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Abstract. The Neuromorphic (NM) field has seen significant growth in
recent years, especially in the development of Machine Learning (ML)
applications. Developing effective learning systems for such applications
requires extensive experimentation and simulation, which can be facili-
tated by using software frameworks that provide researchers with a set
of ready-to-use tools. The NM technological landscape has witnessed the
emergence of several new frameworks in addition to the existing libraries
in neuroscience fields. This work reviews nine frameworks for developing
Spiking Neural Networks (SNNs) that are specifically oriented towards
data science applications. We emphasize the availability of spiking neu-
ron models and learning rules to more easily direct decisions on the most
suitable frameworks to carry out different types of research. Furthermore,
we present an extension to the SpykeTorch framework that enables users
to incorporate a broader range of neuron models in SNNs trained with
Spike-Timing-Dependent Plasticity (STDP). The extended code is made
available to the public, providing a valuable resource for researchers in
this field.

Keywords: frameworks · spiking neural networks · spiking neurons ·
neuromorphic · software · machine learning · unsupervised learning

1 Introduction

The development of Deep Learning (DL) algorithms was greatly eased by the
introduction of purposely developed software packages. These packages, or frame-
works, usually offer a wide range of software tools that aim to speed up the de-
velopment of Machine Learning (ML) pipelines as well as make the algorithms
available to a larger audience. When referring to conventional DL, i.e. non Neu-
romorphic (NM), several famous libraries exist, such as TensorFlow (TF) [2],
PyTorch [43] or Caffe [32]. The field of Neuromorphic engineering has recently
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seen the emergence of several new software frameworks thanks to the renewed
interest in its potential. However, these frameworks are often in an early develop-
ment stage when compared to their conventional DL counterpart, being limited
in the tools they offer, their documentation, and the support from the commu-
nity. Some more established frameworks also exist, but they are often directed
towards particular communities and use cases [48], or they are neuroscience-
oriented frameworks rather than NM-ML development tools. Furthermore, ef-
fective data science algorithms that can close the gap with other conventional
methodologies still need to be developed. Indeed, algorithms employing Spiking
Neural Networks (SNNs) are already more energy efficient than conventional
Convolutional Neural Networks (CNNs) [25], however, they are not as effec-
tive on ML tasks in terms of accuracy. Hence the importance of having good
software frameworks that enable customization, simulation and deployment of
SNNs. This requires combining a number of key elements into a pipeline such as
learning rules, connectivity patterns, and spiking neurons. Regarding the spik-
ing neurons, emerging NM chips such as Loihi 2 [41] allow the use of customized
models. It has been shown in the literature that different types of neuron mod-
els can solve certain tasks more effectively than other models [22,36]. Therefore
it can be beneficial for researchers to use a framework that enables seamless
experimentation with different types of neurons.

This work contributes by providing a review of data science-oriented frame-
works and highlighting the key features they offer. By restricting our review to
this kind of frameworks, we hope to help boosting new research in NM for ML
applications. Further to this, we develop an expansion3 of the SpykeTorch [38]
framework that enables the user to experiment on a wider variety of different
spiking neuron models. By doing this, we aim to enlarge the scope of the research
in SNNs to different spiking neuron models, and to thus build new algorithms
that can leverage the latest advances in the NM hardware.

2 Related Works

When presenting a new software framework, authors often report other similar
works and draw comparisons with them [38,27]. In these instances, differences
in terms of offered features are highlighted, as well as the advantages of using
the newly presented software over the existing ones. Other works specifically
focus on reviewing the existing frameworks for the development of SNNs. One
example is given by [45], where the authors make a subdivision of the soft-
ware packages into three main groups depending on whether they are NM chips
toolchains, SNN simulation frameworks or frameworks that integrate SNNs and
DNNs. Another work [25] gives an introductory overview of SNNs and then re-
views some prominent simulation frameworks. The authors also define a simple
classification task and compare accuracy and execution time obtained by using
the different frameworks. These previous two works consider frameworks regard-
less of their research orientation, i.e. they consider both neuroscience-oriented
3 Code available at https://www.github.com/daevem/SpykeTorch-Extended
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Table 1. Key elements of the reviewed frameworks. The “A-” stands for adaptive,
whereas “H-” stand for heterogeneous.

