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ABSTRACT
As space debris poses substantial risks to space-based assets,
the need for efficient, high-resolution monitoring and predic-
tion methods is pressing. This paper presents the findings
from the project NEU4SST, exploring Neuromorphic Engi-
neering, specifically event-based visual sensing coupled with
Spiking Neural Networks (SNNs), as a solution for enhanced
Space Domain Awareness (SDA). Our research concentrates
on event-based visual sensors and SNNs, offering low power
consumption and precise high-resolution data capture and
processing. These technologies bolster the ability to detect
and track objects in space, addressing key challenges in the
Space domain. Our method exceeded previous models by
15% on the informedness metric, demonstrating its potential
in improving SDA, and aiding safer, more efficient space
operations. Continued research and development in this area
are crucial for realising the full potential of Neuromorphic
engineering for future space missions.

Index Terms— Neuromorphic, Event-Based Camera,
Spiking Neural Network.

1. INTRODUCTION

The rapid evolution of Space Situational Awareness (SSA)
coupled with the vital importance of Space Domain Aware-
ness (SDA) necessitates efficient tools for tracking the ever-
increasing number of objects in near-Earth space [1, 2]. This
paper explores a cutting-edge approach that harnesses the
synergy of neuromorphic event-based visual sensors [3] and
Spiking Neural Networks (SNNs) [4], to provide a transfor-
mative platform for enhancing SSA and SDA capabilities.

Neuromorphic sensors, inspired by the workings of the
biological retina, asynchronously capture high temporal res-
olution spatial data, consuming significantly less power, a
paramount attribute in space applications [3]. Their unique
ability to exploit non-linear signal-noise relationships [5],
capturing data at optimal signal-to-noise times, optimises
SSA precision and increases the efficiency of tracking objects
in space.

∗This work was funded by the European Space Agency through grant ID
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SNNs are the third generation of neural networks, mim-
icking human neural processes to adeptly handle the com-
plex data from these event-based sensors [4]. This equips
SNNs with enhanced learning and adaptation abilities, of-
fering a novel solution to the SSA and SDA challenges. By
enabling simultaneous detection and tracking of moving ob-
jects in low signal-to-noise environments [5], this synergy
improves space debris management and collision risk miti-
gation, thereby safeguarding both space and terrestrial assets
[6, 7].

We identify several key areas where neuromorphic en-
gineering and SNNs can potentially enhance SSA and SDA
capabilities: capturing space object motion paths with high
temporal resolution; developing a cataloguing system able to
handle increasing numbers of entries; ensuring accuracy suf-
ficient for reliable conjunction warnings; and enabling object
tracking during daytime. These areas align with findings from
a recent UK Space Agency report [1].

In this paper, we present a novel approach to the detection
and tracking of objects in space, based on the combination
of event sensor data and SNN-based neuromorphic process-
ing. The experimental results reported indicate that, on the
same dataset, our novel approach can achieve better perfor-
mance than the state-of-the-art, which does not employ SNN
or neuromorphic processing. At the same time, the approach
proposed provides a step closer to realising a complete end-to-
end neuromorphic pipeline, from sensing to processing. This
approach is data-efficient, meaning that it produces data only
when needed, and therefore also energy-efficient. These are
key elements for applications onboard spacecraft.

The rest of the paper is organised as follows. Section 2
describes the SNN developed in this work, and the data and
metrics used for comparison. Section 3 reports on the experi-
mental results obtained, while section 4 concludes the paper.

2. METHODOLOGY

2.1. Event-based SSA dataset

The study employed the event-based space situational aware-
ness (EBSSA) dataset by Afshar et al. [8] as a benchmark
for testing the SNN developed in this research. This dataset,
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Fig. 1. An accumulated image (3.5 seconds) and breakdowns
of the slow- and fast-moving objects (100ms) that need to be
extracted simultaneously. (SL8RB-21938)

comprising over 8 hours of data and 377 million events, is
unique in the literature as the only publicly available event-
based space imaging dataset. The data was gathered from a
robotic electro-optic telescope facility, using both ATIS [9]
and DAVIS [10] event-based sensors, mounted alongside ex-
isting astronomy equipment. Hand-labelled ground truth is
provided in the dataset, representing the expert human inter-
pretation of the motion of objects in the field of view against
the highly noisy event stream, offering a comprehensive and
challenging standard for algorithm testing.

The dataset provided the opportunity to explore the dy-
namics of the non-linear relationship between noise and sig-
nal, and to investigate how the highest signal-to-noise ratio
might be achieved through careful information accumulation.
The asynchronous event-driven nature of the sensing, with a
high temporal resolution allowing for the capture of one or
few events, served to highlight the benefits of this approach.
Further advantage could be taken of the knowledge that the
signal would display a high degree of spatial locality over a
short period, particularly in the case of very fast-moving ob-
jects. This is a feature that can be successfully exploited by a
convolutional network.

