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ABSTRACT
Viscoelastic composites are widely used in engineering applications, necessitating a comprehen-
sive understanding of their effective response to external loads. This study employs peridynamic
computational homogenization theory to investigate the influence of phase contrast and inclusion
shape on the effective properties of these composites. By focusing on a two-phase matrix-inclu-
sion composite material and considering circular and elliptical inclusion shapes, this study explores
the relationship between these factors and the resulting effective behavior. The simulation results
demonstrate that the use of circular inclusions result in isotropic effective response of the compo-
sites for all values of phase contrasts, while elliptical inclusions lead to an increase in anisotropy
as phase contrast increases. These findings highlight the significant impact of inclusion shape and
phase contrast on the effective behavior of composites.
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1. Introduction

Understanding how materials respond to external loads is essen-
tial in the design of engineering systems. As composite systems
made of viscoelastic materials, such as polymers, are increasingly
gaining prominence across a wide spectrum of applications in
the civil, aerospace, and medical device industries, it is necessary
to understand the effective response of the composite system.
One crucial aspect that can affect the effective response is the
inclusion shape, which can vary widely during the production
process [1]. To meet specific property requirements, it is there-
fore necessary to investigate the nature and degree of the influ-
ence of inclusion shape on the effective response of the
composite system. Additionally, the difference in physical prop-
erties between the matrix and the inclusion, known as phase
contrast, is also a critical factor that can affect the effective
response of the composite system.

Phase contrast has been established as a key factor that influ-
ences the regulation of elastic properties in composites, as evi-
denced by previous studies. As one such study [2] has shown,
Poisson’s effect plays a critical role in the regulation of the elas-
tic properties of composites, with phase contrast identified as a
driving mechanism. In particular, the study found that during
deformation of a composite system, Poisson’s effect induces

secondary strains and stresses into the phase material, requiring
more strain energy to achieve the same deformation in the pri-
mary direction and increasing the stiffness of the composite sys-
tem. Moreover, the increased stiffness was found to depend on
the contrast of phase properties.

Based on these findings, the current research aims to investi-
gate the influence of inclusion shape and phase contrast on the
effective response of viscoelastic composites within the
Peridynamic modeling framework. This represents a significant
contribution to an ongoing research effort aimed at verifying,
demonstrating, and extending the capabilities of a nonlocal first
order Peridynamic Computational Homogenization Theory
(PDCHT) [3] previously proposed by the authors. As a compu-
tational tool that allows the bridging of gap between microstruc-
tural characteristics and macroscopic response the PDCHT has
been shown to be a powerful tool for understanding the intri-
cate interactions within heterogenous materials especially in the
presence of discontinuous response [4] and nonlocal viscoelastic
response [5].

Computational methods based on classical continuum
mechanics (CCM) have for long been the standard methods for
the characterization of elastic composites [6,7] and viscoelastic
composites [8–10]. However, CCM has difficulties in modeling
discontinuous behavior, such as dynamic cracks, because its
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mathematical framework is based on differential equations that
describe the rate of change of the displacement or deformation
gradient field at each point in space. This is because the deriva-
tive of the displacement field at discontinuities is ill-defined.
Another significant limitation of CCM is its inability to capture
nonlocal behavior, such as size effect and material softening due
to damage. CCM assumes local action, which presupposes that
the behavior of a material at a point is only influenced by the
state of the material at that point.

Given these limitations of CCM in modeling discontinu-
ous behavior, Peridynamic theory (PD) was proposed [11]
as a nonlocal alternative. To address the outlined limitations
of the CCM, the PD theory uses integral operators instead
of differential operators. This approach allows PD to model
the evolution of discontinuous behavior in a more natural
and intuitive way. In PD, the deformation at each point is
related to the deformation in a finite neighborhood of that
point, rather than the deformation gradient field at that
point alone. This allows PD to capture the propagation of
cracks and other discontinuities using the same fundamental
equation of motion. Furthermore, integral operators endow
the theory with the additional capability to account for phe-
nomena driven by nonlocal behavior, such as size effect and
material softening due to damage. In PD, the deformation at
each point is influenced not only by the stress and strain at
that point but also by the stress and strain in a neighbor-
hood around that point. This neighborhood is termed as the
horizon, and its size can be adjusted to capture the desired
length scale of the nonlocal behavior.

