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Chance-Constrained Optimization of Storage and
PFC Capacity for Railway Electrical Smart Grids

Considering Uncertain Traction Load
Yinyu Chen, Student Member, IEEE, Minwu Chen, Member, IEEE, Lie Xu, Senior Member, IEEE, Zongyou

Liang

Abstract—To foster the utilization of regeneration braking
energy and suppress voltage unbalance (VU), a railway electrical
smart grid (RESG), intergraded with power flow controller
(PFC) and energy storage (ES), is proposed as an important
part of next-generation electrified railways. However, under the
uncertain traction load, how to design the optimal size of PFC-
ES is a challenge during the planning period. Hence, this paper
proposes a chance-constrained two-stage programming approach.
The first-stage aims to minimising the overall cost of RESG’s
devices. The second-stage aims to arrange the energy flow of the
PFC-ES with the objective of minimising the expected operation
cost under the dynamic VU restriction, and the stochastics
characteristics of traction load are transformed into a chance
constraint by using a scenario approach. Then, traction power
predictions are combined with multivariate Gaussian Mixture
Model(multi-GMM) model to generate correlated traction power
flow scenarios and to assess VU probabilistic metrics distribution
with different confidence levels. Finally, a novel algorithm is
designed to select the confidence level and violation probability
so that the capacity planning results can ensure the high-efficient
and high-quality operation of the RESG. Case studies based on
an actual electrified railway demonstrate that the proposed PFC-
ES sizing approach can reduce the overall cost by up to 13%.

Index Terms—Electrified railways, chance constraint, two-
stage programming, probabilistic forecasting.

NOMENCLATURE

A. Abbreviations, Indices and Sets

CCP Chance-constrained programming
CI Confidence interval
DoD Depth of discharge
ES Energy storage
GMM Gaussian mixture model
KDE Ksdensity distribution estimate
NZ Neutral zone
O&M Operation and Maintenance
MILP Mixed-integer linear programming
PFC Power flow controller
PSI Power supply interval
UC Ultracapacitor
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RBE Regeneration braking energy
RESG Railways electrical smart grid
SoC State of charge
TPSS Traction power supply system
TSS Traction substation
TT Traction transformer
VU Voltage unbalance
VUF Voltage unbalance factor
t Indices of time intervals during a day
i Indices of chance constraint
θ Indices of confidence level
ε Indices of violation probability
k Indices of TSS order

B. Parameters

ηbtch, ηbtdis Charging and discharging efficiency of
battery

ηucch , ηucdis Charging and discharging efficiency of UC
ξbt, ξuc Self-discharging coefficient of battery and

UC
Tproj, Tday Project period (year), operation days of ES

within a year
PPFC, PPFC Lower and upper bounds of PFC power

rating
P bt,uc, P bt,uc Lower and upper bounds of battery or UC

power rating
Ebt,uc, Ebt,uc Lower and upper bounds of battery or UC

capacity rating
PTrain
t , PTrain

t Lower and upper bounds of traction power
ctpur, c

t
ret Purchased electricity price and penalty

charge
cdem Electricity price of peak demand power
σl Power loss of converter
cbt,ucom,v , cbt,ucom,f Fixed and variable battery or UC daily

O&M cost per unit of power rating
cbt,ucrep Battery or UC daily replacement cost
cbt,ucP Battery or UC daily capital cost per unit

of power rating
cPFC
P PFC daily capital cost per unit of power

rating

C. Variables

PPFC
rate Rated power of PFC
P bt
rate, P uc

rate Rated power of battery and UC
Ebt

rate, Euc
rate Rated capacity of battery and UC
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SoCbt
(•), SoC

uc
(•) SoC of battery and UC

PPFC
t,α , PPFC

t,β Active power of converter for α phase and
β phase

P bt
t,ch, P bt

t,dis Battery charging/discharging power
P uc
t,ch, P uc

t,dis UC charging/discharging power
Ebt
t , Euc

t Energy power of battery and UC

I. INTRODUCTION

A. Motivation and Bibliographic Review

ELECTRIFIED railways are considered as one of the
strongest contender to revolutionize fossil fuel-based

transportation systems, which possess lower carbon emissions
and the highest transportation efficiency [1]. The traction
power supply systems (TPSSs) are the core component of
electrified railways, which provide huge energy to rolling
stocks. However, TPSSs pose significant challenges to the
power systems such as the severe voltage unbalance (VU)
[2], great peak-valley difference and enormous regeneration
braking energy (RBE) [3], which interferes with safety and
efficient operations.

To cope with this problem, the railways electrical smart grid
(RESG) is considered as the next-generation TPSS pattern,
which utilizes the power flow controller (PFC) and energy
storage (ES) to efficiently adjust the power flow distribution
in the transportation system [4], [5]. As shown in Fig. 1, the
PFC installed in the traction substation (TSS) and neutral zone
(NZ) can effectively smooth the energy interaction between
the transportation system and connected power grid. The ES
can serve as a flexible source which can charge/discharge its
power in different timescales.

As a result, railway energy management has become a
research frontier. Reference [6] proposed energy management
models in terms of ES, while [7] presented a model predictive
control model for the TPSS via a hierarchical structure. In [8]
, a comprehensive railway energy management system with a
centralized/decentralized architecture was proposed, whereas
[9] presented an energy management model for coordinating
energy flow between EV charging stations and urban trans-
port system. Reference [10] developed an optimal operation
strategy of distributed energy resources and urban electrical
transportation systems. On the other hand, due to the huge
power requirement of electric train (e.g., the rated power of
CRH-380AL is 20 MW) which appears as a single-phase un-
balanced variable load in the power system, it is indispensable
for limiting the level of VU emissions from RESG. In [11], an
economic dispatch scheme of RESG was proposed in terms
of dynamic VU constraint, while [12] proposed a two-stage
robust optimization model for RESG considering a stable VU
limit as a constraint. In [13], a computation-efficient power
programming strategy was proposed to regulate power quality
effectively.

Although there are certain benefits of using PFC and ES
on railways, their installation and operation costs are high.
Therefore, optimizing the size of the PFC and ES to the actual
needs of the operation is a critical phase in achieving high-
efficient and high-quality operation of RESG. Reference [14]
proposed a technical-economic model to design the capacity
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of the ES, while [15] employed the double-layer optimization
model to solve the optimal size of the ES. A mixed-integer
linear programming (MILP) model was presented in [16] to
determine the ES size utilized by RBE. purpleIn light of this,
the optimal capacity models of RESG are usually formulated
as two-stage programming problems, where the capacity de-
sign and system operation are in different optimization layers.