Framework Nengo Lava SNN
Toolbox Norse PySNN snnTorch SpikingJelly BindsNet SpykeTorch

Spiking
Neurons

LIF
A-LIF

IZ

LIF
RF*

A-LIF*

A-RF*

A-IZ*

Σ −∆

IF

LIF
AdEx
EIF
IZ

LSNN

IF
LIF

A-LIF

LIF
Recurrent LIF
2nd Order LIF

LSNN

IF
LIF
pLIF
QIF
EIF

IF
LIF

A-LIF
IZ

SRM

IF
LIF**

QIF**

EIF**

AdEx**

IZ**

H-Neurons**

Learning
Rules

Oja
BCM
BP

SLAYER
STDP

3-Factor
Pre-trained SuperSpike

STDP

STDP
MSTDP

MSTDPET

BPTT
RTRL BP

STDP
Hebbian

MSTDPET

STDP
R-STDP

Conversion
from TF/Keras PyTorch

TF/Keras
PyTorch

Caffe
Lasagne

- - - PyTorch PyTorch -

Destination
Backend/Platform

Loihi
FPGA

SpiNNaker
MPI

CPU/GPU

Loihi
CPU/GPU

SpiNNaker
Loihi
pyNN
Brian2

MegaSim

CPU/GPU CPU/GPU CPU/GPU CPU/GPU CPU/GPU CPU/GPU

* Only available in Lava-DL.
** Added in this work.

and data science-oriented frameworks. In this work, we specifically highlight soft-
ware packages that are data science-oriented and developed in Python or with
a Python interface. Furthermore, we also include in our review other different
frameworks and highlight some key features and neuron models that they offer
for developing SNNs.

3 Software Frameworks

Many of the software libraries for the development of SNNs are oriented toward
the needs of the neuroscience and neurobiology fields [25]. Because SNNs process
inputs and communicate information in a way similar to the human brain, they
are particularly suited for simulations of brain areas activations. Nevertheless,
the recent emergence of NM engineering as a field for developing ML algorithms
has highlighted the need for suitable frameworks. Consequently, following, we will
present some of the most prominent software packages to develop data science-
oriented SNNs along with their main features, which are also summarized in
Table 1.

3.1 Nengo

Nengo [5] is a Python package for building and deploying neural networks. It
is composed of several sub-packages to be used in case of different needs and
destination platforms. NengoDL is to be used when aiming to convert a CNN
built using TF/Keras into its Nengo spiking version. NengoLoihi allows to deploy
NNs natively built in the Nengo Core package onto Loihi chips. Other packages
are NengoFPGA, NengoSpiNNaker, NengoOCL and NengoMPI. Nengo builds
on top of a theoretical framework called the Neural Engineering Framework
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(NEF) [50]. Computations are based on the three principles of the NEF: neural
representation, transformation, and neural dynamics. Neurons in Nengo are or-
ganized in Ensembles, and different types of neuron models are available, among
which the Leaky Integrate-and-Fire (LIF) [33], and Izhikevich’s (IZ)[30] models.
Connections between ensembles are designed to allow a transformation of the in-
formation from one ensemble to another. Training in Nengo is possible with the
Oja [40], BCM [7] and backpropagation (BP) learning rules. Using Nengo as a
tool for the development of SNNs has the main advantage of having the possibil-
ity to target a wide variety of backends and to convert conventional DNNs into a
spiking equivalent [25]. Nengo also allows for a certain degree of customization of
the components; however, it remains very oriented towards the NEF structure.

3.2 SNN Toolbox

SNN Toolbox [46] provides a set of tools to perform automated conversion from
conventional Artificial Neural Network (ANN) models into SNNs. Conversion
is possible from three different DL frameworks, namely TF/Keras, PyTorch,
Caffe and Lasagne [16]. The framework supports conversion to models for PyNN
[15], Brian2 [51], MegaSim [35], SpiNNaker [24], and Loihi [14] where the SNN
can be simulated or deployed. However, depending on the components used in
the original ANN, some of the target platforms might not be available. During
the conversion phase, Integrate-and-Fire (IF) neurons are used for a one-to-one
substitution. These are then tuned so that their mean firing rate approximates
the activation of the corresponding neuron in the original ANN. Neural networks
must be pre-trained in their original framework. Tuning conversion parameters
and performing inference is possible either through the command line or through
a simple GUI.

