ’f’), c, method = ’f’)

where the add and mul contain keyword arguments that tell the code what arithmetic to use. In this approach, care 
has to be taken to make sure that precedence, left recursion and associativity of the operators are handled correctly [56, 
pp. 69–72].
10
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Any dependence between a and b would have to be initialised. This could be done by adding a function after both a
and b have been assigned or by modifying the assignment for b. In this case, as no dependence is known to the compiler, 
Fréchet has been used.

Smart dependency tracking – where the variables themselves work out how to handle the uncertainty arithmetic with 
other uncertain objects at runtime – would be the zenith when wrangling the issue. Whilst initial dependencies would still 
have to be specified, under smart dependency tracking, no other changes would need to be made to the code by the user or 
compiler for the dependencies to be handled optimally. In the output script of Fig. 4, line 5 would not need to be changed 
as the variables would remember which other variables they depend on and, when the calculations are performed, know 
what dependency calculus to use. This knowledge would have the be included within the class definitions for the uncertain 
objects and requires all objects to store the ancestry of themselves, know the dependence between themselves and their 
ancestors and be able to access the dependencies between the initial variables. This approach would have demands on 
memory and computational time. The result of a * b would know that it depends on a and b. When c is added to the 
product, it would be detected that a * b and c both have a as a common ancestor and therefore use the appropriate 
addition methodology would be ascertained and used.

The repeated variable problem is caused when artifactual uncertainty is introduced as a result of uncertain objects being 
repeated within the calculation. For example, if a = [1, 2], b = [−1, 1] and c = [3, 4], then

ab + ac = [1,2] × [−1,1] + [1,2] × [3,4]
= [−2,2] + [3,8]
= [1,10]

(24)

but

a(b + c) = [1,2] ([−1,1] + [3,4])
= [1,2] × [2,5]
= [2,10].

(25)

Although algebraically these two expressions are equal, the uncertainty associated with ab + ac is greater than the uncer-
tainty about a(b + c). This is because the uncertain variable a is repeated within the former but appears only once in the 
latter. In essence, the uncertainty about a has been considered twice when performing the first calculation. The amount of 
this artifactual uncertainty can be reduced by transforming the original equation into a single-use expression where uncer-
tain variables are only used once. If this is not possible, other techniques can be used to reduce this artifactual uncertainty 
(e.g. [57–60]). The repeated variable problem appears to be ubiquitous to many, if not all, uncertainty calculi [21].

The compiler will need to be able to rearrange equations such that repeated variables are removed whenever possible. 
The most basic approach will require having a directory of multi-use to single-use expressions. Another smarter approach 
would be to have a symbolic algebra system that can rearrange into single-use expressions on the fly. The simplest version 
of this is for it to happen just across one line, for instance, replacing

d = ab + ac (26)

with

d = a(b + c). (27)

These rearrangements are often not obvious and may require algebraic tricks, i.e.

w = x + y

1 − xy
(28)

can be rearranged into the single-use expression

d = tan (arctan(x) + arctan(y)) . (29)

This problem is made more difficult if there are repetitions across multiple lines. In Fig. 4, c = 3 * a + 1 is used in 
the calculation d = a * b + c. This equation could be rewritten as

d = a * b + 3 * a + 1

and the reduced to the single-use equation

d = a * (b + 3) + 1.
11
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Care would need to be taken to ensure that the right variable gets the rearrangement. Take the following kinematics 
equation to find the position s of a particle at time t ,

s = ut + 1

2
at2, (30)

where u is the initial velocity and a is the acceleration of the particle. This equation has a single repetition for both u and a
but t is repeated. If there is uncertainty associated with t then this equation can be rearranged into a single-use expression

s =
(√

a

2
t + u√

2a

)2

− u2

2a
. (31)

This equation contains repetitions of a and u and, as such, may only be preferred if there is no uncertainty associated 
with either a or u. If there is uncertainty associated with either, then it may be best not to perform the rearrangement or 
to intersect possible rearrangements to obtain the best possible expression.

