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Abstract: With the massive, worldwide, smart metering roll-out , both energy suppliers and users are
starting to tap into the potential of higher resolution energy readings for accurate billing, improved
demand response, improved tariffs better tuned to users and the grid, and empowering end-users
to know how much their individual appliances contribute to their electricity bills via nonintrusive
load monitoring (NILM). A number of NILM approaches, based on machine learning (ML), have
been proposed over the years, focusing on improving the NILM model performance. However,
the trustworthiness of the NILM model itself has hardly been addressed. It is important to explain
the underlying model and its reasoning to understand why the model underperforms in order to
satisfy user curiosity and to enable model improvement. This can be done by leveraging naturally
interpretable or explainable models as well as explainability tools. This paper adopts a naturally
interpretable decision tree (DT)-based approach for a NILM multiclass classifier. Furthermore, this
paper leverages explainability tools to determine local and global feature importance, and design
a methodology that informs feature selection for each appliance class, which can determine how
well a trained model will predict an appliance on any unseen test data, minimising testing time on
target datasets. We explain how one or more appliances can negatively impact classification of other
appliances and predict appliance and model performance of the REFIT-data trained models on unseen
data of the same house and on unseen houses on the UK-DALE dataset. Experimental results confirm
that models trained with the explainability-informed local feature importance can improve toaster
classification performance from 65% to 80%. Additionally, instead of one five-classifier approach
incorporating all five appliances, a three-classifier approach comprising a kettle, microwave, and
dishwasher and a two-classifier comprising a toaster and washing machine improves classification
performance for the dishwasher from 72% to 94% and the washing machine from 56% to 80%.

Keywords: NILM; decision tree; explainability; multiclassification

1. Introduction

The large-scale, worldwide, smart meter roll-out together with in-home displays,
which can provide real-time information on aggregate energy consumption at the building
level, is enabling disaggregation of energy consumption down to individual appliances
or loads at any point in time without additional metering. One of the benefits of load
disaggregation is to help consumers to better manage their energy consumption and bills.
Since load disaggregation or the nonintrusive load monitoring (NILM) technique was
first proposed, several approaches based on machine learning have been developed focus-
ing primarily on improving disaggregation accuracy using ever more complex machine
learning approaches [1,2] that are mostly treated as “black box” models. However, the
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challenges, as summarised in [3] to realizing the trustworthiness of of NILM, and therefore
its wider adoption, remain its generalisability across different load profiles, models en-
abling continuous learning and embedding user feedback, explaining NILM outcomes, fair
performance evaluation, and developing models that are privacy-preserving. Furthermore,
the European Commission has recently published seven principles of trustworthy AI [4],
which include human agency and oversight; technical robustness and safety; privacy and
data governance; transparency, diversity, nondiscrimination, and fairness; societal and
environmental well-being; and accountability. This paper aims to address some of these
principles of a trustworthy AI-based NILM system design as follows: (1) developing a
human-in-the-loop approach which enables human intervention during the design cycle of
the NILM system and monitoring the system’s operation via output explainability plots;
(2) designing NILM systems for high accuracy but also highlighting how likely errors are
for occasionally inaccurate predictions; (3) attaining reliability of design by ensuring that
the NILM design works for a range of inputs and situations by demonstrating performance
on different houses with different appliances; (4) including traceability to enable trans-
parency by leveraging public datasets, where data gathering, labelling, and performance
with different algorithms are well documented, (5) ensuring explainability for transparency
by providing explanations of the NILM system’s decision-making process; (6) providing
communication for transparency by clearly identifying the level of accuracy and limitations;
(7) using a low-complexity methodology to ensure implementation is environmentally
friendly without resorting to large data centres since the system can run locally; and (8) ad-
dressing the UN Sustainable Development Goal 7 by enabling responsible consumption of
energy and an affordable and modern energy service.

Specifically, this paper proposes a simple and reliable methodology to codesign an
NILM system with the target building owner in which an explainable supervised decision-
tree-based multiclass classifier is built that requires few samples of electrical measurements
from the smart meter data labelled by the owner. The proposed multiclass classifier then
leverages upon explainability tools to determine the best features that would result in
the best prediction outcome for the target appliances of the building (informed by the
occupants), resulting in a multiclass classifier design with feature selection to guarantee
the best performance for each target appliance instead of the best performance on average.
This simple approach ensures that the aggregate measurements never leave the house and
that disaggregation is carried out locally in the house.

An NILM model is said to be explainable or interpretable if the reason behind its
prediction can be explained by the end-user. The importance of explainability is described
in [5,6] to be the following: (a) to facilitate learning and satisfy curiosity as to why certain
decisions have been made by the model to build trust, (b) to learn which are the important
features that contribute significantly to the outcome and which are not for the purpose
of parameter tuning, and (c) to debug the model in case of errors. Explanations for the
machine learning model can either be model-specific or model-agnostic. The latter can be
applied to any model, while the former only works for one model type. Model-agnostic
methods can be further classified into local and global methods. Global methods focus on
how features affect the prediction on average and local methods aim to explain individual
predictions [6].

This paper builds upon our conference paper [7], where model-agnostic explainability
tools, in the form of global partial dependence (PD) plots and local individual conditional
expectation (ICE) plots were used to inform feature selection for the design of a DT-based
NILM five-class classifier. Perfect event detection was assumed since the focus was on
which features impacted the multiclassifier.

The contributions of this paper are as follows:

• Using a methodology that enables the codesign with the building owner or house-
holder for a scalable, trustworthy, and privacy-preserving NILM, comprising event
detection, feature generation and selection, and DT-based multiclass classification
using only smart meter readings as input;
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• Leveraging post hoc model-agnostic global and individual explainability of the afore-
mentioned multiclass classifiers’ models to inform feature selection for each appliance
and subsequent design of the DT multiclass classifier;

• Explaining how one of more appliances within a multiclass classifier can negatively
impact classification of other appliances leading to different multiclassifier models for
different sets of appliances;

• Predicting the performance of the trained DT multiclass classifiers for each target
appliance via PD and ICE plots, validated during testing by standard; classification
performance metrics on unseen data from the same house;

• Predicting the performance of a trained DT multiclass classifier on unseen houses
from the same dataset and from another dataset to explore generalisability and trans-
ferability.