3.3 Lava

Lava [1] is a relatively recent framework built by Intel’s Neuromorphic Com-
puting Lab (NCL). The framework results from an evolution from the Nx SDK
software for Loihi chips, but aims to target other hardware platforms as well.
Lava is composed of 4 main packages, namely Lava (core), Lava-DL, Lava Dy-
namic Neural Fields (DNF) and Lava Optimization. The current state of the
platform includes the development of deep SNNs trained with SLAYER [49],
and of SNNs converted from PyTorch. On-chip training through SLAYER is
currently not available. Instead, models need to be trained off-chip, and weights
must be exported to be used within the Lava core package. Within Lava-DL,
a number of neuron models are defined, such as the LIF, Resonate-and-Fire
(RF) [31], RF Izhikevich, Adaptive LIF [26], Adaptive RF, and Sigma-Delta [12]
modulation models. The core package currently supports LIF and Sigma-Delta
modulation neurons. Recent developments in the framework have seen the im-
plementation of on-chip learning functionalities through STDP and customized
3-factor learning rules.

Frameworks for SNN: a review of data science-oriented software and an expansion of SpykeTorch
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3.4 PyTorch-based Frameworks

Norse
Norse [44] is a relatively recent PyTorch-based framework. It was developed

with the aim of easing the construction of SNNs for ML solutions. This frame-
work offers a wide range of neuron models, such as the LIF, LIF variants and
extensions, and Izhikevich’s model. It also provides a LSNN [6], a spiking version
of the LSTM (Long Short-Term Memory) [28]. Norse has a functional program-
ming style. Neurons are mainly implemented as functions and do not hold an
internal state. Instead, the previous state of the neuron needs to be provided
as an argument at each iteration. The framework mainly allows for two types
of learning: STDP [37], and SuperSpike [53]. Therefore, both local unsupervised
learning and surrogate gradient learning are possible. Overall, Norse provides a
good degree of flexibility and allows leveraging all of the features of PyTorch,
such as GPU acceleration.

PySNN
PySNN [10] is another framework based on PyTorch aimed at developing ML

algorithms. Similarly to Nengo, connections between two neurons are modelled
as separate objects that have properties and can affect the transmission of a
signal. For instance, they can explicitly account for connection delays. Neuron
models in PySNN embed the concept of spike trace, which can be used for
learning purposes. Some available neuron models are the IF, LIF and ALIF.
Concerning the learning rules, it is possible to use either STDP or MSTDPET
(Modulated STDP with Eligibility Traces) [20]. The framework also provides
some useful utilities to load some NM datasets. A downside of using PySNN is
that the documentation is not complete.

SnnTorch
SnnTorch [18] also bases its architecture on PyTorch. Connectivity between

layers is enabled by leveraging PyTorch standard layers. Spiking neurons are
thought to be used as intermediate layers between these. Spiking neurons are
modelled as classes that hold their own internal state. Available models include
LIF-based models, second-order LIF models, recurrent LIF models, and LSTM
memory cells. Learning in snnTorch takes place with BP Through Time (BPTT)
using surrogate gradient functions to calculate the gradient of the spiking neu-
rons. The framework also offers the possibility to use a Real-Time Recurrent
Learning (RTRL) rule, which applies weight updates at each time step, rather
than at the end of a sequence of inputs. The network output can be interpreted
using both a rate-based approach and a time-to-first-spike (TTFS) approach.
Finally, snnTorch provides access to the N-MNIST [42], DVS Gestures [3], and
the Spiking Heidelberg Digits [13] datasets, and includes useful network activity
visualization tools.

SpikingJelly

Frameworks for SNN: a review of data science-oriented software and an expansion of SpykeTorch
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SpikingJelly [19] is a framework using PyTorch as a backend and adopting
its coding style throughout. It provides implementations of IF, LIF, paramet-
ric LIF (pLIF), Quadratic IF (QIF), and Exponential IF neuron [21] models.
The firing of neurons in SpikingJelly is approximated by a surrogate function
(such as the sigmoid) that allows differentiation. The framework provides several
utilities to read NM and non-NM datasets. Concerning the NM datasets, it is
possible to both read them with a fixed integration time-window and with a fixed
number of frames. Among the available datasets, there are the CIFAR10-DVS
[34] dataset, the DVS Gestures dataset, the N-Caltech101 [42] dataset, and the
N-MNIST dataset. Finally, SpikingJelly also provides functionality for ANN to
SNN conversion from PyTorch.