Peridynamics has been used to model a wide range of
problems in solid mechanics. It has been applied to model-
ing of fracture processes [12–22], wave propagation and dis-
persion [23–28], model order reduction [29–32] and
homogenization of heterogeneous materials [3–5, 33,34].
Peridynamics has also been applied to characterize viscoelas-
tic [35–37] and plastic [38,39] response of materials.

2. Theoretical framework

2.1. State-based peridynamic theory

In peridynamics, the state of a primary point situated at
position x in the reference configuration of a body B is
determined through the aggregation of interactions between
the primary point and a set of secondary points x0 located
within a finite distance d, referred to as the horizon. The
relative position n ¼ x0 � x in the reference configuration is
called the bond length or simply bond while g ¼ u0 x0ð Þ �
u xð Þ is the relative position in the deformed configuration.

The set Bd such that

Bd xð Þ ¼ x0 2 R : x0 � xj j < d
� �

(1)

is called the family of x and contain all the points x0 that
interacts with x: On the other hand, the set Hx such that

Hx ¼ n 2 Rn0ð Þj nþ xð Þ 2 Bd xð Þ \ BÞ� ��
(2)

is the family of bonds for point x: The equation of motion
that tracks the state of a material point x in peridynamics is
given by the integro-differential equation:

q€u x, tð Þ ¼
ð
Hx

f x0, x, tð Þdx0 þ b x, tð Þ 8x 2 B, t � 0 (3)

where u x, tð Þ is the displacement vector of point x at time t,
f x0, x, tð Þ is a vector-valued function that represents the pair-
wise force density that x0 exerts on x and b x, tð Þ is the body
force density at point x: Through an appropriate material
model, the pair-wise force, f is expressed as a function of the
deformation of all x0 2 Hx: There are two main categories of
material models in Peridynamics, viz, the bond-based and the
state-based peridynamic material models. The bond-based
model represents the simplest material model in the peridy-
namic framework, in which each bond connected to a primary
point x responds independently of all other bonds within the
family of x: Furthermore, the pairwise force induced in a
bond because of deformation is parallel to the bond in the
deformed configuration. Due to these postulations, it has been
demonstrated that the elastic response of a bond-based mater-
ial model invariably yields a Poisson’s ratio of 1/3 for 2D iso-
tropic solids and 1/4 for 3D isotropic solids. This restriction
on the Poisson’s ratio in bond-based models limits the range
of material behaviors that can be reproduced.

The state-based framework represents efforts for over-
coming the limitations of the bond-based framework and
presents a framework that can model generalized material
response. In the state-based formulation, the response of a
bond is contingent upon the deformation of all bonds
within a family. This approach eliminates the constraint on
the Poisson’s ratio and extends the ability of peridynamics
to simulate materials with a Poisson’s ratio covering the
entire permissible range. This is achieved by the introduc-
tion of mathematical objects known as states, which are
functions defined on H: Let Lm be a set of all tensors of
order m, then a peridynamic state of order m associated
with a point x is a function A� �h i : H⟶Lm, where the
angle brackets denote the bond acted upon by the state. A
scalar state is a state that maps vectors in H to a scalar,
while a vector state is a state that maps vectors in H to vec-
tors. The set of all peridynamic states of order m is repre-
sented by Am: Hence, if we denote the set of all scalar states
by S, then S ¼ A1: Similarly, if the set of all vector states is
denoted by V, then V ¼ A2: The most important states in
the development of the state-based peridynamics are the
deformation state and the force state. A deformation state
Y� maps any bond n ¼ x