There are additional issues that the compiler could arise when rearranging equations. For example in Equation (31), 
if the uncertainty about a includes negative numbers, then 

√
2a is likely to be problematic. Additionally, there could be 

problems if a straddles 0 because this would result in a division by zero. A strategy for dealing with this may be to perform 
the calculations using both Equation (30) and (31) and intersect them to remove any artifactual uncertainty.

Many computer languages that are not purely functional support functions that specify their parameters with “call by 
reference” or “call by object reference”, meaning the memory location of a value is passed to the function rather than a 
copy of the actual value. This convention can allow the function to change the values of those parameters in the calling 
routine, not just locally within the function. For example, Python passes the object reference to functions for all non-
primitive objects, such as lists, data frames and NumPy arrays. Primitive objects in Python are: integers, floating-point 
numbers, Boolean, and strings. Handling languages that use the call-by-reference method of passing arguments will require 
care when translating.

In Fig. 7, the simple python function takes as an input a numerical value, adds 1 to it using the in place += operator 
and then returns the addition. In the case where x is a primitive object (an integer), the value passes to the function and 
returns the calculation without modifying the original x value.

If the code was translated using an uncertainty compiler then this may cause an issue. In Translation #1, since x is now 
a (non-primitive) interval object then the object’s reference gets passed to the function. This means that it may be the case 
that as the local variable a gets modified, the global variable x also gets modified. This behaviour can be seen within the 
example, the function has returned the addition but x has also been changed because the object is not copied or cloned—its 
reference has been shared. This issue has been fixed in Translation #2 by the compiler recognising that a += 1 may pose 
a particular problem and replacing it with a = a + 1 as this reassigns a new object to the variable rather than to the 
location it references.4

6.1. Hermeneutic problems

Several problems could occur when translating a script because it can be difficult to understand a programmer’s intent 
from the code. An example would be the assignment c = a as there are several different interpretations as to what such a 
command implies when it comes to the uncertainty:

1. a and c are the same object but have been given different names for some reason. Under this scenario, they should 
be considered equivalent to each other, and therefore the calculation a + c could be rearranged to the single-use 
expression 2 * a.

2. c = a could have been written as c = 1 * a and the 1 has been dropped as it would have had no mathematical 
impact on the calculation, this implies that they are perfectly dependent on each other in the same way that c = 
-1 * a implies negative dependence. Therefore, the calculation a + c would need to be performed using perfect 
dependence.

3. c is a copy of a; they have the same uncertainty, but their realisations are not necessarily related to each other whilst 
having the same distribution shape. This leads to two more distinct possibilities:
(a) a and c are independent of each other and a + c should be convolved using independence.
(b) No assumption is made about the dependence between a and c so a + c should be convolved using Fréchet.

Knowledge of which of these scenarios is correct depends on the context of the script, something a compiler should not 
make an assumption about by itself.

4 It is worth noting that this may not always be desired behaviour. In Python foo = foo + bar is interpreted as foo.__add__(bar) whereas foo 
+= bar is interpreted as foo.__iadd__(bar). There may be differences between these two functions and it is not unimaginable the two functions 
have different outputs. It is likely to be the case that this difference would impact the overhead of the calculation – which itself may have lead to the 
analyst preferring one form over the other (especially for NumPy objects).
12
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Fig. 7. Simple Python script modified by the uncertainty compiler. In Translation #2 the compiler has modified a += 1 to a = a + 1 to guard against 
errors caused by call by object reference.