It is worth observing that previous researches are based
on deterministic power flow predictions and do not consider
the unavoidable prediction errors in practice. In reality, the
power flow of network-train interaction is uncertain due to
the stochastic nature of drivers’ different driving habits and
the parameter deviations of the traction force calculation [17].
Therefore, how to accurately model uncertain traction loads is
a critical problem. On the one hand, the Ksdensity Distribution
Estimate (KDE) is introduced to capture the probabilistic
features, including traction power and renewable power [18]-
[20]. For example, [18] adopted a forecasted bin to capture
the statistical properties of harmonic emissions, [19] presented
nonparametric probabilistic load flow to determine the dis-
tribution of the load flow, and [20] proposed a conditional
probability density function that combines the forecast error
and the output power. However, the KDE is a nonparametric
model, which limits the practical use of the distribution [21].
Furthermore, the multiple Gaussian Mixture Model (multi-
GMM) has been used to characterize the multimodal and irreg-
ular probability distributions. In [22], a GMM was proposed to
cope with the wind power uncertainty, while [23] presented a
GMM-based Copula theory to fit a WPR forecast model with
conditional probabilistic .

In addition, addressing stochastic problems is a core step
in two-stage programming models, while robust optimization
is widely employed. Reference [24] proposed a robust opera-
tional optimization framework for smart districts with multi-
energy devices and integrated energy networks, and a robust
optimization method was proposed in [25] to address the
uncertainties associated with renewable generations and loads.
However, this approach solves the best economic operation
problem under the worst-case scenario, resulting in high
costs for maintaining the scheme’s reliability. Alternatively,
chance-constrained programming (CCP) provides a promising
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TABLE I
TAXONOMY OF THE REVIEWED LITERATURE

Ref. Uncertainty ES cycle life Power quality Objective Function Variable

Investment, O&M cost Replacement cost Energy Cost ES
sizing

PFC
sizing

[6] ! # # # # ! # #

[11] # ! ! # # ! # #

[12] ! # ! # # ! # #

[14] # # ! ! ! # ! !

[15] # ! # ! ! ! ! #

[16] # ! # ! # # ! !

Proposed method ! ! ! ! ! ! ! !

!=Considered, #=Not considered

alternative that allows the violation of constraints within a
confidence level. In [26] , an adjustable chance-constrained
approach was proposed to allocate flexible ramping capacity
reserves optimally, whereas the total storage power and energy
constraints were posed as chance constraints in [27] , and
a conservative convex approximations were employed for
tractability.

B. Aim and Contribution

Corresponding to the abovementioned literature survey,
there is a growing interest in the optimal planning and op-
erating of RESG. However, there are certain gaps from the
following perspectives.

1) Uncertain traction load demand is a critical challenge
rather than renewable energy in [6] and [12], which will
interfere with the capacity decision. It is concluded from
Table I that existing approaches based on deterministic
numerical calculations cannot obtain a feasible size for
RESG’s facilities, since they do not illustrate the impacts
of uncertainty on the power flow distribution.

2) VU compensation and energy cost are two major con-
cerns of single-phase electrified railways, the serious
VU problem will interfere with the economical oper-
ation of RESG, different optimization methods in the
planning or operating period are summarized in Table I,
which is practically incomplete. Notice that the planning
approach in [14] can only obtain a feasible solution
satisfying the constraints.

In our previous work [11] a deterministic optimal dispatch
model considering the dynamic VU constraints was proposed
to minimize the operation cost of electrified railways. In this
paper, the previous work is extended by programming the
optimal capacity and considering the uncertainty of traction
load predictions. The two-stage optimization of PFC and ES
capacity of RESG aims at minimizing the investment cost and
operation and maintenance (O&M) cost under the stochastic
power flow during the engineering period. Compared with the
existing research, the contributions of this paper are threefold:

1) A complete confidence prediction framework, includ-
ing a train-RESG interaction simulation and confidence
forecast models, is proposed to capture the uncertainty
of traction load. With this framework, a better forecast

performance in terms of reliability and sharpness can be
available compared to other prediction approaches.

2) The statistical model uses multi-GMM theory to build
a joint dependence structure between the actual train
power output and its prediction, in which the train power
output and VU emission feature at different confidence
intervals (CIs) can be obtained. This model can charac-
terize the stochastic nature of traction load more accu-
rately than commonly-used distributions, e.g., Gaussian,
Gamma and Nonparametric KDE distributions.

3) A chance constraint on power flow is introduced to
account for the impact of uncertain traction load on the
participation of the PFC-ES, installed in TSS and NZ,
in economic dispatch. A scenario approach is adopted
to solve chance constraints. More importantly, based on
the VU limit and predicted VU indicator’s probability
distribution, a novel algorithm is designed for selecting
the confidence levels and violation probabilities, thus
guarantees that all the operation schemes are restricted
by power quality standards. Compared with traditional
methods, namely specifying confidence intervals, a rea-
sonable trade-off between economical operation and VU
regulation can be achieved.

4) The RESG’s infrastructure planning problem is formu-
lated as a stochastic two-stage model, and the capacity
of PFC and ES in the TSS and NZ is optimized.
Investment costs, replacement costs and O&M costs are
incorporated into the first-stage objectives, and an ES
degradation model is embedded in the first-stage to pro-
long the ES lifetime. The second-stage takes the PFC-ES
settings determined by the first-stage as input param-
eters to minimize the expected costs including power
consumption cost and demand cost. This programming
model provides planners with a flexible capacity design
approach under different confidence levels.

C. Article’s Framework
The remainder of this paper is organized as follows. Section

II describes the details of the RESG structure. Section III
formulates the first-stage programming problem. The optimal
dispatch problem with chance-constraints in the second-stage
is developed in Section IV. The confidence prediction frame-
work for traction power flow is presented in Section V. Section
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V presents the solution approach and its implementation.
Section VI demonstrates and analyzes the numerical results.
Conclusions are given in Section VII.

II. SYSTEM CONFIGURATION AND VU EMISSION
CHARACTERISTICS

A. Structure of RESG

A schematic diagram of the investigated structure of RESG
is shown in Fig.1. In the traction substation (TSS), a single-
phase traction transformer (TT) and PFC can provide con-
tinuous power with the same voltage amplitued and phase to
the train. Generally, when the TSS is powered by high-voltage
transmission grid, the power supply intervals (PSI) distance of
the TSS is about 60 km. In the neutral zone (NZ) that is used
to ensure electrical insulation between different TSSs, a PFC
is connected in shunt on both sides of each PSI to effectively
control the energy. It should be noted that the acronym NZ-
PFC refers to the PFCs located in the NZ, and the acronym
TSS-PFC refers to the PFCs located in the TSS. The DC-link
in the PFC provides the interface for the integration of ES.