0 � x in H onto its image under the
deformation. The image of n in the deformed configuration
when acted upon by Y� is given by:

Y
�
x, t½ � x0 � xh i ¼ y0 x0, tð Þ � y x, tð Þ (4)

where y
0
x
0
, t

� �
and y x, tð Þ are respectively the position vec-

tors of the points x0 and x in the deformed configuration at
time t: A force state, T� on the other hand, is a function that
associates a force density vector t to each bond in H, such
that:

T
�
x, t½ � x0 � xh i ¼ t x0, x, tð Þ (5)

where t x
0
, x, t

� �
represents a force interaction between x and

x0 due to the force state at x: From the requirement for
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balance of linear momentum, the pair-wise force density
function f in (3) is shown [40] to be:

f x, x0, tð Þ ¼ T
�
x, t½ � x0 � xh i � T

�
x0, t½ � x � x0h i (6)

where T� x, t½ � and T� x
0
, t

� �
are the force states at x and x

0
,

respectively, and when they act on the bonds nxx0 and nx0x
respectively, produces bond force density vectors acting at
points x and x

0
, respectively. A material model T̂� is then

needed to ascribe to a bond a particular force density based
on the deformation state at the point. Two class of material
models arise in the state-based framework. When T̂� is
defined such that T� and Y� are colinear, then T̂� is said to be
ordinary state-based peridynamic material model, otherwise
T̂� is said to be non-ordinary state-based peridynamic mater-
ial model. The non-ordinary state-based model provides a
framework for modeling of more general material response.
A subclass of the non-ordinary state-based model is called
the constitutive correspondence model. This material model is
becoming increasingly popular because it admits constitutive
models from the classical continuum theory, thus making it
possible to take advantage of the state-of-the-art in the well-
established classical theory. Another advantage of the
constitutive correspondence model that derives from its
admittance of constitutive model from the classical theory is
that it permits the use of familiar quantities such as stress and
strain tensors within the peridynamic modeling framework.

The material model in the state-based framework is
expressed such that the force vector state T� is related with
appropriate physical quantities such as the deformation vec-
tor state Y�, the rate of deformation state _Y�, temperature
T, damage D, etc. The general form is given as:

T
�
x, t½ � ¼ T̂

�
Y
�
, _Y
�
,T,D, :::

h i
(7)

The material model in the context of the non-ordinary
constitutive framework is defined such that:

T
�

nx, x0
� 	 ¼ x

�
nh iPK�1nx, x0 (8)

where x� is a scalar state which acts on the n to produce a
scalar-valued influence function, P is the first Piola stress
tensor, and K is a second order shape tensor defined as:

K ¼
ð
Hx

x
�

nh in �ndVn (9)

2.2. Constitutive relation for the PD CONTACT model

The first Piola stress P in (8) can be obtained from:

P ¼ JrF�T , J ¼ det Fð Þ (10)

where r is the Cauchy stress tensor and F is the nonlocal
deformation gradient defined as:

F xð Þ ¼
ð
Hx

x
�

nh i y x
0
, t

� �
� y x, tð Þ


 �
�ndx

0
� 


K�1 (11)

It is worth noting that in the context of small deform-
ation analysis, we have F ffi I, J ffi 1 and thus P ¼ r in (10).
Since the constituents of the composite are viscoelastic and

owing to the capability of the non-ordinary state-based cor-
respondence model to admit constitutive model from the
classical theory, the hereditary integral constitutive model
for linear isotropic non-ageing viscoelastic material will be
utilized in this contribution, which expresses the time-
dependent evolution of the Cauchy stress tensor r as:

rij tð Þ ¼
ðt
0
Cijkl t � sð Þ d

ds
ekl sð Þds (12)

where Cijkl t � sð Þ is the fourth order stress relaxation stiff-
ness tensor and is usually estimated using a sequence of
decaying exponents, which are also referred to as Prony ser-
ies. The Prony series can be expressed as:

Cijkl tð Þ ¼ Cijkl1 þ
Xn

m¼1
Cijklmexp � t

sm

� �
(13)

2.3. Peridynamic computational homogenization theory

The PDCHT is a nonlocal first order homogenization that
was proposed to facilitate the characterization of heteroge-
neous materials. The PDCHT is an effective homogenization
framework composed of three main components: the defin-
ition of scale, localization, and development of homogeniza-
tion rules.