The paper is organised as follows. Section 2 describes the related work on the NILM
multiclass classification problem and explainability for NILM. The proposed methodology
for event detection and explainability-informed multiclass classifier design are described in
Section 3, which is followed by a description of the experimental setup and event detection
performance in Section 4. Performance prediction and explainability-informed multiclass
classifier design are described by example, using the REFIT and UK-DALE datasets, for the
target house and to other houses in Sections 5 and 6, respectively. Finally, the key findings
are discussed in Section 7.

2. Background and Related Work

As stated in Section 1, multiple approaches for tackling the NILM problem leveraging
the availability of smart meter roll-out measurements (active power at resolution of 1 s to
60 min) have been reported in the literature over the past decade; see [1,2] for a detailed
review. Of these, as expected, supervised NILM approaches tend to outperform unsu-
pervised approaches, with variable data quantity requirements for training. NILM has
been tackled as a classification problem, through detecting when particular appliances are
switched on or as a regression problem, through estimating the energy consumption of
individual appliances. NILM classifiers are useful to understanding routines in households
and tend to underpin demand response measures, smart home automation, and activities
of daily living. Therefore, it is important for the base NILM classifier to be robust and
explainable to enable trust for the wider adoption for different applications.

Popular methods that have been used for explainability are PD/ICE plots [8] that
show the relationship between features and predicted outcome, feature importance that
gives the score for all input features based on how useful they are for the prediction
outcome, LIME [9] that focuses on explaining the individual predictions by monitoring
model behaviour when the input feature changes, and Shapley value that measures the
impact of an input feature to the predicted outcome, taking into account the interaction
with other input features [10].

In this section, we first provide a short background on NILM, then describe the DT-
based approaches used as benchmarks for NILM, and finally review the early attempts at
explainability for NILM.

2.1. NILM

Different approaches have been proposed over the years for NILM to operate on
low-rate smart meter readings (less than 1 Hz), using various signal processing, machine
learning, and deep learning techniques, and which evaluate a range of household appli-
ances. Unsupervised approaches that do not require labelled training sets include the
hidden Markov model (HMM), unsupervised graph signal processing (UGSP), and dy-
namic time warping (DTW); the latter two have been shown to outperform HMM methods.
HMM approaches are inefficient when the number of disaggregated appliances increases
and they have high computational complexity [1], which is not the case for UGSP-based
methods [1,11]. Popular supervised NILM approaches include decision tree (DT) [12],
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boosting-based ensemble algorithms [13], and deep learning (DL)-based approaches (see [2]
for a review), all of which require well-labelled datasets for training the models. Supervised
ensemble and DL approaches are capable of obtaining good generalisability and transfer-
ability to houses never seen before, but larger training datasets are required and are often
complex [1,2]. Semisupervised approaches, such as supervised graph signal processing
(SGSP) [14] have been proposed to keep training sets small.

NILM algorithms are either model-based (e.g., DL-based approaches) or event based
(e.g., DT, GSP). The former does not rely on event detection, while the latter does. The
types of features that are generated for input to NILM depend on the sampling frequency
and include raw power measurements, active power, change in power, power factor,
and reactive power for low-frequency NILM; and harmonics, wavelet coefficients, etc.
for high frequency NILM [15]. Features are categorised into steady state (e.g., power,
power factor, reactive power) and transient (e.g., transient root mean square current,
transient duration). The steady-state features are straightforward and easy to generate but
can result in misclassification for appliances with a similar power rating [16]. Transient
features can improve classification performance, but they require a complex hardware setup,
high sampling speed, and heavy computation [15,16]. Selecting a set of optimal features
is constrained by the data availability (open-source datasets and the available features
are summarised in [17]). Low-rate NILM approaches, which are suited for nationwide-
deployed smart meter data, can only use steady-state features, typically active power
measurements [18].

2.2. DT-Based Multiclass Classifiers for Low-Rate NILM

DT models form a hierarchical structure with nodes and branches that can easily be
followed through (from a parent node to leaf nodes) to understand how the outcome is
generated. For classification, the metrics often used for best splitting decisions in DT are
Gini impurity and information gain [19]. Gini impurity measures the probability of a
certain class being incorrectly classified, while the information gain is a metric that chooses
the split based on how much the entropy has been improved. DT is therefore interpretable
by design, in the sense that it is possible to design a tree in way that decision outcomes
can be mathematically explained and predicted. Logistic regression, rule fit, and Naïve
Bayes are also inherently interpretable on a modular level for the classification task [6]. Of
these, DT is the better-performing approach and most suited for the multiclassification
task. However, as the tree becomes more complex with numerous decision splits, the
dependence of a predicted outcome on each feature is not easily seen. In other words, it
is often difficult for a human to infer how the outcomes have been generated. Therefore,
additional explainability methods are needed to shed light on the most important features
that steer the model towards a particular decision.

In [12], DT, for low-frequency active power measurements, was used for the clas-
sification of multiple common household appliances for the classification of a pancake
maker, washing machine, hair dryer, oven, television, kettle, boiler, microwave, toaster,
washer–dryer, and fridge. Active power changes during appliance state transitions were
considered for identifying appliances while ignoring power fluctuations within each state.
Active power changes occur at the switching on/off of an appliances or when the appliance
changes states. The DT-based method showed good performance on the house it was
trained on but poor performance for the toaster and dishwasher in unseen houses. Only
a small dataset (one week of data) of aggregate active power for training was used and
thus required the least storage and computational resources compared to the unsupervised
methods, HMM and DTW . A DT-based classifier implementation of [12] that classified
five appliance classes, namely the fridge, kettle, toaster, microwave, and dishwasher, was
evaluated in [14] in comparison with their proposed SGSP approach, demonstrating good
classification performance for all 5 appliances on the REFIT and REDD datasets with
postprocessing of DT and SGSP outputs using regularisation. Furthermore, the authors
of [20] evaluated DT with the change in power as the feature for classifying the dishwasher,
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washing machine, tumble dryer, and washer-dryer in the REFIT and REDD datasets, with
various preprocessing approaches in relation to supervised KNN and unsupervised DB-
SCAN approaches, and concluded that DT had the best classification and disaggregation
performance for all appliances of interest, comparable to state-of-the-art algorithms, and
needing very little training data.