B. Power Flow Model

Fig. 2 shows the relationship of power flow between the
grid, RESG’s infrastructures and trains. For example, during
in the traction mode, the main power demand of train (PLoad

t,trac)
can be supported by the nearly TT and TSS-PFC, the remain-
ing power is supplied by the ES and NZ-PFC, the ES and
NZ-PFC provide remaining power to reduce the peak power
and smooth the power fluctuant; during in the regenerative
braking mode, the energy generated by the train (PLoad

t,brak) is
preferentially stored by ES (P uc

t,ch, P bt
t,ch) or provided to train

in another PSI via NZ-PFC, which can effectively reduce the
peak valley difference and improve the utilization of energy.

1) Transformer Mathematical Model: In the initial scheme,
a single-phase TT is employed to realize the co-phase traction
power supply for trains. However, the severe VU problem
cannot be ignored. As a result, a PFC combined with a
Ynd-connection step-down transformer (SDT) is connected in
parallel to the TT, the SDT and TT form a balance transformer,
which has a minimum VU when the load flow between the
two branches is in balance [11]. The mathematical model can
be expressed by: İgrida,t

İgridb,t

İgridc,t

 =

 1/N1 −1/3N2

0 2/3N2

−1/N1 1/3N2


︸ ︷︷ ︸

C

[
İTT
t

İPFC
t

]
(1a)

[
U̇TT
t

U̇PFC
t

]
=

[
1/N1 0 −1/N1

−1/3N2 2/3N2 1/3N2

]
︸ ︷︷ ︸

V−1

 U̇grid
a,t

U̇grid
b,t

U̇grid
c,t

 (1b)

where N1 and N2 represent the transformer ratio of TT
and SDT. İPFC

t , İTT
t , U̇PFC

t and U̇TT
t represent the current

and voltage of the PFC branch and TT branch, respectively.
İgrida,t , İgridb,t , İgridc,t , U̇grid

a,t , U̇grid
b,t and U̇grid

c,t represents the phase
current and voltage of three-phase in power grid, respectively.

TT

TT
TSS-
PFC

ES

TSS-
PFC

ES ES

TrainGrid
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Fig. 2. Power Flow Relationship of RESG.
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C and V are defined as current and voltage transformation
matrices, respectively. The subscript t represents the time
index in a day, and t ∈ [0,T].

2) ES Mathematical Model: The charging or discharging
power and stored energy of the storage are constrained by
the physical characteristics of the battery and UC at any time
interval. The working status of ES can be evaluated by using
the state of charge (SoC):

SoCbt
t+1=

(
1− ξbt

)
SoCbtt−1+ ηbtch

P bt
t,ch

Ebt
t

∆t−
P bt
t,dis

ηbtdisE
bt
t

∆t (2a)

SoCuc
t+1= (1− ξuc)SoCuc

t−1+ ηucch
P uc
t,ch

Euc
t

∆t−
P uc
t,dis

ηucdisE
uc
t

∆t (2b)

where SoCbt
(•) and SoCuc

(•) represent the SoC of battery and
UC, respectively.P bt

t,ch, P uc
t,ch, P bt

t,dis and P uc
t,dis represent battery

and UC charging/discharging power, respectively. Ebt
t and Euc

t

represent energy of battery and UC, respectively. ηbtch, ηucch ,
ηbtdis and ηucdis represent the charging and discharging efficiency
of battery and UC, respectively. ξbt and ξuc represent self-
discharging coefficient of battery and UC. ∆t represents the
sampling interval.

3) PFC Mathematical Model: The converters at both TSS
and NZ consist of a α phase converter and a β phase inverter,
as shown in Fig. 1. The active power balance formulation is
declared in (3):

PPFC
t,α + P bt

t,dis + P uc
t,dis = PPFC

t,β + P bt
t,ch + P uc

t,ch (3)

where PPFC
t,α and PPFC

t,β represent the input/output active power
of converter for α phase and β phase, respectively.
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C. VU Emission Characteristics of RESG

To evaluate the VU emission level of TSS, the V UFt index
in this paper is defined as the ratio of the modulus of the
negative-sequence to the positive-sequence components of the
voltage:

V UFt =

∣∣∣∣∣ U̇
grid
n,t

U̇grid
p,t

∣∣∣∣∣ =
√
3Ugrid

abc,t

Ssc
Igridn,t (4)

where U̇grid
p,t , U̇grid

n,t , and İgridn,t represent the negative- and
positive- sequence voltage and current in power grid, respec-
tively. It can be derived from (1) by adopting the Fortescue’s
transformation matrix. Furthermore, İgridn,t can be denoted by
ITT
t and IPFC

t , which can be calculated as:

Igridn,t =
1√
3N1

ITT
t − 1

3N2
IPFC
t

=
1√
3N1

PTT
t

UTT
t

− 1

3N2

PPFC
t,α

UPFC
t

(5)

When the transformer setting and rated voltage are fixed,
the VU emission feature can be determined according to (4)
and (5) as shown in Fig. 3. It is indicated that the VUF at PCC
is restricted by power flow distribution of the two branches.

III. PROGRAMMING PROBLEM OF PFC AND ES SIZING
FOR RESG

A. Objective Function

Consider a RESG comprising of N storages and M power
flow controllers. An objective function of first-stage is to
minimize the total cost of RESG during an engineering period,
including the capital cost (CES

cap, CPFC
cap ), replacement cost

(CES
rep, CPFC

rep ), O&M cost (CES
om, CPFC

om ) and energy costs
(E [J2]) for PFC and ES.

minJ1 = Ctot
(
PPFC
rate , P

bt
rate, P

uc
rate, E

bt
rate, E

uc
rate

)
= CES

cap+ CPFC
cap + CES

rep+ CES
om+ CPFC

om︸ ︷︷ ︸
First−stage

+ E [J2]︸ ︷︷ ︸
Second−stage

(6)

CES
cap = CRF ·

∑
n∈N

(
cbtP · P bt

rate,n + cbtE · Ebt
rate,n

+cucP · P uc
rate,n + cucE · Euc

rate,n

) (7)

CPFC
cap =

∑
m∈M

[
cPFC
P · PPFC

rate,m · (1 +X/D)
]

(8)

CES
rep = CRF ·

∑
n∈N

[∑
Nbt

(
cbtrep ·Ebt

rate,nbt · PV F
)]

+
∑
n∈N

[
Nuc·cucrep · Euc

rate,nuc

] (9)

CES
om =

∑
n∈N

(
T bt
hr · cbtom,v · P bt

rate + T uc
hr · cucom,v · P uc

rate

)
+
∑
n∈N

(
cbtom,f · P bt

rate + cucom,f · P uc
rate

)/
Tday

(10)

CPFC
om = CPFC

cap · 5% · Tproj (11)
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Fig. 4. Overview of the Implementation of Two-stage Optimization Model.

where PPFC
rate is the rated power of PFC, P bt

rate and Ebt
rate are the

rated power and total capacity of battery respectively, P uc
rate and

Euc
rate are the rated power and total capacity of UC respectively,

Tproj, Tday, T (•)
hr are the project period (year), operation days

of ES within a year (365 in this paper) and daily operating
time of ES respectively. PV F is the present value function
to discount the future battery replacement cost incurred in
Tproj year to time zero, CRF is the capital recovery function
associated with the annual discount rate and project period
[15]. D and X are the number of major parallel inverters and
redundant modules for PFC [29].