2.3.1. Definition of scales
Definition of relevant scales of the problem is crucial in cap-
turing the multiscale nature of materials with varying micro-
structures. It requires finding the appropriate level of
description for the material at the microscale, where the
microstructure is fully resolved, and at the macroscale,
where the material is treated as homogeneous. Bearing in
mind that the objective of PDCHT is to accurately charac-
terize the effective response of a heterogeneous material M,
composed of multiple constituent phases with varying prop-
erties. The task is then to find an equivalent substitute
material M that will exhibit the same bulk response as M:
The basis for approximating material M with substitute
material M relies on two main assumptions. The first
assumption is that if the individual phases in M display lin-
ear behavior, then the overall behavior of the substitute
material M will also be linear. Consequently, the constitutive
function that connects stress and strain fields in M follows a
linear relationship of the form:

rij tð Þ ¼ Cijklekl tð Þ (14)

where Cijkl represents the time dependent effective stiffness
relaxation tensor. In (14) and throughout this communica-
tion, the overbar represents field variables related to the sub-
stitute homogeneous material M , which is referred to as the
macroscale.

The second assumption is the statistical homogeneity of
the composite system M: This means that any randomly
selected subregion of M that is large enough compared to
individual microstructural elements or phases, such as the
size of inclusions, exhibits the same average behavior as the
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entire material [41]. These subregions are referred to as rep-
resentative volume elements (RVEs) and represent the
microscale for this homogenization scheme. Because the
average properties of the composite material are the same
within the RVE as they are in the entire material, the vol-
ume average of fields over the RVE can be used instead of
the entire material.

2.3.2. Localization
This component consists of the dual steps of macro-micro
transition in which the macroscopic stress or strain at a
macroscopic point are transferred to the microscale to be
used as boundary conditions of the microscale volume con-
straint problem, and solution of a volume constraint prob-
lem (VCP) at the microscale. The solution of the microscale
VCP is achieved by implementing the Boltzmann viscoelas-
tic model within the non-ordinary state-based correspond-
ence peridynamic framework. The goal here is to utilize the
macroscale fields as boundary conditions to simulate the
behavior of the microstructure. As shown in [3], the admis-
sible fields of stress, strain or displacement that can be
applied as volume constraint to the microscale problem can
be derived from the so-called nonlocal macrohomogeneity
condition which is mathematically stated as:

rijeijh i ¼ rijeij (15)

It was further demonstrated [3] that a sufficient condition
for (15) to be satisfied, is to satisfy the so-called nonlocal
Hill’s lemma:

rijeijh i � rijeij ¼ 1
VXs

ð
Xc

rik � rikð ÞSs
xxk ui � xjeijð Þ� �

dVXc

(16)

where Ss
x represents a weighted nonlocal gradient operator,

x x, x
0� �
: Rn � R

n⟶R
þ is a weight function and the

superscript S implies that S is a symmetric gradient oper-
ator. For explanation on nonlocal gradient operator and
general element of nonlocal vector calculus, refer to [3, 42].
The Hill’s lemma (16), can be satisfied by using suitable
boundary conditions. These conditions can include homoge-
neous displacement, homogeneous stress, and periodic
boundary conditions. In this study, we will focus solely on
the homogeneous displacement boundary condition, which
is the most compatible with the peridynamic framework and
easiest to implement. To achieve this condition, an appro-
priate displacement field is applied to the boundary of the
representative volume element (RVE), causing the gradient
of the displacement terms in the integrand of (16) to vanish.
One way of vanishing the RHS of (16) is to apply linear dis-
placement of the form:

u xð Þ ¼ ex 8x 2 Xc (17)