None of the previous DT multiclass classifiers reviewed above considered feature
selection or explainability.

2.3. Explainability for NILM

As the research field on NILM grows, there has been a need to provide explainability
of learning models to foster trust in end users [3]. In [5], heatmaps are demonstrated as
a model-agnostic way to visually interpret time-series results for DL models to explain
NILM outputs. The paper used a sequence2point network to illustrate explainability. To
explain how the model makes decisions, part of raw energy data input is occluded, and the
sliding of the occlusion window across data is performed. For each window position, the
model’s singular point output is estimated and the heatmap is generated. The heatmap
shows what the model considers to be the most impactful features. It was also shown that
the metrics, commonly used for evaluating the performance of deep learning approaches,
are not truly explainable since they are not necessarily intuitive. Heatmaps may be difficult
to explain to the end-user, who has little to no domain knowledge.

Another work that used a heatmap is presented in [21]. The paper describes using
NILM convolutional neural network (CNN) classifiers and two explainable artificial in-
telligence (XAI) techniques, occlusion sensitivity and gradient class activation mapping,
to provide simple feedback to the consumer-user. A CNN model for NILM is used to
estimate the activation state of each appliance in the system. Then, a XAI technique uses
this model and explains and justifies the prediction of the model. The explanation from the
XAI technique is presented as a heatmap such that the value of each variable in it indicates
how important each input feature is to the CNN output.

LIME was implemented with a neural network (NN) model in [22], using household
transportation energy (HTE) consumption (used as a model output/label for the prediction
model). HTE depends on household trip generation, the travel mode involved, fuel type,
and trip distance, which is essential in decision-making among urban planners and building
and transportation engineers. LIME provides local explainability and has the advantage
that it can highlight which features are considered for certain outputs and how much more
important one feature is than another for a specific prediction [22]. First, LIME is used to
explain the local inference mechanisms on individual (household) predictions. Second,
SP-LIME (submodular pick-LIME), a method that picks a set of illustrative instances with
explanations, is used to address the problem of trust.

As previously explained, DT is interpretable by design. However, for complex tree
models such as those used for NILM, it is very difficult for a human to interpret the output
of the model based on the tree structure. Furthermore, feature importance cannot be
assessed easily. Hence, explainability approaches are needed to interpret the output of
the model. In our preliminary work [7], PDP, ICE plots, and feature importance were
used with DT to inform the model performance. PD plots show how the features affect
the predicted outcome of the global model. PD plots and feature importance provide a
global explanation of a model, i.e., they quantify the importance of each feature. Feature
importance is calculated as the number of samples of a feature that will reach the leaf
node (predicted outcome) divided by the total number of samples of that particular feature.
The higher the value is, the more important the feature. ICE plots, similarly to PD plots,
visualize the relationship between features and the predicted outcome but on an instance
basis. With ICE, it is possible to explore the relationship between a particular instance or
group of instances of a feature with the predicted outcome, i.e., it is easy to observe each
instance in a feature and its relationship to the predicted outcome. Knowing the effect
of each feature on a model’s prediction is essential in understanding how the model will
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behave with new data. It has been observed that although the overall model considers
specific features as more important than others, local explainability is critical to explaining
false positives. In addition to the aforementioned explainability techniques, we also make
use of box plots [23–25] to explain the uncertainty of each generated feature. This is due to
noise from unknown appliances and in turn reflects upon the local feature importance in
the ICE plots and impacts the complexity of the learnt splits in the DT model.

3. Explainability-Informed NILM Multilabel Classification

Figure 1 describes the overall NILM workflow. As discussed in Section 2, the input to
the classifier is the aggregate smart meter power readings. Automated edge detection is
performed on the aggregate power measurements of the training dataset to the generate
features used. These features are then fed to the multiclassifier for training. Explainability
is then performed on the trained model, providing the input to new models developed via
feature selection. Next, we describe each of the three steps, one by one.

Figure 1. Block Diagram of Methodology.
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3.1. Automated Event Detection

Let Pt be the aggregate power measurement at sampling instant t, comprising the sum
of power consumption of known individual appliances, Pi

t , i = 1, . . . , M, and measurement
noise together with noise due to unknown appliances et. That is, Pt = ∑M

i=1 Pi
t + et. The dif-

ference between two adjacent active power samples is denoted by ∆Pt = |Pt − Pt−1|, t > 0.
DT is an event-based method, requiring isolated events when appliances are running.

The appliance on/off state is detected using an appliance-specific thresholds Ti. The
threshold set of values is denoted as T = {T1, . . . , TM}. Let min(T) = mini T , i.e., the
smallest threshold value among all M appliances. First, all ∆P values below min(T) are
removed. Next, for each appliance i. the algorithm identifies the first potential rising edge
of the appliance i via the following:

Pt − Pt−1 ≥ Ti. (1)

Let ti
p be the identified position (i.e., time stamp) of the rising edge. The corresponding

falling edge is found by searching for the first t, ti
p < t < tstop that satisfies Equation (1)

after the left-hand side is multiplied by −1. This time instance is recorded as ti
n. If no such

t exists, the rising edge is discarded and the algorithm starts searching for the next rising
edge. tstop denotes a time window parameter, which is set to be less than 5 min and greater
than 30 min for shorter and longer operating appliances, respectively.

For each appliance, the algorithm will output the following features: ∆Ptp denoted
by EDGE_P (in Watts), ∆Ptn value when the appliance goes OFF denoted by EDGE_N
(in Watts), and duration, named DURATION = ti

n − ti
p.

3.2. DT-Based Multiclass Classification

DT classification is used to predict categorical values, which in our case, are the
appliances used in the household. The aim of the multiclass classification is to assign to
each aforementioned detected event an appliance label. Being a supervised algorithm, the
DT classifier requires labelled data during training. To focus on high-consuming household
appliances that are typically present in all homes as well as for easy comparison and
benchmarking, first, labelling is performed into five classes, namely kettle, microwave,
toaster, dishwasher, and washing machine. Second, the generated features (EDGE_P,
EDGE_N and DURATION) are used as input features together with appliance labels
during training. After training, the model is exported for prediction on unseen data
without labels.