B. Constraints

To minimize the total cost within the time horizon of the
project service period, The sizing of the ES involves finding
the optimal power rating and energy capacities of batteries
and UCs, while the sizing of the PFC involves finding the
optimal power rating. Since the equipment sizing requirement
of ES (Pbt

cell, E
bt
cell, P

uc
cell, E

uc
cell) and PFC (PPFC

cell ) in engineering
applications, the decision variables are formulated as the
integer variable modeling the number of minimum units in
ES (qbtn , qucn ) and PFC (qPFC

m ), and Equations (12)–(14) state
that these decision variables are limited by upper and lower
bounds, as:

MinPPFC
cell 6 PPFC

rate,m 6 MaxPPFC
cell (12)

MinPbt
cell6P

bt
rate,n6MaxPbt

cell,MinEbt
cell6E

bt
rate,n6MaxEbt

cell

(13)
MinPuc

cell6P
uc
rate6MaxPuc

cell,MinEuc
cell6E

uc
rate6MaxEuc

cell

(14)
where,

P bt
rate,n = qbtn · Pbt

cell, E
bt
rate,n = qbtn · Ebt

cell, ∀qbtn ∈ Z+

P uc
rate,n = qucn · Puc

cell, E
uc
rate,n = qucn · Euc

cell, ∀qucn ∈ Z+

PPFC
rate,m = qPFC

m · PPFC
cell , ∀qPFC

m ∈ Z+

C. ES Degradation Analysis

A battery’s life is dependent on its calendar ageing and
cycle ageing. Calendar ageing is determined by temperature,
battery state of life, and calendar time. Cycle ageing is mainly
determined by the depth of discharge (DoD) and SoC [30].
To take the battery degradation cost into account, the battery
lifetime estimation approach introduced in [31], Tbt is the total
times of battery replacement during the project period, which
is determined by the battery life. By means of the rain-flow

This article has been accepted for publication in IEEE Transactions on Smart Grid. This is the author's version which has not been fully edited and 
content may change prior to final publication. Citation information: DOI 10.1109/TSG.2023.3276198

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: UNIVERSITY OF STRATHCLYDE. Downloaded on May 16,2023 at 08:41:43 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON SMART GRID, VOL. 0, NO. 0, MAY 2022 6

counting method, the cycle life loss rate (Abt (DoD)) can be
extracted from a series of SoC.

Nbt = dTproj · T−1bt e = 365 · dTproj ·Abt (DoD)e (15)

where de represents the rounding up operand.
A UC’s life is not limited by the cycle ageing, which

assumes that UCs are always working under rated conditions
provided by the manufacturing specifications. Therefore, the
total times of UC replacement (Tuc) is equal to the number
given in the manufacturing specification.
D. Optimization Framework and Solution Methodology

The CC-P model for RESG sizing is illustrated in Fig. 4.
The is formulated as a two-stage optimization problem. The
rated capacity (Ebt

rate, Euc
rate) and rated power (P bt

rate, P uc
rate,

PPFC
rate ) of the RESG is determined in the first-stage decision,

which aims at minimizing the total cost J1. Especially, in
order to prolong the battery’s lifetime, a battery degradation
model is considered for the replacement cost. The power rating
and capacity are regarded as the boundary parameters of the
second-stage. The second-stage concentrates on minimizing
the expected energy cost E [J2 (x)], and the optimized PFC
power PPFC

t,α/β and transformer power PTT
t , the optimized

charging/discharging power PTT
t , P bt

t,dis, P
uc
t,ch, P uc

t,dis for bat-
tery and UC are available, respectively. The traction load
uncertainty problem is described by multi-GMM theory and
converted to a chance constraint solved in second-stage. Note
that the objective of second-stage is return to the first-stage for
assessment of RESG sizing. Owing to the nonlinear battery
lifetime estimation, the first-stage is a nonlinear planning
problem, which can be effectively solved by the heuristic
search algorithms. For example, the Sparrow Search Algorithm
(SSA), one of the effective swarm intelligence optimization
algorithms, is employed in this paper, the details of SSA
algorithm can be found in [31]. The second-stage can be
formulated as a MILP model and addressed by CPLEX solver.

IV. CHANCE CONSTRAINED OPTIMAL ECONOMIC
DISPATCH PROBLEM FOR RESG

A. Objective Function

An objective function of second-stage includes two terms,
namely, energy consumption cost and demand cost. In practice,
the demand charge is paid by billing month, so the cost term
is presented as a daily conversion demand charge of each day
by introducing the parameter for operating days in a month,
as:

J2 =

Nday
T∑
t=1

(
ctpurP

grid
pur,t + ctretP

grid
ret,t

)
·∆t

+
cdem

Nday
T

·max

(
t+14∑
t

P grid
pur,t/15

) (16)

where P grid
pur,t and ctpur represent active power supplied by the

utility grid and the purchased electricity price. P grid
ret,t and ctret

represent regenerative braking power fed back to utility grid
and the penalty charge. cdem represents the electricity price of
peak demand power. Nday

T is the total number of time intervals
during a day.

B. Constraints

1) Power Balance Constraints: active power balance con-
straints for each port of RESG are described in (17a)-(17d)
. It states that the active power supplied by the power grid
(P grid

pur,t), ES discharging (P bt
t,dis, P

uc
t,dis), feed superfluous power

to grid (P grid
ret,t). The power balance for NZ-PFC and TSS-PFC

is restricted by applying constraints (17d).

PTT
t + PNZ−PFC

t,α + PTSS−PFC
t,β > PTrain

t (17a)

PTT
t + PNZ−PFC

t,α + PTSS−PFC
t,β 6 PTrain

t (17b)

PTT
t + PTSS−PFC

t,α = P grid
pur,t − P

grid
ret,t (17c)

(1+ σl)
(
PPFC
t,β − PPFC

t,α

)
=P bt

t,dis− P bt
t,ch+ P uc

t,dis− P uc
t,ch (17d)

where σl is defined as the power loss of converter.
2) VU Compensation Constraints: Based on the previous

analysis of the VU emission features of electrified railways
in Section II, equations (4) and (5) can be linearized by
introducing auxiliary non-negative variable κTSS−PFC

t,α , κTT
t,α ,

binary variable vt, and large real number M.