BindsNet
BindsNet [27] is a library for the development of biologically inspired SNNs.

Despite having PyTorch as a backend, the coding style differs slightly. Execution
is implemented by running the network for a certain amount of time on some
input rather than explicitly looping through the dataset. BindsNet supports sev-
eral types of neuron models: IF, LIF, LIF with adaptive thresholds, Izhikevich’s,
and Spike Response Model (SRM)-based [26] models. Connections are modelled
explicitly and link one node of the network with another. Recurrent connections
are also possible. The provided learning rules are biologically inspired and can
be either two-factor (STDP or Hebbian) or three-factor (MSTDPET); hence no
BP-based learning rule is proposed. Through sub-classing, it is possible to cus-
tomize neurons, input encoding and learning rules. The framework also provides
utility tools to load datasets, such as the spoken MNIST, and DAVIS [8] camera-
based datasets. Finally, BindsNet includes a conversion system to convert neural
networks developed in PyTorch into SNNs.

SpykeTorch
SpykeTorch is PyTorch-based library for building SNNs with at most one

spike per neuron. This means that for each sequence of inputs, each neuron is
allowed to fire only once. Because of this, tensor operations can be easily used
to compute neuron activations. Because NM data includes the concept of time,
what is normally treated as the batch dimension in PyTorch, it is interpreted as
the time dimension in SpykeTorch. The framework is built to support STDP and
Reward-modulated STDP (R-STDP) with a Winner Takes All (WTA) paradigm,
and using convolutions as a connection scheme. The only available neuron model
is the IF, which is provided as a function. Finally, the framework provides func-
tionalities to encode non-NM input through difference of Gaussians and intensity
to latency transforms, as well as some inhibition functions.

4 SpykeTorch Spiking Neurons

For the purpose of developing NM-ML algorithms based on STDP, SpykeTorch
allows a high degree of customization and flexibility to the user. However, as men-
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Fig. 1. Example flowchart for SpykeTorch-Extended. After the definition of the com-
ponents of the SNN, each data sample is required to be decomposed into its forming
time steps before being processed by the SNN. This ensures that learnt parameters will
influence the result of the next iteration.

tioned in 3.4, the framework originally provides a single spiking neuron model,
the IF. This does not have a voltage leakage factor, which means that its in-
ternal state can only increase until it is reset. In order to augment the usage
potential of SpykeTorch, we expand the library by implementing a new set of
spiking neuron models, for a total of 8 new models, as show in Table 2. By intro-
ducing more complex neuron models, the original workflow and implementation
patterns adopted in the original framework cannot be easily utilized. Therefore,
the following are some details about the differences introduced to accommodate
such neuron models in the library. We refer to the framework resulting from our
changes as SpykeTorch-Extended.

4.1 Spiking Neurons Implementation Details

In our implementation of spiking neurons, we consider a subset from the phe-
nomenological family of neuron models due to their computational efficiency
[36]. This includes: Leaky IF (LIF) [33], Exponential IF (EIF)[21], Quadratic IF
(QIF)[17], Adaptive Exponential IF (AdEx) [9], Izhikevich’s [30], Heterogeneous
Neurons.
The LIF model is a single-variable neuron model and is the most widely used for
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the development of NM-ML systems [36,52,39,29,23]; the EIF and QIF models
are other single-variable models that include different types of complexities in
their equation, and are also the base for more complex models, the AdEx and
Izhikevich’s respectively; the AdEx and Izhikevich’s models are two-variable neu-
ron models that have also been widely studied and employed in the literature
[47,4,11].