The tree model is a hierarchical structure consisting of nodes and branches. At the
nodes, the decision based on the input feature is made, and the leaf node is the last node
representing the outcome of the decision. During the training phase, the decision tree splits
the nodes from the root node to the leaf node based on training data (extracted labelled
features). Note that the learning algorithm will attempt all possible splits with all available
input features to find the best split. The splitting process will continue iteratively until
the decision tree separates the whole training set as observed in Figure 2 depicting our
five-classifier. The interpretability decreases as the depth of the tree increases. From the
tree, we observe that the tree is pretty simple to understand from the root node to the leaf
node “Kettle”, “Microwave”, “Toaster”, and “Washing Machine” (when DURATION is
greater than 770 s) showing which feature contributes to the which outcome at the leaf node.
However, the splits after the node with feature DURATION greater than 550 s becomes
more complex. It then becomes difficult to assess the effect of each feature on the predicted
outcome. Hence, the importance of additional explainability tools.

In order to explore the influence of appliances with similar features, the following
multiclass classifier models are built and trained:

• Multiclass classifier for classifying the five labels of kettle (K), microwave (M), toaster
(T), dishwasher (DW), and washing machine (WM), referred to as DT (K-M-T-WM-DW);



Sensors 2023, 23, 4845 8 of 26

• Multiclass classifier for classifying the three labels of kettle, microwave, and dish-
washer, referred to as DT (K-M-DW);

• Multiclass classifier for classifying the two labels of toaster and washing machine,
referred to as DT (T-WM).

Figure 2. Decision Tree for a 5-Class Classifier.

In order to predict certain outcomes during testing, after the features of the testing
samples are generated (namely, EDGE_P, EDGE_N, and DURATION), the generated
feature proceeds through the trained tree from the root node to the leaf node. The feature is
observed at the node, and depending on the condition at this node, it is assigned either to
the left or right tree branch. The process continues until the feature reaches the leaf, and
the corresponding label assigned to this feature.

3.3. Post Hoc Explainability: Predicted and Actual Outcomes

Once the multiclass classifier model is trained, first, we plot the feature importance
graph. Feature importance is a graph that shows which features the model considered
strongly in the prediction (the feature considered more important will have the highest
score). However, global feature importance does not show the effect of individual features
on individual predicted outcomes, which is important in explaining false positives. This is
observed from PD and ICE plots.

PD and ICE plots are usually presented in a single plot. A PD plot is presented as
a single curve showing how a feature generally influences the model outcome. This is
similar to feature importance, but with a PD plot, we can show graphically how much an
individual feature influences each predicted outcome because it enables for the plotting
of each feature for each outcome. The y-axis of the PD and ICE plot shows the score of
the predicted outcome (between 0 and 1) with respect to the feature and with respect to
instances of each feature in the ICE plots. The smaller the PD curve is, the less effect a
feature has on the model prediction. An ICE plot provides an explanation at the instance
level; hence, it indicates how the individual instances of a feature are distributed. The
instances that appear to have almost one “score” in the ICE plots have a very high degree
of impact on the predicted outcome. This is shown by example in Section 5.

PD and ICE plots are also useful for explaining why the actual outcomes differ from
the predicted outcomes. This is carried out by comparing the PD and ICE plots of the
predicted outcome with the PD and ICE plots of the actual outcomes. The differences
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explain the limitations of the trained model when it experiences test data that differ from
the trained data, e.g., from another house in the same dataset or from another house in
another dataset. This is shown by example in Section 6.

4. Experimental Setup
4.1. Dataset

The five appliances of interest, namely the kettle, microwave, toaster, dishwasher, and
washing Machine, are present in both Houses 2 and 6 of the REFIT dataset [26] and House 1
of the UK-DALE dataset [27]. The sampling rate for REFIT houses is 1/8 Hz and UK-DALE
1/6 Hz. For the sake of data transparency, these datasets, appliances, and chosen houses are
the most documented since they are the ones mostly used in the literature to demonstrate
performance and hence useful to obtain a true indication of performance.

• Training is carried out on a balance set of edge-pairs (55 edge-pairs per each appliance)
selected randomly from the available data of House 2 (except for the test period) and
tested on the entire unseen months of October, November, and December 2014 of
House 2.

• For generalisability and transferability experiments, the aforementioned trained model
from REFIT House 2 is used for testing on unseen REFIT House 6 (the month of October
2014) and UK-DALE House 1 (January 2016 to April 2016).

4.2. Evaluation Metrics

Training and ten-fold cross-validation were performed on our classifier models, and
the results are presented in confusion matrices of Tables in Sections 5.2, 5.3, 6.1 and 6.2.
During evaluation, we consider the influence of unknown appliances contributing to noise
from unlabelled appliances, et. Each predicted event is compared with submetred data as
ground truth data and labelled as either true positive, false positive, or a miss. This, in turn,
is used to calculate the performance metrics. For performance evaluation, the following
metrics were used: precision (PR), recall (RE), and F-score.

These metrics are expressed as Equations (2)–(4).

PR =
TP

TP + FP
(2)

RE =
TP

TP + FN
(3)

F-Score =
2× PR× RE

PR + RE
(4)

where, for Appliance i, a true positive (TP) indicates that the classifier has correctly classified
Appliance i as Appliance i, false positive (FP) indicates that the classifier has incorrectly
classified another appliance as Appliance i, false negative (FN) indicates that the classifier
has incorrectly classified appliance i as another appliance. Precision (PR) is the ratio of
correctly classified Appliance i samples to the total number of samples predicted as “true”,
recall (RE) is the ratio of correctly classified Appliance i samples to the total number of
Appliance i activation, and F-score is defined as the harmonic mean of the model’s PR
and RE.

4.3. Detection Performance

For the purposes of transparency, we also evaluated the performance of the edge
detection algorithm since this influences the overall performance. The edge detection
algorithm detects the appliance ON events by monitoring the change in active power in
relation to the appliance-specific thresholds. The appliance-specific thresholds Ti estimated
from the average appliance submetring measurements for House 2 REFIT dataset were as
follows: (a) 2000 W for kettle, (b) 1900 W for dishwasher and washing machine, (c) 1000 W
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for microwave, and (d) 700 W for the toaster. The same thresholds were used to evaluate
the generalisability and transferability to other unseen houses.