κTSS−PFC
t,α + κTT

t 6
V UF ∗ · Ssc√

3Ugrid

(18a)

PTSS−PFC
t,α√
3UPFC

t N1

− PTT
t√

3UTT
t N2

= κTSS−PFC
t,α − κTT

t (18b)

0 6 κTSS−PFC
t,α 6 vtM, 0 6 κTT

t,α 6 (1− vt)M (18c)

where V UF ∗ represents the VU mitigation limitation, which
can be generated by dynamic allocation algorithm of VU
regulation in [11]. Ssc represents short-circuit capacity of grid.

3) ES Constraints: When the ES is connected to the NZ-
PFC or TSS-PFC, the limits of discharging and charging power
are set up from (19a) to (19d), which means that both the rated
power and the available energy variation at time intervals can
decide the upper bound of power. The charging state of the
ES is restricted by applying constraints (19e) to (19f), which
demonstrate the fact that charging status cannot coexist with
the discharging state simultaneously.

06P bt
t,ch 6 min

[
Smax
bt Ebt

rate− Ebt
t

/
ηbtch∆t, P

bt
rate

]
(19a)

06P bt
t,dis 6 min

[
Ebt
t − Smax

bt Ebt
rate

/
ηbtch∆t, P

bt
rate

]
(19b)

06P uc
t,ch 6 min

[
Smax
uc Euc

rate− Euc
t

/
ηucch∆t, P

uc
rate

]
(19c)

06P uc
t,dis 6 min

[
Euc
t − Smax

uc Euc
rate

/
ηucch∆t, P

uc
rate

]
(19d)

P bt
t,ch6κ

bt
t,chP

bt
rate, P

bt
t,dis6κ

bt
t,disP

bt
rate, κ

bt
t,ch+ κbtt,dis61 (19e)

P uc
t,ch6κ

uc
t,chP

uc
rate, P

uc
t,dis6κ

uc
t,disP

uc
rate, κ

uc
t,ch+ κuct,dis61 (19f)

where Ebt
rate and P bt

rate are rated capacity and power of bat-
teries. Euc

rate and P uc
rate are rated capacity and power of UCs.

Smax
bt and Smin

bt are the minimum and maximum state of charge
of batteries. Smax

uc and Smin
uc are the minimum and maximum

state of charge of UCs. κbtt,ch, κbtt,dis , κuct,ch and κuct,dis are binary
variables.
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Fig. 5. Scatter Plots of Joint Distributions for Traction Power and Accelera-
tion.
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Fig. 6. Train-RESG Interactions Simulation. (a) Train-RESG Interactions
Flowchart, (b) Comparison with power flow between prediction and field-test

C. CC Compact Formulation

1) General Forms: The optimal problem with general
chance-constraints uses probabilistic constraints and aims to
minimize the mean-value of the total daily operating cost of
RESG in railways. This problem in a RESG system is modeled
in the following manner:

min
x

E [J2 (x)]

s.t. (16)− (18)

P {Ai (x) ξ 6 bi (x)} > 1− εi ∀i
(20)

Ai (x) ξ 6 bi (x) ={
PTrain
t > PTT

t + PNZ−PFC
t,α + PTSS−PFC

t,β ,

PTrain
t 6 PTT

t + PNZ−PFC
t,α + PTSS−PFC

t,β

} (21)

The letter x represents the decision variable vector (i.e.,
power output of ES, PFC), and ξ represents the uncertainty
variable vector following the distribution P (i.e., power fore-
cast of train PTrain

t ). Ai (x) and bi are affine functions about

the decision variables. The violation probability of the chance
constraint is less than εi, and i represents the number of chance
constraints, i = 1, 2, 3, 4.

2) Tractable Forms of CC: With careful derivations, the
chance constraint of (21) is converted into an equivalent form:

FAi(x) [bi (x)] > 1− εi
⇒ bi (x) > F−1Ai(x)

(1− εi )
⇒ bi (x) 6 F−1Ai(x)

(εi ) ∀i
(22)

where F is the cumulative probability function of Ai (x).
Note that F−1Ai(x)

(εi) is a nonlinear function of εi , which
cannot be directly computed by commercial solvers. For
example, the Authors of [17] adopt the non-parametric KDE
to capture the uncertainty of traction load, it is hard to give
an analytical formulation for function F−1 (·). In order to
replace the chance constraints (20) with the deterministic
linear constraints (22), this paper uses as a new decision
variable Gi, and obeys the multivariate GMM, to substitute
for εi [26], [28].

Gi = F−1Ai(x)
(1− εi) (23)

Therefore, the chance constraint is converted into a linear
inequality:

Gi − bi (x) > 0 (24)

V. TRACTION POWER FORECAST AND VU CONFIDENCE
PREDICTION

A. Uncertainty Characterization of Train-RESG Interactions

1) Uncertainty of Train Dynamics Modelling: For sim-
plicity and from a power engineering perspective, the train
can be seen as a single-particle dynamic system [33], the
kinematic equations of the train can be described as (25), the
acceleration can be derived from force analysis with given
mass. Moreover, under the given speed vTrains and position s
at line, the estimated traction power of the train (P̂Train

s ) is
determined by its traction/braking force.

P̂Train
s = F̂tot · v = âTrains ·Mtr · vTrains (25)

where Mtr is the effective mass of the train, âTrains is the
estimated acceleration of train at position s, F̂tot is the total
traction/braking force determined by line profile, speed limit
and driving strategy.