Another potential interpretation problem can occur because people naturally favour making their code readable when 
creating code. For example, the equation of motion for a damped harmonic oscillator can be given by

x′′(t) + b

m
x′(t) + k

m
x(t) = 0 (32)

where b is a damping constant, m is the mass of the oscillator, and k is the spring constant. This equation can be solved 
analytically to find

x(t) = A exp

(−bt

2m

)
cos

⎛
⎝t

√
k

m
− b2

4m2
+ φ0

⎞
⎠ (33)

where A is a constant and φ0 is the initial angle. In Fig. 8 the equation has been coded in two different ways. In 8a the 
equation has been coded on a single line. As the equation is quite complicated, the programmer coding the equation would 
likely want to split it into multiple parts, as has been done in 8b. There are no mathematical differences between the 
two approaches as they will lead to the same value. Care would have to be taken breaking up equations in such a way 
that strategies would be needed to ensure that breaking the lines up would not have a detrimental effect on how the code 
operated. The dependency tracking throughout the split equation must also be assessed correctly. For example, if there were 
uncertainty about the damping constant b, it would be difficult to assess the dependence between lines 4 and 5, especially 
since the cosine function is not monotonic.

It may be better to use other techniques to solve the ODE (Equation (32)) numerically rather than analytically, using 
methods such as VSPODE or VNODE [61–65]. In general, any uncertainty compiler should be accompanied by a suite of 
bespoke UQ libraries for common but computationally complex problems that have many repeated variables. Some of these 
problems are NP-hard in the general case, but solutions for many important special cases have already been implemented in 
convenient software. In addition to the libraries for nonlinear differential equations mentioned above, special libraries would 
13
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Fig. 8. Two different ways in which Equation (33) might be coded.

be needed for computing matrix inversion [66,67], solving finite element models,5 optimisation problems,6 and calculating 
statistics from data containing intervals [72–74]. For instance, computing even statistical variance and linear regressions are 
NP-hard, and they probably should not be attempted without using specialised algorithms.7 In theory, the compiler could 
try to detect such calculations and swap in code from these libraries as appropriate. At a minimum, the compiler should be 
bundled with the suite of ready solutions to the common problems to which the programmer could link.

7. Writing and running

Once the transcompilation has been performed, a new source code will have been created which can be compiled or 
run in the same way as the original script. Running this code may take longer and require more computational resources. 
However, it may still be beneficial in terms of computational cost over Monte Carlo as it only needs to be run once and not 
many times.

Once the code has been run, any outputs will themselves be uncertain. There are numerous ways in which this uncer-
tainty can be expressed depending on the exact requirements specified by the analyst. Outputs could be the most likely 
value if this is sufficient for the analysis. Another simple approach would be to use the most appropriate hedged expression. 
For instance, it could return about 3.2 if that is the best expression. This hedge would have to be the closest possible to 
the actual range without understating the uncertainty, whilst not being so large that it overstates the uncertainty.

For distributions, a simple approach would be to present the range or a 95% range (2.5th and 97.5th percentiles) of the 
output. This could go alongside other statistics about the distribution to present, for example, a five-number output that 
characterises the distribution (min, first quartile, median, third quartile, max). If the distribution family is known, it might 
be helpful to output the range, mean and variance.

Another way of characterising the distribution is to provide a verbose statement presenting a sentence or paragraph to 
describe the uncertainty. For instance, the output could be expressed as “a normal probability distribution p-box between -
1.7 and 11 with a mean of 4.5 and a variance between 4 and 5” or “an uncertain number with an unspecified shape between 
0 and 10 with a median of at most 2.4, a mean of 1.2 and a variance of at most 10.6”. Additionally, these statements could 
also come with a graphical representation of the output, such as shown in Fig. 2.

8. Conclusion

The idea of an automated uncertainty compiler is unlikely to be realised. Many codes are not simply single-line equations, 
and uncertainty propagation is not as simple as replacing every elementary operation with an interval or p-box equivalent. 
Numerous wrinkles have to be addressed, including:

• input specification (shapes and details),
• computational burden,
• repeated variables,
• dependencies,
• programmer intent, and
• suitable output.

It is also likely to be the case that no automatic uncertainty compiler would introduce perfect uncertainty translations. 
Manually editing code or creating a new uncertainty-aware script from scratch will likely outperform the automatic changes 
since, in general, hand-coding is always likely to outperform source-to-source translation [76]. It is, therefore, evident that 
any uncertainty compiler will likely be semi-automatic at best.