Table 1 shows the edge detection performance in terms of the number of events
detected (i.e., number of EDGE_P and EDGE_N pairs detected) that correspond to the five
appliances of interest and events that were due to ‘Other’ unlabelled appliances in relation
to the total number of ground-truth events corresponding to the five appliances of interest.
The latter events could cause FPs for our five appliances of interest and therefore affect
the precision and F-score of the classification performance. When perfect edge detection is
assumed, events caused by “Other” unknown appliances in the dataset are not passed on
to the classifier.

Table 1. Edge Detection Performance.

Dataset
Number of

Ground-Truth
Events

% Events
Detected

% Events Due
to Unknown
Appliances

N M(T)

REFIT H2 568 92% 9% 77%
REFIT H6 407 90% 15% 84%

UK-DALE H1 509 96% 6% 79%

Low-rate NILM is usually challenging to disaggregate due to the presence of unknown
appliances. This can be calculated using the noisiness of the dataset metric of [28] as per
Equation (5), as shown in Table 1 for each of our test houses. The higher the percentage is,
the higher the noise.

%− NM(T) =
∑T

t=1 |yt −∑M
m=1 y(m)

t |
∑T

t=1 yt
(5)

where yt is the aggregate load measurement at time t, y(m)
t is the ground-truth power

measurement for each appliance m to be disaggregated, and T is the testing period as
specified in Section 4.1. M = 5 where the only m of interest are the kettle, toaster, washing
machine, dishwasher, and Microwave. All the other loads are considered to be noise. From
Table 1, we can observe that the noise metric for REFIT House 2 and UK-DALE House 1
are about the same, resulting in a similar percentage of detected events with similar active
power from unknown appliances. However, the noise measure in REFIT House 6 is
significantly higher, resulting in a greater number of events from unknown appliances
with similar power being detected. This likely affects the classification performance, with a
worse classification performance expected for REFIT House 6 compared to the other two.

4.4. Execution Time

Computational complexity and storage requirements have been a challenge to most
NILM applications. While edge computing has been proposed for deep learning-based
NILM showing reduction in model complexity and storage requirements along with small
performance degradation [29], DT, being of relatively lower training and testing complexity,
is suitable for both hardware and software implementation with parallelism without
performance degradation [30].

The execution time of our proposed DT multiclass classifiers is summarized in Table 2.
The experiments were performed on an Intel(R) Core(TM) m7-6Y75 CPU 1.2 GHz machine
running Windows 10. The models were all implemented using MATLAB 2023a [31]
classification learner with an optimizable tree that can optimize hyperparameters, i.e., the
maximum number of splits and splitting criterion such as the Gini index and twoing criterion.
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Table 2. Execution Time.

DT Model No.
Features

REFIT H2 REFIT H2 REFIT H6 UK-DALE H1

Training
(2 Months)

No.
Samples

Testing
(3 Months)

No.
Samples

Testing
(1 Month)

No.
Samples

Testing
(4 Months)

No.
Samples

DT (K-M-T-WM-DW) 3 39.15 s 275 3.17 s 577
DT (K-M-DW) 2 20.37 s 165 3.29 s 507 3.41 s 394 3.95 s 429
DT (T-WM) 1 25.91 s 110 3.22 s 126 3.32 s 100 3.67 s 132

It can be observed that the most complex model requires only 40 s for training with
2 months’ worth of data, while testing can be performed in real time, requiring around
1.52 milliseconds for one hour of data or only 4.24 × 10−7 s per sample. The table also
shows minor variations of the execution time due to training sizes, model complexities,
and class composition.

5. Performance Prediction via Explainability Tools

In this section, we first explore the global feature importance of the model, then use
the PD and ICE plots to establish the predicted outcomes of the DT multiclass classifiers
described in Section 3.2 per appliance and per feature. These are then validated against the
observed confusion matrices and performance metrics.

5.1. Global Feature Importance

Figure 3 shows feature importance scores for all three models described in the Section 3.2.

Figure 3. Global feature Importance for DT (K-M-T-WM-DW), DT (K-M-DW), and DT (T-WM) models.

Figure 3 shows that DURATION is the most important feature in a 5-appliance
classifier model on average across all five appliance classes. EDGE_P and DURATION
have the same importance in a three-appliance classifier model on average across all
3 appliances. For a two-appliance classifier model, EDGE_P is the important feature
on average across the two appliances. Note that the feature importance captures the
contribution of each feature to the model after all previous features have been added. For
example, in Figure 3, the DT (T-WM) model, EDGE_N and DURATION do not provide
any improvement once EDGE_P is introduced.

5.2. DT (K-M-T-WM-DW) Multiclassifier Model

The PD and ICE plots for this five-class classifier were described in [7] and are sum-
marised below.

Figures 4–6 show the obtained PD and ICE plots. Figure 3 shows that, in a five-
appliance classifier, DURATION is the most important feature with a score of 0.02 while
EDGE_P and EDGE_N have similar importance with a score of 0.016 and 0.017, respec-
tively. However, whilst this holds true for the dishwasher and washing machine, EDGE_P
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has an equally strong influence on kettle performance as does DURATION (a 0.6 PD
score in both Figures 4a and 6a). EDGE_P has a significantly stronger influence on mi-
crowave prediction compared to DURATION (0.78 vs. 0.2 PD score as observed in
Figures 4b and 6b, respectively). The ICE plot of Figure 4a shows that the individual
instance scores of the kettle are very well clustered and rarely mixed. Indeed, all EDGE_P
below 1800 W have a score of 0, and all values above 2700 W have a score of 1 (highlighted
in green). The only issue appears with a single EDGE_P instance of around 2400 W that is
mixed with the 0-score cluster of instance points between 2000 W and 2600 W (highlighted
in yellow), where the kettle is likely to be confused as either the washing Machine or
dishwasher,which is also shown in Figure 7a as an outlier. This single instance causes
the Kettle’s PD plot in Figure 4a to rise by only 60%. DURATION, as a feature as shown
in Figure 6a, also influences kettle performance with a similar score as EDGE_P. There-
fore, we can expect excellent performance for the kettle, with EDGE_P and DURATION
as features.

(a) Kettle (b) Microwave (c) Toaster

(d) Dishwasher (e) Washing Machine

Figure 4. PD and ICE Plots for Predicted Outcome vs. EDGE_P for DT (K-M-T-WM-DW).