Under the same railway line conditions, owing to the
driver’s different driving strategy, the train’s acceleration
(aTraint ) is different, and the power demand is also different,
which reflects the uncertain characterization of traction load.
Based on the dates of the Telematics Control Unit (TCU) of
train from field-test, Fig. 5 shows the scatter plots of joint
distributions of traction power and acceleration. It can be seen
that when the train is accelerating, the greater the acceleration,
the greater the demand for traction power; and vice versa.
Meanwhile, the relationship between traction power and train’s
acceleration is non-linear and non-unique. Consequently, the
fluctuation of traction power is the basic reason that arouses
the uncertainty of power flow.
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Algorithm 1 Confidence Prediction of Traction Power Flow
1: Initialization: obtain the timetable, line parameters, train

type and TSS parameters;
2: Compute the traction power flow P̂Train

t by commercial
software (e.g. OpenPowerNet);

3: Harvest historical dataset X =
{
x[i], x̂[i]

}d
i=1

for variable
in Γ in a day t;

4: Construct the joint CDF multi-GMM:

FX (x |NG;Γ ) =

∫ x

−∞

NG∑
n=1

ωnNn
(
t, t̂ |µn, σn

)
dt

5: Import P̂Train
t into F−1X (x |NG;Γ ):

x = F−1X (r)

6: Obtain the confidence forecast result
[
PTrain
t ,PTrain

t

]
.[

PTrain
t ,PTrain

t

]
= P̂Train

t +
[
x̂θLt , x̂

θU
t

]

Algorithm 2 Confidence Level θ and Violation Probability ε
Selecting for CC-P Solving

1: Harvest the confidence prediction result of traction power
flow

[
PTrain
t ,PTrain

t

]
by Algorithm 1;

2: Evaluate the VU distribution at grid for each TSS by
equation (4), and count the 95% probability and maximum
value set with different confidence level (V UFTSS−k

95%,θ ,
V UFTSS−k

max,θ ∀k = 1, 2);
3: if V UFTSS−k

95% > Ek95% & V UFTSS−k
max > Ek100% then

4: ε = 1−max
{
FV UF

95%

(
Ek95%

)
,FV UF

100%

(
Ek100%

)}
;

5: else if V UFTSS−k
95% 6 Ek95% & V UFTSS−k

max >Ek100% then
6: ε = 1−FV UF

100%

(
Ek100%

)
;

7: else if V UFTSS−k
95% > Ek95% & V UFTSS−k

max 6Ek100% then
8: ε = 1−FV UF

95%

(
Ek95%

)
;

9: else
10: ε = 0.999 and VU compensation constraint is failure;
11: end if

2) Uncertainty of Train-RESG interaction: Fig. 6(a) shows
the deterministic forecast flowchart of the train-RESG. Firstly,
the line data, train traction features and speed limits are
imported into the train’s power simulator, which allows for
obtaining the entire speed (vTrains ) and power distribution
(P̂Train
s ) of a train in each position of line. Secondly, the power

dates of a single train, timetable and TSS parameters are input
to RESG’s power flow simulator [33], and the total power
consumption with time (P̂Train

t ) and VU distribution of each
TSS can be dynamically obtained. In this paper, initial power
flow scenarios of two TSSs are generated, assuming that the
RESG infrastructures are not operational, which implies that
the VU performance of TSS has arrived at the worst level.

Fig. 6 (b) shows the discrepancy between forecasted and
measured with time, which is the proxy for the uncertainty.
It can be seen that traditional deterministic forecasting only

provides single-valued estimation, which misses the signifi-
cant stochastic distribution information. As result, it is still
challenging to model the stochastic dependence analytically.
The author of [17] proposes an uncertainty modelling approach
based on the nonparametric KDE. Nevertheless, it is hard to
obtain an inverse function of cumulative probability density in
chance-constrain programming.

B. Traction Load Uncertainty Modeling

1) Multivariate GMM Description: To characterize the un-
certainty of traction load features, the joint GMM distribution
is used in this paper to accurately model the multimodal
probability distributions of traction power forecast. A GMM
for a d-dimensional random vector X =

{
x[i], x̂[i]

}d
i=1

,
as shown in (26)-(28), is defined as a convex combination
of multi-dimensional Gaussian distribution function with an
model parameters set Γ = ωn, µn, σn |n = 1, 2, · · · ,NG [21].

fX (x |NG;Γ ) =

NG∑
n=1

ωnNn (x, x̂ |µn, σn ) (26)

NG∑
n=1

ωn = 1, ωn > 0 (27)

Nn (x |µn, σn ) =
e−

1
2 (x−µn)

Tσ−1
n (x−µn)

(2π)
d/2 · det (σn)1/2

(28)

where x and x̂ are the actual power and forecasted power,
respectively. NG is the number of Gaussian components, ωn
is the weighting coefficients, {µn, σn} denotes the set of
parameters in the nth mixture component Nn (x |µn, σn ).
µn ∈ Rd×1 and σn ∈ Rd×d are the expectation vector
and covariance matrix of Gaussian component, respectively.
Standard guidelines for the multi-GMM and the parameter
estimation are available in [21].

2) Analytical CDF of the GMM: The cumulative distribu-
tion FX is another essential function to model traction load
uncertainty, which is analytically expressed as:

FX (x |NG;Γ ) =

∫ x

−∞

NG∑
n=1

ωnNn
(
t, t̂ |µn, σn

)
dt (29)

To obtain the forecasted power, it can further adopt the
inverse transform method by calculating x = F−1X (r) as the
sample from fX , where the scalar r ∼ U(0, 1).

Based on the multi-GMM model, the confidence intervals
(CIs) of train load uncertainties

[
x̂θLt , x̂

θU
t

]
can be calculated

by using the joint CDF in (29). A CI (CIθt ) of the forecasted
train power with a confidence level θ can be expressed by:

CIθt =
[
PTrain
t ,PTrain

t

]
= P̂Train

t +
[
x̂θLt , x̂

θU
t

]
︸ ︷︷ ︸

UNCERTAINTY

(30)

where the lower and upper confidence coefficient θL and θU
equal to θ/2 and (1− θ/2), respectively.
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Fig. 7. Power supply configuration of considered electrified railway.

TABLE II
PARAMETERS OF RESG

Power Grid Transformer PFC

Ugrid
abc

(kV)
Ssc

(MVA) N1 N2
UTT

(kV)
UPFC
α

(kV)
UPFC
β

(kV)

220 1500 4 4√
3

27.5 27.5 27.5

TABLE III
PARAMETERS OF ES

Parameters Unit Battery UC

cP kCNY/kW 2.83 2.05
cE kCNY/kWh 4.64 19.80
crep kCNY/kWh 1.29 0
com,f CNY/kW/year 25.5 0
com,v CNY/MW/h 2.78 0
ηdis/ηch - 80%/80% 95%/95%

Initial SoC - 50% 50%
SoC range - 20-80% 5-95%

TABLE IV
TIME-OF-USE TARIFF

Parameters Peak Mid Valley

Energy (CNY/kWh) 1.252 0.782 0.370
Demand (CNY/kW/mon) 42 42 42

Time period 8-11h, 18-21h 7h, 12-17h 0-6h, 22-0h

C. Standard Processes

1) Traction Power Forecast: The confidence prediction
approach for the traction power flow is proposed in Algorithm
1. This paper is carried out in the framework of IEC 61000-3-
13 and general train-RESG interaction simulation [17], [30],
and therefore, the proposed approach can be extended to any
railway traction system connected to a power system.