The advantage of a high sampling rate, combined with
a selective accumulation process, is illustrated in Figure 1.
This set of images reveals both the overall scene and the mo-
tion within it, including two objects moving at very different
speeds. In the instance of a slow-moving but bright object, a
high amount of signal is present whenever the object exhibits
relative motion. Capturing information at these moments, al-
though minimal in contrast to the full accumulated images,
allows this information to be accumulated, but without the
noise. The fast-moving object, despite appearing as a sparse
and incoherent series of events, still produces a higher num-
ber of activations in a local area compared to the noise in the
background, when viewed on a small time scale. Therefore,
the highest signal-to-noise opportunities within the SNN can
be found in a similar way. The challenge is in learning the
spatial priors required to detect and understand this as one
continuous object motion path. Example trajectories from the

Fig. 2. Example trajectories from the SL8RB-21938 [8] .

dataset are shown in Fig. 2, illustrating the complexity and
volume of object tracking through space and time.

2.2. Spiking Neural Network

This work leverages an SNN for processing event-based data
derived from visual sensors. In contrast to traditional neu-
ral networks, SNNs employ binary spikes for encoding and
transmitting information, thereby enhancing their compatibil-
ity with high-speed, event-based data. SNNs not only excel in
data efficiency but also in energy conservation [11], thereby
bolstering their suitability for deployment in space.

This project builds on the foundational work of a spik-
ing instance segmentation network [12], employing the same
architectural blueprint and methodology. To address the com-
plex challenge of SSA and motion segmentation, which de-
mands simultaneous recognition of various spatio-temporal
features, we have transitioned from the Integrate and Fire (IF)
neuron model [5] to a set of Leak Integrate-and-Fire (LIF)
neurons, with layer-wise leak variation.

In this model, we utilise a simplified version of the LIF
neuron, whose leak factor extends the range of temporal co-
incidence detection. The equation of the LIF neuron model
is:

Vi(t) = Vi(t− 1) +
∑
j

wj,iSj(t− 1)− λi (1)

where Vi, wj,i, and Sj represent neuron membrane poten-
tial, synaptic weight, and spike train of the neuron, respec-
tively, while λi is the leak factor and t is time. For this work,
the SNN is simulated with discrete input steps of t =100ms,
although the data is still fed to the SNN event by event, as
spike-timing/sequence is important for learning. λ is also set
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Fig. 3. Visual representation of the features being activated
throughout the network, transforming input events into output
events segmented with instance labels. (SL8RB-21938)

to 90% and 10% of the neuron threshold in layers 1 and 2
respectively, using a 5x5 convolution kernel and a 7x7 final
classification kernel with no leakage. This output is then cou-
pled with the instance segmentation method in Kirkland et al.
[12] to better handle the segmentation task.

The introduction of a layer-wise network leak parameter
allows neurons to handle inputs with both short-term and
long-term temporal dependencies. When integrated with the
convolutional hierarchical spatial dependency, this model
effectively encodes the output of an event-based sensor.
Alongside conventional SNN methodologies like homeostasis
and adaptive thresholding, the network undergoes unsuper-
vised Spike-Timing Dependent Plasticity (STDP) training
[13], a proven coincidence detection method for event-based
data, particularly when paired with convolution kernels [14].
Within this work, the learning parameters are α+ = 0.04,
α− = 0.03 with a weight initialisation of 0.8±0.01. As there
are not many spatio-temporal features, they converge within
1 epoch.

2.3. Performance metrics

In accordance with prior studies utilising the EBSSA dataset,
we assessed the effectiveness of our model using sensitivity,
specificity, and informedness metrics [8]. For consistency, a
one-pixel boundary, as outlined in [8], was implemented for
spatial domain classification, forming an evaluative volume
when extended to the temporal domain.

Sensitivity and specificity are binary classification model
measures, signifying the proportions of true positives and
negatives respectively. Instead informedness combines sen-
sitivity and specificity into a singular performance measure.
Both the sensitivity and specificity are dependent on the hy-
perparameter choices, which is a crucial element given the
dynamic nature of the SNN parameters leakage and thresh-
old. These show an inverse correlation with sensitivity, which
could lead to an increased false positives count. However, due
to the hierarchical structure of the network, initial layers can

Table 1. Numerical comparison of the proposed SNN ap-
proach with previous results from Afshar et al. [8].