The microwave and toaster have the lowest and similar power consumption and a
similar operation duration. Therefore, they tend to be confused for each in the learning of
split decisions, as observed by multiple instances in EDGE_P around the same wattage
in Figure 4b,c (multiple overlapping score 0 and 1 clusters highlighted in yellow). This
can be observed from Figure 7a as well, although the microwave and toaster box plots
do not overlap (indicating that the individual instances of EDGE_P for the microwave
and toaster are different) but the outliers do. The microwave has high prediction score
because, between 1240 W and 1530 W (where we observe no more outliers in toaster
that may affect the microwave between these values as shown in Figure 7a), the cluster
is well separated (highlighted in green). As shown in Figure 5b,c, EDGE_N is a better
feature for distinguishing between the microwave and the toaster. EDGE_N instances less
than −1180 W are considered strongly for the microwave, and more than −1180 W are
considered strongly for the toaster (highlighted in green). From Figure 7b, we can observe
only about four outliers in the toaster spread between −1700 W and −1344 W that are
overlapped with the microwave box plot compared to what was observed with EDGE_P
as a feature. DURATION has very little influence on either the microwave or toaster
performance, as shown by the relatively low PD scores in Figure 6b,c as well as by Figure 7c,
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where the box plots and outliers overlap. Therefore, we can expect excellent performance
for microwave with EDGE_N as a feature. However, EDGE_N, with a PD score of 0.39
for both the toaster and microwave (as seen in Figure 5b,c), may help distinguish these
two appliances.

(a) Kettle (b) Microwave (c) Toaster

(d) Dishwasher (e) Washing Machine

Figure 5. PD and ICE Plots for Predicted Outcome vs. EDGE_N for DT (K-M-T-WM-DW).

(a) Kettle (b) Microwave (c) Toaster

(d) Dishwasher (e) Washing Machine

Figure 6. PD and ICE Plots for Predicted Outcome vs. DURATION for DT (K-M-T-WM-DW).
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(a) EDGE_P (b) EDGE_N (c) DURATION

Figure 7. Box plots showing the data distribution of each feature for each appliance.

The dishwasher and washing machine tend to cause confusion in the learning of
split points, as observed via their ICE plots. EDGE_P shows very low confidence in
the prediction outcome of washing machine and dishwasher as seen in Figure 4d,e and
observable by EDGE_P instances that are distributed around the same wattage, as seen
in Figure 7a. With EDGE_N, the model leans towards the dishwasher between −2280 W
and −2567 W, and between −2215 W and −2038 W, but lean towards a washing machine
prediction with EDGE_N instances between −2281 W and −2216 W, and instance at
−1937 W. Although there is a rise of their PD plots in Figure 5d,e at those wattages, the
PD plot scores are very low, indicating low confidence in prediction. Confusion can also
be observed via the overlapping box plots and outliers between the washing machine and
dishwasher data in Figure 7b. With DURATION as the feature, instances are not as spread,
as shown in Figure 7c for the dishwasher as in washing machine, and no outliers appear
that can cause confusion; although their respective box plots overlap, it can be clearly seen
from Figure 6d,e, that some DURATION instances have more impact on one appliance
than they do on the other. For prediction “Dishwasher”, most of the DURATION values
between 570 s and 780 s have a high impact. For prediction “Washing Machine”, values
between 270 and 540 s, and higher than 780 s, have a higher impact, as supported by
their PD plots in Figure 6d,e, which shows a rise of about 50%. Hence, we expect good
performance for the dishwasher and washing machine with DURATION as a feature since
it helps distinguish between these two appliances.

In summary, kettle is expected to work best with EDGE_P and DURATION as fea-
tures, microwave with EDGE_P as a feature, washing machine and dishwasher with
DURATION as a feature, and to a lesser extent EDGE_N to help distinguish between
toaster and microwave. To confirm this, we performed testing on an unseen portion of
the same House 2 dataset with three 5-class classifier models embedding feature selection.
Table 3 shows the resulting F-scores when the models were first built with all three fea-
tures, second with EDGE_P and DURATION as features, and third with EDGE_N and
DURATION as features, with their confusion matrices presented in Table 4. Note that, un-
like the performance results reported in [7], where we assumed perfect edge detection and
therefore did not consider the influence on events due to unknown/unlabelled appliances,
here we take into consideration these unknown appliances, which we refer to as “Other”.

We expect the best overall performance for the second model since for all appliances,
except for toaster, EDGE_P and DURATION are considered to be strong influencing
features. This is indeed supported by the F-scores of the five-class classifier models, with
EDGE_P and DURATION selected as features. The effect of EDGE_N on the toaster can
be observed in the confusion matrix of Table 4c where the toaster is less confused with
microwave. However, this is not reflected in the equivalent F-score in Table 3 because of
the 16 instances of Other, i.e., unknown appliances with similar EDGE_N to the toaster,
that increase the number of false positives for toaster and reduce its precision and thus
F-score. This effect of "Others" has less effect on the five-class classifier with EDGE_P and
DURATION as selected features.
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Furthermore, we can observe from the confusion matrix in Table 4b with EDGE_N
and DURATION selected as features that the dishwasher and washing machine classes
are confused with each other since there is not a clear distinguishing feature between
these two appliances, as shown in the PD and ICE plots. Therefore, it makes sense to
design a multiclass classifier where the DT does not need to distinguish dishwasher and
washing machine.

Table 3. Five Classifier, DT (K-M-T-WM-DW), and F-Score When Different Combinations of the
Features Are Used.

Appliance EDGE_P & EDGE_N EDGE_P EDGE_N
& DURATION & DURATION & DURATION

Dishwasher 0.70 0.72 0.70
Washing Machine 0.54 0.56 0.53

Kettle 0.99 0.99 0.99
Microwave 0.88 0.90 0.87

Toaster 0.65 0.80 0.64

Table 4. Prediction Confusion Matrix for the DT (K-M-T-WM-DW) Model.