2.3.3. Homogenization rules
The final component of the PDCHT is the development of
homogenization rules that relate the macroscopic fields of
stress and strain to the stress and strain fields at the

microscale. This component is essential for bridging the gap
between the micro and macroscale and is the key to obtain-
ing effective homogenization results. To this end, given the
closed region X ¼ Xs⋃Xc in which Xs is the subregion
where solution is sought and Xc is the boundary region, the
macroscopic and microscopic fields of stress and strains
were shown [3] to be related through the so-called nonlocal
average stress and strain theorems. Let the average stress
and strain over Xs be denoted respectively, as rh i and eh i,
and let r and e be constant fields of stress and strain
applied on Xc, then the mathematical statement of the aver-
age stress and strain theorem are respectively given as:

rh i ¼ r (18)

and

eh i ¼ e (19)

where rh i and eh i are respectively given by:

rh i ¼ 1
VXs

ð
Xs

r xlð ÞdVXs (20)

and

eh i ¼ 1
VXs

ð
Xs

e xlð ÞdVXs (21)

Expressions (18) and (19) through (20) and (21) respectively
allow the homogenized macroscopic stress and strain to be
obtained as volume averages of the fields of microscopic
stress and strains, respectively.

3. Numerical implementation

The application of the PDCHT to characterize the effective
response of viscoelastic composites as proposed in [5] con-
sists of the following steps:

1. Defining the RVE as the microscopic domain and find-
ing its solutions. The solution of the microscopic IVCP
will require solving (3) and the associated volume con-
straint (17) over the RVE. To achieve this numerically,
the problem domain is discretized into a set of particles
or nodes. Numerical methods such as finite element
method (FEM) [43,44], meshfree methods [45,46], and
collocation methods [47,48] are used to approximate
the peridynamic model. The meshfree method proposed
in [45] is particularly preferred in this contribution due
to its simple implementation algorithm and relatively
low computational cost. Using this approximation
method, the discrete form of (3) is obtained as:

qi€ui ¼
XN
j¼1

T
�

i, t½ � xj � xih i � T
�
xj, t½ � xi � xjh i

h i
Vj þ bi

(22)

where N is the number of nodes in the neighborhood
of the primary node i:

2. Using volume averages of the micro fields of stress and
strain to obtain the macroscopic stress and strain fields.
This is achieved utilizing (20) and (21).
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3. The effective stiffness relaxation tensor Cijkl is then
extracted from the macroscopic stress and strains
using (14).

4. Computing the effective viscoelastic material functions,
such as the relaxation function from which the instant-
aneous and equilibrium relaxation are recovered.

4. Numerical examples

A two-phase matrix-inclusion composite material consisting
of a viscoelastic inclusion in a viscoelastic matrix is investi-
gated. The viscoelastic material properties are given in
Table 1. Two RVEs are studied. The first has a circular fiber
and the second has an elliptical fiber as shown in Figure 1.
The numerical studies are conducted over three cases of
material phase contrast u ¼ 1=2, u ¼ 1=4 and u ¼ 1=6,
where u ¼ kmatrix=kfibre: For numerical implementation, the
RVE is Discretized into a grid of 100 material points along
each side.

Before proceeding with the main goal of this contribu-
tion, series of simulations will be undertaken to study the
convergence of the numerical solutions under grid refine-
ment. In undertaking this, the nonlocal length scale as rep-
resented by the horizon d is kept fixed. Convergence with
respect to the internal length scale is not undertaken in this
study as the choice of the horizon size has been shown to
be in some relevant sense determined by the physics of the
problem [49]. It was however demonstrated in [17] that a
horizon size of 3 times the nodal spacing gives results that
agree well with results from the classical local theory and
would be adopted throughout this contribution.