2) Confidence Level Selecting: The confidence level and
violation probability selecting approaches for solving CC-
P are proposed in Algorithm 2. The 95% probability
and maximum valve sets of VU distribution are defined
as V UFTSS−k

95%,θ =
{
V UFTSS−k

95%,θ , θ ∈ [0, 1] , k = 1, 2
}

and

V UFTSS−k
100%,θ =

{
V UFTSS−k

100%,θ , θ ∈ [0, 1] , k = 1, 2
}

, respec-
tively. As a result, the violation probability ε that VUF exceeds
the limit under the confidence level θ is obtained.

Generally, choosing a feasible violation probability and
confidence level is an important step in the design process of
railways. Higher violation probability means higher compensa-
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Fig. 8. Multi-GMM and other frequently used distributions for modelling the
traction power distributions.

tion cost, and lower confidence level means higher uncertainty
of forecasted train power. Single-phase traction load is a
significant feature distinguished from the normal power grid
load. Consequently, taking the VU limit as a selection standard
is one of the available approaches to obtain a compromise
solution.

VI. CASE STUDY

A. Test System and Data Source

In order to validate the feasibility of the proposed CC-P of
RESGs, a busy electrified railway is considered for the case
study, as shown in Fig. 7. The detailed network parameters
can be found in [12], while the basic parameters of RESG,
ES and time of use are listed in Table II-IV. The unit capacity
of the battery and UC is 80 kWh and 0.15 kWh, and the unit
power of the battery, UC and PFC is 10 kW, 5 kW, and 100
kW, respectively [34].

All the case studies are solved by the MATLAB 2016b
interface on a workstation with Intel Xeon Silver 4114 CPU
and 64 GB RAM. The first-stage is built as an NLP problem
and addressed by the MATLAB Global Optimization Toolbox,
the second-stage is formulated as a MILP problem and solved
using IBM ILOG CPLEX solver via YALMIP. The entire two-
stage optimization framework is shown in Fig. 4.

B. Result of Modeling Uncertainty

Fig. 8 compares the probability distribution of traction load
by using five distributions including multi-GMM, parametric
KDE (Gaussian, Gamma, Log-normal) and nonparametric
KDE. It can be observed that the multi-GMM accurately match
well with empirical distributions than the other four regular
distribution. This paper adopts the correlation coefficient and
Kolmogorov-Smirnov test integral (KSIPer) to quantify the
correlation and statistical similarity between the original CDF
and the CDF of fitting distribution, and employs mean absolute
error (MAE) to evaluate the uniform fitting errors [21], which
shows in Table V. It can be seen that multi-GMM method
has the highest correlation and lowest KSIPer and MAE,
indicating that the multi-GMM can better represent traction
power distribution than the other four approaches.

Fig. 9 (a) and (b) show the lower and upper bounds, with θ
is 20%, of predicted traction power flow for TSS-1 and TSS-
2. In order to illustrate the forecast result under the various
CIs (θ),the power flow from 12:00 to 13:00 is drawn in Fig.
9 (c) and (d). The is purple curve is measured power flow
in real world. It can be seen that the confidence forecasts are
not symmetric, and that the measured curve can be completely
covered by the CI.
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TABLE V
METRICS OF FIVE DISTRIBUTIONS ESTIMATED FOR TRACTION LOAD

Distributions Metrics
Correlation coeff. KSIPer MAE

Gaussian 0.9598 0.3386 0.1183
Gramma 0.9060 0.5016 0.2178

Log-normal 0.9117 0.5056 0.2162
Nonparametric KDE 0.9626 0.3265 0.1116

Multi-GMM 0.9711 0.2551 0.1105

TABLE VI
METRICS OF TWO PREDICTION APPROACH FOR TRACTION POWER

Prediction Method ACE% ASV%

Method in [17] 5.289 28.92

Proposed method 4.577 25.59

TABLE VII
OPTIMIZED CAPACITY FOR RESGS

TSS1 TSS2 NZ

PPFC
rate /kW 3000 3000 3300

Pbt
rate/kW 130 130 130

Ebt
rate/kWh 1040 1040 1040

Puc
rate/kW 4150 1750 1000

Euc
rate/kWh 12 5 3

TABLE VIII
THE TOTAL DAILY INVESTMENT AND OPERATION COST OF RESGS

Without Optimal With Optimal

TSS1&TSS2 TSS1 TSS2 NZ Total

CES
cap/kCNY – 3.07 2.34 1.55 6.96

CPFC
cap /kCNY – 0.28 0.28 0.30 0.86

CES
rep/kCNY – 1.24 1.24 1.24 3.71

CES
om/kCNY – 0.01 0.01 0.01 0.03

CPFC
om /kCNY – 0.42 0.18 0.10 0.70

E [J2]/kCNY 60.78 21.61 18.81 0.00 40.42

Ctot/kCNY 60.78 26.62 22.86 3.20 52.68

Total Cost Savings – 13.32%

To evaluate the accuracy of the proposed model, ACE
and ASV are defined, which can evaluate the reliability
and sharpness. Reliability indicates the degree of correctness
of a forecast model assessed by the hit percentage, while
sharpness indicates the uncertainty conveyed by the forecast
model [23]. Table VI shows the metrics value for different
prediction approaches, compared with the method in [17]. It
indicates that the proposed model shows the smallest value,
which presents the optimal tradeoff between reliability and
sharpness compared to other correlated conditions.Therefore,
the smallest ACE and ASV values verify the effectiveness
of the proposed prediction model in Section V.

C. Result of VU Confidence Prediction

Fig. 10 (a)-(b) present the V UFTSS−1
95%,θ and V UFTSS−1

100%,θ dis-
tribution of TSS-1, respectively. Based on the IEC/TR 61000-
3-13, 95% probability limitation E95% and maximum limita-
tion E100% are set as 2% and 4% in this paper. V UFTSS−1

95% is
large than 2% when the confidence level exceeds 0.8, whereas

(a) (b)

(c) (d)

Fig. 9. Prediction result of traction power flow. (a) Lower and upper bounds
of power flow for TSS-1, (b) Lower and upper bounds of power flow for
TSS-2, (c) Confidence prediction result of TSS-1 with various CIs at 12:00
to 13:00, (d) Confidence prediction result of TSS-2 with various CIs at 12:00
to 13:00.

(a) (b)

(c) (d)

Fig. 10. V UFTSS−k
95%,θ

and V UFTSS−k
100%,θ

distribution for each TSS. (a)
V UFTSS−1

95%,θ
, (b)V UFTSS−1

100%,θ
, (c) V UFTSS−2

95%,θ
, (d) V UFTSS−2

100%,θ
.