(a) Three Features

Predicted Class

DW K M T WM Other

Tr
ue

C
la

ss

DW 47 0 0 0 29 0
K 0 185 0 0 0 0
M 0 0 168 22 0 0
T 0 0 1 35 0 0

WM 7 0 0 0 27 0
Other 4 3 24 15 10 0

(b) EDGE_P & DURATION Features

Predicted Class

DW K M T WM Other

Tr
ue

C
la

ss

DW 48 0 0 0 28 0
K 0 185 0 0 0 0
M 0 0 184 6 0 0
T 0 0 3 33 0 0

WM 6 0 0 0 28 0
Other 4 3 31 8 10 0

(c) EDGE_N & DURATION Features

Predicted Class

DW K M T WM Other

Tr
ue

C
la

ss

DW 47 0 1 0 28 0
K 0 182 3 0 0 0
M 0 0 168 22 0 0
T 0 0 1 35 0 0

WM 7 0 1 0 26 0
Other 4 2 24 16 10 0

5.3. The DT (K-M-DW) and DT (T-WM) Multiclassifier Models

As observed in Section 5.2, the dishwasher and Washing Machine, and the microwave
and toaster tend to influence each other negatively while the DT model is making decision
splits, and, therefore, we hypothesized that these two sets of appliances should not be
trained in the same model. Next, we prove this hypothesis by exploring whether the
predicted outcome will improve for these four appliances if the models do not attempt to
distinguish these appliances during the splitting process. Here, we compare the PD and ICE
plots of the DT (K-M-DW) and DT (T-WM) models with those of the DT (K-M-T-WM-DW)
model to investigate the impact of the removal of one of these appliances on predicted
outcomes of the resulting model.
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Comparing Figures 8 and 9 for the three-class and two-class classifiers with the five-
class classifier from Figure 4, we can observe that with the removal of the washing Machine
or dishwasher and microwave or toaster, EDGE_P has a much stronger influence on the
predicted outcome of the microwave, toaster, and washing machine as shown by their PD
scores of 1 in Figures 8b and 9a,b. We can also observe in Figure 3 that EDGE_P is the most
important feature in both the three-class and two-class classifiers.

(a) Kettle (b) Microwave (c) Dishwasher

Figure 8. PD and ICE Plots for Predicted Outcome vs. EDGE_P for the DT (K-M-DW) Model.

(a) Toaster (b) Washing Machine
Figure 9. PD and ICE Plots for the Predicted Outcome vs. EDGE_P for the DT (T-WM) Model.

In the five-class classifier, we observe EDGE_N has a slightly higher influence on the
Toaster prediction than it does on the other features. However, this is only the case if the
microwave and toaster are being distinguished using the same classifier as in the earlier
five-class classifier. We observe from Figures 10, 11 and Figure 3 that EDGE_N has very
little influence on any of the predicted outcomes.

(a) Kettle (b) Microwave (c) Dishwasher

Figure 10. PD and ICE Plots for the Predicted Outcome vs. EDGE_N for the DT (K-M-DW) Model.
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(a) Toaster (b) Washing Machine

Figure 11. PD and ICE Plots for the Predicted Outcome vs. EDGE_N for the DT (T-WM) Model.

Even though there is a slight rise in the PD plot of the kettle with DURATION as a
feature, as shown in Figure 12a, there are many instances of confusion. Intuitively, the
kettle, toaster, and microwave have a shorter operating duration, hence DURATION as
a feature is not of much significance for these three appliances as also observed in the
low PD scores in Figures 12b and 13a. This can also be seen in Figure 7c, which shows
many outliers that can affect the performance of these three appliances. The importance
of DURATION remains mostly unchanged for both the dishwasher prediction and the
washing Machine prediction as seen by the PD/ICE plots of Figures 12c and 13b. As
previously discussed, in the five-class classifier, the kettle is likely to be confused with
either the washing machine or dishwasher. Therefore, to avoid this confusion, the model
strongly considers DURATION for the dishwasher prediction and EDGE_P for the kettle
prediction in a three-class classifier model. The washing machine and toaster have very
distinct power signatures and duration and thus can easily be distinguished in a two-class
classifier model; hence, the two-class classifier model leans towards EDGE_P as a more
influential feature for distinguishing the toaster and washing machine. Moreover, we can
observe in Figure 3 that EDGE_P is the only important feature in the 2-class classifier. Even
the individual instances of EDGE_P are well clustered in Figure 9.

(a) Kettle (b) Microwave (c) Dishwasher

Figure 12. PD and ICE Plots for the Predicted Outcome vs. DURATION for the DT (K-M-DW) Model.

(a) Toaster (b) Washing Machine
Figure 13. PD and ICE Plots for the Predicted Outcome vs. DURATION for the DT (T-WM) Model.
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In summary, the kettle, toaster, washing machine, and microwave are expected to
work best with EDGE_P and dishwasher with DURATION as features. To confirm this,
we performed testing on an unseen portion of the same House 2 dataset with three-class
and two-class classifier models embedding feature selection. Tables 5 and 6 show the
resulting F-scores when the models were first built with all three features, and second, with
EDGE_P and DURATION as features selected for the three-class classifier and EDGE_P
as the selected feature for the two-class classifier.

As hypothesised, comparing Table 3 with Tables 5 and 6, we can see that the microwave,
dishwasher, and washing machine performance has increased when separating the washing
machine from the dishwasher during classification and when separating the microwave
and the toaster. With the removal of the toaster, the microwave performance increases
in F-score from 88% (in a five-class classifier, Table 3) to 91% (in a three-class classifier,
Table 5). This is not the case with the toaster because toaster activation in the testing set and
unknown appliances “Other” are affecting its performance. Since it has the lowest power
signature among the five targeted appliances, unknown appliances “Other” are causing
false positives as can be observed in the confusion matrix of Table 7.

Table 5. F-scores of the DT (K-M-DW) Classifier on the Unseen Data of REFIT House 2.

Three Features EDGE_P & DURATION

Appliance PR RE F-Score PR RE F-Score

Dishwasher 0.88 1 0.94 0.88 1 0.94
Kettle 0.96 1 0.98 0.96 1 0.98

Microwave 0.83 1 0.91 0.83 1 0.91

Table 6. F-score of the DT (T-WM) Classifier on the Unseen Data of REFIT House 2.