The convergence study involved conducting simulations
of an RVE with a circular inclusion over six different values
of the nodal spacing, Dx ¼ 0:1, 0:05, 0:033, 0:025, 0:02,
and 0:0167: The results obtained from these simulations are
presented in Figure 2 and show that as the grid was progres-
sively refined, the numerical solutions exhibited convergence
behavior, with results from simulations corresponding to the
grid sizes of 0:025, 0:02, and 0:0167 showing high degree of
agreement. This convergence trend indicates that further
refinement of the grid beyond the grid size of 0.025 does
not significantly impact the accuracy of the numerical
solution.

Based on these findings, a grid size of 0.02 was deter-
mined to be appropriate for subsequent simulations. This
choice ensures a balance between computational efficiency
and accuracy in capturing the behavior of the viscoelastic
composites under investigation. Additionally, a horizon size
of d ¼ 3:015Dx (where Dx is the nodal spacing) is adopted
for the purpose of simulation throughout this

communication. This choice of horizon size has been dem-
onstrated in previous studies [17] to yield results that align
closely with simulations based on the local classical con-
tinuum theory.

With the appropriate grid size and horizon selected for
the numerical simulations, the next step is to investigate the
effect of phase contrast and inclusion shape on the effective
properties of viscoelastic composites. In this respect, the
components of the normalized effective instantaneous
modulus for two cases of phase contrast are presented in
Figure 3. The normalized effective instantaneous modulus is
computed using:

E� t ¼ 0ð Þ
Em t ¼ 0ð Þ (23)

where E� t ¼ 0ð Þ is the effective instantaneous relaxation
modulus and Em t ¼ 0ð Þ is the instantaneous relaxation
modulus of the matrix. From Figure 3, it was observed that
the evolution of the components of the instantaneous modu-
lus for the circular inclusion did not show anisotropy with
an increase in volume fraction or with an increase in phase
contrast. However, in the case of the elliptical inclusion,
there was not only an appreciable degree of anisotropy with
an increase in volume fraction, as expected, but there was
also an increase in anisotropy with increasing phase
contrast.

To quantify the degree of anisotropy, an anisotropy
index, A, was computed for all cases using the expression
[50],

A ¼
�
1
4
ðC11 þ C22 þ 2C12Þ ðS11 þ S22 þ 2S12Þ � 1


2 

þ2

�
1
6
ðC11 þ C22 � 2C12 þ 4C66ÞðS11 þ S22 � 2S12 þ S66Þ � 1�2

�1
2

(24)

and the results are shown in Figure 4. The results in
Figure 4 show the absence of anisotropy in the effective
response of the viscoelastic composite with a circular inclu-
sion, regardless of the magnitude of the phase contrast.
However, for the RVE with an elliptical inclusion, an
increase in the phase contrast corresponds to a higher
anisotropy index. These results indicate that the elliptical
inclusion has a more significant effect on the anisotropy of
the composite material compared to a circular inclusion.

The effect of phase contrast on the equilibrium response
of the viscoelastic composite system was investigated by
computing the effective relaxation modulus of the RVEs
with circular and elliptical fibers for the two cases of phase
contrast corresponding to u ¼ 1=2 and u ¼ 1=6: The results
are presented in Figure 5, which shows that the effective
equilibrium response of the RVE with circular fiber exhibits
no anisotropy at equilibrium, whereas an appreciable anisot-
ropy was observed in the case of the RVE with elliptical
fiber.

To further analyze the anisotropy of the effective relax-
ation modulus tensor, Figure 6 presents the percentage dif-
ference between the components E�11 and E�22 of the

Table 1. Viscoelastic properties of the constituent materials.