(a) (b)X:2.000
Y:0.962

X:2.000
Y:0.988

X:2.000
Y:0.988

(a) (b)

X:4.000
Y:0.010

Fig. 11. Violation probability (1 − ε) of 95% probability of VUF under
different θ. (a) TSS-1, (b) TSS-2.

V UFTSS−1
100% exceeds 4% for all levels. Fig. 10 (c)-(d) present

the V UFTSS−2
95%,θ and V UFTSS−2

100%,θ distribution of TSS-2, re-
spectively. V UFTSS−2

95% is large than 2% when the confidence
level exceeds 0.5, while V UFTSS−2

100% doesn’t exceed 4% for
all levels. It can be observed that the of VUF increases as
the confidence level θ increases, since a larger θ renders
the available traction power flow more lenient. According to
Algorithm 2, 0.95 and 0.5 are selected as the confidence level
of the chance constraints of TSS-1 and TSS-2, respectively.

Fig. 11 shows the selecting result of violation probability
for TSS-1 and TSS-2 under different confidence levels. In Fig.
11(a), the violation probability 1−ε = 0.01 since V UFTSS−1

100%
exceeds 4%. In Fig. 11(b), the the violation probability 1−ε =
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(a) (b)

(c)

Fig. 12. Optimized result of each TSS. (a)Power flow of TSS-1, (b) Power
flow of TSS-2, (c) Comparison with electricity cost and composition in
different TSSs.

(a) (b)

Fig. 13. Planned and actual active power of train. (a) TSS-1 with 1 − ε =
0.01, θ = 0.95, (b) TSS-2 with 1− ε = 0.98, θ = 0.5.

(a) (b)

X:1
Y:3.6

X:1
Y:4.3

X:1
Y:3.6X:0.95

Y:1.9

X:0.95
Y:2.1

X:0.95
Y:1.7

X:0.95
Y:2.2

Fig. 14. Optimized result of VUF. (a) TSS-1, (b) TSS-2.

0.98 when the V UFTSS−2
95% exceeds 2%.

D. Result of ES and PFC Planning

By applying the proposed two-stage model combining ES
sizing and daily scheduling, the optimal capacity of the
RESGs’ facilities is presented in Table VII, the optimal cost
is shown in Table VIII. It can be seen that the daily total cost
is decreased by 13.32% (from 60.78 kCNY to 52.68 kCNY).

Fig.12 (a) and (b) show the optimized grid power of traction
substation compared to the initial grid power. It can be seen
that RBE is mostly utilized by the ES and the train.

Fig.12 (c) shows the components of electricity cost, the
installation of PFC and ES resulted in a significant decrease
in energy and demand costs, with a 25% decrease for TSS-
1 (from 29.04 kCNY/pre-day to 21.61 kCNY/per-day), and a
40% decrease for TSS-2 (from 31.74 kCNY/pre-day to 18.81
kCNY/per-day).
E. Result of ES and PFC Dispatch Scheme

Fig.13 (a) and (b) show the planned and actual active power
flow of the train by using (21). The light blue area is the

(a) (b)

Fig. 15. SoC of ES. (a) TSS-1, (b) TSS-2.

(a) (b)

Fig. 16. Optimized result of NZ-PFC. (a) Power flow of PFC and ES, (b)
SoC of ES.

(a) (b)

Fig. 17. Comparison result. (a) Comparison of battery lifetime, (b) Compar-
ison of different optimizations in the objective.

feasible region for train power, and the navy blue curve is the
optimal solution. The above results show that the proposed
chance constraint is available, and it can effectively address
the uncertainty of train power.

Fig.14 (a) and (b) show that the maximum daily emission
levels for TSS-1 and TSS-2 are 3.6% and 3.6%, respectively.
Similarly, the daily emission levels of 95% probability are
1.9% and 1.7%, respectively. Consequently, the compensation
results satisfy the limits of IEC/TR 61000-3-13, and the
proposed dynamic VUF constraint is able to regulate the VU
effectively via active ES and PFC control.

Fig.15 (a) and (b) depict the SoC for the battery and UC,
respectively. The UC is frequently charged and discharged,
while the battery has a relatively stable operation curve, which
also confirms that the battery responses to long-term energy
needs, whereas UC responds to severe power fluctuations. It
is interesting that the ES store the energy slowly from 0:00
A.M to 4:00 A.M, due to the state of charging at valley time
period with low price.

Fig.16 (a) presents the power of PFC and ES. The SoC of
ES is also drawn in Fig.16 (b). The NZ-PFC is able to route the
power from one TSS to another TSS where it is required. On
the other hand, the RBE is partially absorbed by the NZ-ES,
which greatly improves the utilization of RBE. Therefore, the
proposed system can dispatch the power, making it a feasible
approach for operating railways more cost-efficient and power
quality friendly.
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F. Results Comparison

1) Comparison With ES Ageing: Fig. 17 (a) shows the
batteries’ lifetime with and without ageing cost. Considering
ES degradation in the O&M cost function, the lifetime thus
evaluated in years at three positions is increased from 2.0
years to 5.6 years. As a result, the principal ES lifetime was
maximized by considering the storage replacement cost and
the ES optimal size was determined economically.

2) Comparison With Different Violation Probabilities: Fig.
17 (b) shows a comparison of the objective function of energy
cost for different violation probabilistic thresholds (1 − εi)
and the benchmark model. It can be observed that the optimal
energy cost (E (J2)) decreases as 1 − εi increases from 0.6
to 0.95, since larger 1 − εi renders the chance constraint
less lenient. Also, it can be seen that the energy cost under
higher violation probabilistic is closer to the deterministic
optimization model (the actual power flow is perfectly known).

VII. CONCLUSION

This paper proposes a chance-constrained two-stage pro-
gramming approach to determine the capacity of PFC-ES for
RESG, considering the uncertain predictions of the traction
power flow. At the first-stage, the size of the RESG in-
frastructure is optimized by minimizing the investment and
operation costs of RESG’s devices, including the capital costs,
replacement cost and O&M costs. Compared to the initial
transformer-based power supply structure, the total cost of
RESG can be decreased by 13% over the service cycle of PFC-
ES. At the second-stage, the power flow shifting plan of PFC
and charging/discharging power control actions of the ES are
optimally scheduled with the aim of minimizing the expected
electricity cost. Compared with the conventional operation
schemes, the energy costs of the two TSSs are significantly
reduced by 25% and 40%, respectively. Meanwhile, with the
dynamic VU regulation, the 95% probability and the maximum
value of both TSSs are less than 2% and 4%, respectively.
Further, in order to capture the statistical properties of the
traction power flow, probabilistic traction power forecasting
incorporating a multi-GMM is proposed. Compared with the
traditional uncertain modeling approaches, the model provides
significant improvements in reliability and sharpness features.
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