5 See https://en .wikipedia .org /wiki /Interval _finite _element for numerous approaches to solving interval FEM problems.
6 See [68–71] as examples of optimisations with imprecise numerical values.
7 For example, the approach for interval linear regression in [75] would have to be used instead of standard least-squares linear regression.
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Perhaps the greatest challenge is that rearrangements will need to be made to equations to prevent artifactual inflation of 
the uncertainty. The compiler will also need strategies to handle inputs from other files, non-standard inputs, and code that 
spans multiple interconnected lines. The repeated variable problem and, more generally, incorrect handling of dependencies 
can artifactually inflate the uncertainty of complex computation. Even if the calculations are technically correct in the 
sense that they enclose the true uncertainty, the naive application of intrusive uncertainty quantification can sometimes 
yield results with massively inflated uncertainty that renders them practically useless. Having massive uncertainty is not 
the problem itself; the true uncertainty may actually be considerable. The problem is when the uncertainty artifactually 
depends on how the analysis was structured and does not reflect the features of the underlying computational problem.

An uncertainty compiler is perhaps the exact opposite of an optimising compiler, which aims to minimise a programme’s 
execution time and memory requirements. Both of these will almost certainly increase by replacing objects with uncertain 
equivalents. For instance, if intervalising calculations increase the computational time five-fold,8 a simulation limited by 
computational time may need to be scaled back. Distributions or p-boxes would be still more burdensome. Of course, 
efficiency is not always a critical issue, and this extra computational effort does pay for global uncertainty propagation and 
what computer scientists call automatic result verification [77]. Moreover, implementing modern uncertainty quantification 
techniques could be more efficient and comprehensive than simply embedding a deterministic computation inside a Monte 
Carlo shell with millions of replications.

Despite these issues, it is important to work towards the goal of an automatic uncertainty compiler. It is worth remember-
ing that the analysts who will need one most may not be sure what normal distributions or intervals are and have probably 
never heard of a p-box. Nor do they have the time to sift through hundreds or thousands of lines of code to extract and 
manipulate the various parameters and make the changes required to enable the code to handle the uncertainty optimally. 
For such analysts, a software tool that can hand-hold them through making the appropriate edits will be of enormous value, 
and even partial solutions will be beneficial. Adding intrusive uncertainty analysis to simple problems would benefit analysts 
who could compute with what they know rather than make assumptions or rely on methods they may feel uncomfortable 
doing.

The authors envisage the creation of an uncertainty compiler through a grassroots effort. Such an effort would require 
creating a standard interface to be used for all languages and a translation syntax that tells the compiler what components 
of the code need to be changed. Once this has been created, for any new language that would be supported, the language 
would require packages and libraries with uncertain objects and uncertainty propagation algorithms and a translation file 
that told the compiler what translations it would need to perform. Once a framework is in place, user-developers could 
create uncertainty compilers in whatever languages they wanted to use. One could imagine that such an endeavour would 
be similar to the creation of NumPy where there was “a sense of building something consequential together for the benefit 
of many others” [78].

The complexity of creating these elements would depend on the exact specifications of the language in question. Lan-
guages such as C++ would require fewer changes to the source code as more of the calculations could be enabled through 
overloading and templates, whereas languages such as MATLAB would require more wholesale changes to the original code. 
This is not to say that an uncertainty compiler would be better for one language over another, uncertainty compilers could 
work with any language.

The general problem of uncertainty analysis is hard, and it is difficult to create software that comprehensively solves 
all these problems. The development of an uncertainty compiler is likely to be difficult. However, many practical problems 
are more straightforward than the most general problem, and when this is the case, it will be extremely useful to use a 
tool which is able to handle uncertainty analysis intrusively within code. Progress towards the creation of an uncertainty 
compiler would benefit both the scientific computing and uncertainty quantification communities even if the compiler itself 
remains elusive.
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