Iteration Phase k1 k2 s2 v

1
u ¼ 1=2
� � Matrix 1 10 10 0:38

Fiber 2 20 10 0:38
2
u ¼ 1=4
� � Matrix 1 10 10 0:38

Fiber 4 40 10 0:38
3
u ¼ 1=6
� � Matrix 1 10 10 0:38

Fiber 6 60 10 0:38
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relaxation modulus tensor. It is observed that the effective
relaxation modulus tensor of the RVE with circular inclu-
sion exhibits isotropic behavior for all cases of the phase
contrast. However, the effective relaxation modulus tensor
of the RVE with elliptical fiber exhibits an anisotropic
response, and the degree of anisotropy increases with an
increase in phase contrast.

5. Summary and conclusion

This paper investigates the influence of inclusion shape and
phase contrast on the effective response of viscoelastic com-
posites using Peridynamic Computational Homogenization
Theory. The study is motivated by the fact that inclusion
shape can vary widely during the production of composite
materials, and understanding the nature and degree of the
influence of inclusion shape on the effective response of the
composite system is essential in meeting specific property
requirements. Furthermore, the difference in physical prop-
erties between the matrix and the inclusion, known as phase
contrast, also affects the effective response of the composite
system. The paper extends the application of nonlocal first-
order Peridynamic computational homogenization theory
proposed in previous studies to investigate the dual influ-
ence of phase stiffness contrast and inclusion shape on the
effective response of viscoelastic composites.

This study has demonstrated that the inclusion shape and
phase contrast have a significant influence on the effective
response of viscoelastic composites. The numerical investiga-
tion was carried out on a two-phase matrix-inclusion com-
posite material with viscoelastic properties. To study the
influence of the phase contrast and inclusion shape on the
instantaneous effective properties of the composite systems,

Figure 1. RVE of the composite systems: (a) circular inclusion, and (b) elliptical inclusion.

Figure 2. Convergence study: effect of grid size on C11 component of the
effective instantaneous modulus of the RVE with circular inclusion.

Figure 3. Components of normalized effective instantaneous modulus for the
two cases of phase contrast.

Figure 4. Elastic anisotropy index for both RVEs.
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this study considered three cases of material phase contrast,
u ¼ 1=2, u ¼ 1=4 and u ¼ 1=6: The simulation results
showed that the effective instantaneous relaxation modulus
in RVE with circular inclusion remained isotropic for all
phase contrasts. However, for the RVE with elliptical inclu-
sion, the effective relaxation modulus showed anisotropy,
which increased with the increase in phase contrast.
Furthermore, the effective relaxation modulus for the RVE
with circular inclusion showed isotropic relaxation at equi-
librium, for two cases of phase contrasts u ¼ 1=2 and u ¼
1=6 while the RVE with elliptical inclusion showed aniso-
tropic relaxation at equilibrium, which increased as the
phase contrast increases from u ¼ 1=2 to u ¼ 1=6: The
increase in anisotropy is deemed large enough to be consid-
ered when estimating the characteristics of a new composite.

These findings have shed light on the effective behavior
of viscoelastic composites under different phase contrasts, as
well as the influence of inclusion geometry. However, there
are still several areas that could be explored in future
research. Some key areas to explore include investigating
different inclusion shapes beyond circular and elliptical,
such as rectangular, triangular, or irregular shapes. This
would provide a more comprehensive understanding of how
different geometries influence the effective response of the
composites.

To further strengthen the findings presented in this
paper, experimental validation of the numerical results is
recommended. Conducting mechanical testing, imaging, and
microscopy studies to measure and analyze the effective
response of viscoelastic composites over a range of phase
contrasts and inclusion shapes would enhance the credibility
of the findings and provide a basis for practical applications.

Finally, exploring the impact of other material properties,
such as interfacial properties, viscoelastic relaxation times,
or non-linear behavior, on the effective behavior of visco-
elastic composites is another area of future research. This
would enhance our understanding of composites and enable
more precise predictions of their effective response.
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