Algorithm Informedness Sensitivity Specificity
mean std mean std mean std

Raw Events 0.324 0.301 0.690 0.340 0.634 0.148
Hough D 0.244 0.343 0.552 0.408 0.692 0.224
Hough D+T 0.417 0.478 0.442 0.488 0.975 0.073
GMD D 0.609 0.323 0.756 0.284 0.853 0.117
GMD D+T 0.664 0.374 0.813 0.314 0.851 0.223
max (GMD, Hough) D 0.617 0.309 0.754 0.286 0.863 0.103
max (GMD, Hough) D+T 0.753 0.344 0.804 0.331 0.950 0.096
Feat. D. 0.564 0.443 0.580 0.430 0.984 0.041
Feat. D+T 0.775 0.348 0.782 0.349 0.992 0.019
SNN (Prop.) 0.891 0.154 0.895 0.153 0.996 0.010

exhibit high sensitivity while subsequent layers demonstrate
high specificity, leading to enhanced pixel-level sensitivity
and feature-level specificity.

3. RESULTS

Through the innovative addition of LIF neurons in the convo-
lutional spiking process, the model can assign different leak-
age time constants per layer and threshold values on a per-
neuron basis, which significantly enhances both learning and
inference. This allows the network to simultaneously detect
and track short-time/fast-moving and long-time/slow-moving
objects.

It is particularly noteworthy how efficiently the network
handles noise filtering and the detection of spatio-temporal
features. The application of the initial 5x5 convolutional
kernel alongside dynamic thresholds and leakage provides a
robust mechanism to capture features, even in situations of
sparse event occurrence, fast-moving objects and inconsistent
track paths (tumbling objects).

This study also introduces a novel approach to illustrate
how the learned features map onto the input signal to rep-
resent the outputs of the network. Figure 3 offers a visual
demonstration of this process: from the input stage where
a time-accumulated image is presented with fast and slow-
moving objects (along with the associated noise), through the
initial noise filtering and feature mapping stages, to the final
instance segmentation output.

This work demonstrates the superior performance of an
SNN applied to the SSA problem, and its marked improve-
ment over the state-of-the-art reported in [8]. The LIF neu-
rons and convolution kernels within the network enable ef-
ficient noise filtering, resulting in high levels of sensitivity
and specificity for instance segmentation. Table 1 summarises
the performance of the proposed SNN, indicating notable im-
provements in specificity (99.6%), sensitivity (89.5%), and
informedness (89.1%). The superior specificity of the SNN
is due to its direct mapping to the input spiking activation,
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Fig. 4. Example from a difficult scene with fast and slow
moving objects present. This figure shows the ground truth
lines (blue) and detected objects (red). (SL8RB-21938)

ensuring precise segmentation outputs.
Furthermore, the high sensitivity achieved by the net-

work underpins its ability to accumulate information within
the spiking neurons. This, along with the inherent ability
of leaky integrate and fire neurons and convolution kernels
to filter noise allow for signal detection even amidst high
levels of noise. These features of the SNN are advantageous
in the second layer, where the network is designed to cap-
ture both long and short-term signals, again exploiting the
accumulative nature of the neurons.

Figure 4 provides qualitative insights, illustrating a 3D
plot of the ground truth (blue dots) versus network output
(red stars). Some instances of the ground truth have no corre-
sponding network output (highlighted in orange circles), con-
firmed by manual inspection to lack visible features in the
event streams. Smaller ground truth motion paths with lim-
ited network output are due to restricted visual data when
compared to the ground truth (highlighted in green circles).

4. CONCLUSION

The event-camera technology shows promising potential in
the field of Space Situational Awareness and Space Domain
Awareness, providing valuable event-based data for analy-
sis. Our study extends the capabilities of the event-camera
by leveraging the SNN model, demonstrating its effectiveness
and efficiency in processing spatio-temporal context data.

The SNN model exhibits superior performance in instance
segmentation tasks, surpassing previous models by 15% and
further enhancing the capabilities of the event-based sensor.
By exploiting the input spiking activation and effectively dis-
cerning patterns amidst noise, the SNN model achieves im-
proved specificity, sensitivity, and informedness.

The integration of the event-camera with the SNN model
presents a compelling approach for efficient and effective
SSA and SDA work. This combination leverages the unique
data acquisition properties of the event-based camera, and

the robust noise reduction and pattern recognition capabilities
of the SNN model, to enhance the analysis of space-related
phenomena.

Future research should focus on refining this integrated
approach, exploring the full potential of event camera data,
and optimising the dynamics and parameters of the SNN
model for different SSA and SDA scenarios. Continued
improvements in this field hold the promise of advancing
our understanding of space dynamics and supporting timely
decision-making in space-related operations.
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