Due to the greater complexity of the newly introduced neurons, we deviate
from the original implementation and adopt an object-oriented approach for
the neurons. This allows them to retain an internal state and other properties.
Nevertheless, to maintain compatibility, neuron objects are callable and share the
same output format as in the original implementation. Furthermore, we do not
restrict neurons to firing only once per input sequence. This only depends on the
choice of parameters for a given neuron, such as the refractory period. Another
difference with the previous implementation is that the neurons are expected to
receive events one time-step at a time. While this introduces a overhead on the
computational time, it allows to simulate real-time processing, and also ensures
the decay of the membrane potential and that weight updates due to STDP
affect every subsequent moment in time, thus making the system more realistic.
A neuron layer in SpykeTorch-Extended is characterized by at least the set of
parameters of a LIF neuron; however, more complex neuron models will require
more parameters. A layer of neurons in this system can be better depicted as a
set of neuronal populations. The number and size of the population reflect that
of the input that is processed by the layer. Thus, a single population is intended
as the group of neurons corresponding to one of the feature maps produced by
a convolutional layer.

As a result of the changes above, the standard workflow in SpykeTorch-
Extended requires some adjustments with respect to the original version. In
Figure 1, we report an example flowchart of how a pipeline using the new neuron
models could look like. As the flowchart highlights, each input is expected to be
unravelled into all the time steps it is composed of and, for each time step, all
the events that took place in such a time span are to be fed forward to the SNN.

4.2 Heterogeneous Neuron Classes

The implemented neuron classes create a layer of spiking neurons that share the
same hyper-parameters. We refer to this as being a homogeneous layer of neurons
because they all react in the same way to the same sequence of inputs. However, it
might be useful to have neurons reacting differently to one input, since this could
mean being able to learn different kinds of temporal patterns within the same
layer. Because of this, we further implement heterogeneous neuron classes for the
LIF, EIF, and QIF classes. Specifically, they provide a set of τrc values that are
uniformly distributed within a range specified by the user through the parameter
tau_range. We limited the current implementation to a uniform distribution for
simplicity, and limit the heterogeneity to the τrc parameter since this directly
influences the time scale to which the neuron is sensitive. Nevertheless, future
developments will consider other types of distributions and parameters.

Frameworks for SNN: a review of data science-oriented software and an expansion of SpykeTorch
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Table 2. Summary of newly added spiking neurons to SpykeTorch. All the neurons
share a base set of parameters with the LIF, but they may require more depending on
the neuron type, which are briefly reported in the short description.

Neurons Short Description
LIF [33] Uses the integral solution to the differential equation in [26].
EIF [21] Single-variable model with an exponential dependency. Has parameters

delta_t for the sharpness of the curve, and theta_rh as a cut-off thresh-
old for the upswing of the curve [26].

QIF [17] Single-variable model with a quadratic dependency. Has parameters a for
the steepness of the quadratic curve, and u_c as the negative-to-positive
updates crossing point of the membrane potential [26].

AdEx [9] Two-variables model similar to the EIF, but with an adaptation vari-
able. It adds parameters a and b, respectively for adaptation-potential
coupling and adaptation increase upon spike emission.

IZ [30] Two-variables model similar to the QIF, but with an adaptation variable.
It adds parameters a for the time scale of the adaptation variable, b for
the sub-threshold sensitivity of the adaptation, and d for the adaptation
increase upon spike emission.

H-Neurons Heterogeneous versions of LIF, EIF, and QIF neurons with uniformly
distributed tau_rc parameter.

5 Conclusions

In this work we have presented a review of 9 Python frameworks for the devel-
opment of spiking neural networks oriented towards data science applications.
We have seen that several of them use PyTorch as a base to leverage the GPU
acceleration, to exploit the existing functionalities it offers, and to ease the tran-
sition for users that come from a conventional DL background. Nevertheless,
they all differ slightly in their implementations and in the SNN development
tools they offer. Other frameworks like Nengo and Lava do not have such a base,
but provide conversion methods to increase usability. This review also highlights
how, despite restricting our field of view to data science-oriented libraries, there
is a wide variety of frameworks. This is possibly due to growing interest that
SNNs have lately received, however this also reflects the lack of an established
and widespread framework like in the case of PyTorch or TF/Keras for conven-
tional DL. Finally, we report our extension to a specific framework, SpykeTorch,
that includes several new spiking neurons to use for simulations. Our additions
require a modification of the original workflow, but enable real-time processing
simulation with STDP. By doing this, we hope to promote and speed up future
research in this direction, as well as to contribute to the development of richer
software frameworks.
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