Three Features EDGE_P

Appliance PR RE F-Score PR RE F-Score

Washing
Machine 0.67 1 0.80 0.67 1 0.80

Toaster 0.48 1 0.65 0.48 1 0.65

We can observe no change in the performances in Tables 5 and 6, which show the
results when the models were trained without and with feature selection, nor can this
be observed in their corresponding confusion matrices in Tables 8 and 7. This is because
in the three-class and two-class classifiers, the predicted outcomes are not as influenced
by EDGE_N as they are by the EDGE_P and DURATION features, as observed by their
PD plots.

Table 7. Prediction Confusion Matrix for the DT (T-WM) Model.

(a) Three Features

Predicted Class

T WM Other

Tr
ue

C
la

ss

T 36 0 0
WM 0 34 0

Other 39 17 0

(b) EDGE_P Feature

Predicted Class

T WM Other

Tr
ue

C
la

ss

T 36 0 0
WM 0 34 0

Other 39 17 0
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Table 8. Prediction Confusion Matrix for the DT (K-M-DW) Model.

(a) Three Features

Predicted Class

DW K M Other

Tr
ue

C
la

ss DW 76 0 0 0
K 0 185 0 0
M 0 0 190 0

Other 10 7 39 0

(b) EDGE_P & DURATION Features

Predicted Class

DW K M Other

Tr
ue

C
la

ss DW 76 0 0 0
K 0 185 0 0
M 0 0 190 0

Other 10 7 39 0

6. Evaluating Generalisability and Transferability in Relation to the Predicted Outcomes

In this section, we explore generalisability across the same REFIT dataset and trans-
ferability across the UK-DALE dataset first by comparing the PD and ICE plots between
the predicted outcomes discussed in Section 5.3 and the actual outcomes observed on
the testing set. Since the two classifiers (three-class and two-class) were shown to outper-
form the five-class classifier, we explore generalisability for the DT (K-M-DW) and the DT
(T-WM) classifiers.

6.1. Generalisability across the UK REFIT Dataset

To show generalisability, the models were trained using REFIT House 2 and tested
using unseen REFIT House 6 data using only the important features. From the trained
model described in Section 5.3, it was observed that the three-class classifier model consid-
ers EDGE_P strongly for prediction “Kettle” and “Microwave” and DURATION for the
“Dishwasher” prediction. The two-class classifier model considers EDGE_P strongly for
prediction “Toaster” and “Washing Machine”.

Comparing the PD and ICE plots of the EDGE_P of the kettle in Figure 14a with
those in Figure 8a, we can observe that both plots have a similar shape and value with
the predicted score, showing a sharp rise from 0 to about 0.66-0.96 after about 1800 watts.
We expect the kettle to retain its good performance as when tested in House 2. A similar
observation can be made comparing the PD and ICE plots of the DURATION feature of the
dishwasher in Figures 12c and 15c. However, we observe a drop in the prediction plot from
0.66 to 0.54 around 390 s which is due to the inconsistency in operating the duration between
the edges of the dishwasher in Houses 2 and 6. This can be seen in Figure 12c where the
DURATION instances are well clustered about DURATION instances between 570 s and
779 s unlike in Figure 15c, where DURATION instances are very few and scattered from
390 s to 1047 s. With this drop, we should expect the classification performance metrics of
the dishwasher to drop a bit when tested in House 6. This is evident when we compare
Tables 5 and 9. Furthermore, the drop in the microwave F-score performance is only due
to the influence of the unknown appliances including those of the washing machine and
toaster as shown by the drop in the precision score. As predicted by the PD and ICE plots,
the microwave is not confused with the kettle or dishwasher, as shown by the recall score
of 1 for all appliances and in the confusion matrix of Table 10.
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(a) Kettle (b) Microwave (c) Dishwasher

Figure 14. PD and ICE Plots for the Actual Outcome on the Testing set vs. EDGE_P for the DT
(K-M-DW) Classifier.

(a) Kettle (b) Microwave (c) Dishwasher

Figure 15. PD and ICE Plots for the Actual Outcome on the H6 testing set vs. DURATION for the
DT (K-M-DW) Model.

Table 9. Actual Performance of DT (K-M-DW) classifier on unseen REFIT House 6.

Appliance PR RE F-Score

Dishwasher 0.70 1 0.82
Kettle 0.99 1 0.99

Microwave 0.74 1 0.85

Comparing PD and ICE plots of EDGE_P for the Toaster and washing machine in
Figure 16 with those in Figure 9, we can observe that both plots have similar a shape
and value. Therefore, we expect the classification performance metrics of the toaster and
washing Machine to not change much when tested in House 6. Indeed, as seen in Table 10b,
the toaster and washing machine are not confused with each other, resulting in a recall of 1
as in Table 11, but Precision drops due to false positives from “Other” appliances, which
include unknown appliances.

(a) Toaster (b) Washing machine
Figure 16. PD and ICE Plots for the Actual Outcome on H6 testing set vs. EDGE_P for the DT
(T-WM) Model.
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Table 10. Confusion Matrix of the DT (K-M-DW) and DT (T-WM) Model Tested on REFIT House 6.

(a) EDGE_P & DURATION Features

Predicted Class

DW K M Other

Tr
ue

C
la

ss DW 14 0 0 0
K 0 164 0 0
M 0 0 154 0

Other 6 1 55 0

(b) EDGE_P Feature

Predicted Class

T WM Other

Tr
ue

C
la

ss

T 32 0 0
WM 0 6 0

Other 50 12 0

Table 11. Actual Performance of the DT (T-WM) Classifier on unseen REFIT House 6.

Appliance PR RE F-Score

Washing Machine 0.33 1 0.50
Toaster 0.39 1 0.56

6.2. Transferability to UK-DALE Dataset

In this experiment, the models were trained using House 2 of the UK REFIT dataset
and tested on unseen House 1 of the UK-DALE dataset.

Comparing the PD and ICE plots of the EDGE_P of the kettle in Figure 17a with
those in Figure 8a, we can observe that both plots have a similar shape and value, with the
predicted score of showing a sharp rise from 0 to about 0.66–0.81 after about 1800 watts. We
can also observe a sharp rise of the PD plot for the dishwasher in from 0.66 in Figure 18c
to 0.80 in Figure 12c. Hence, we expect the kettle and dishwasher to retain their good
performance as when tested in House 2. This is indeed the case when we compare Tables 5
and 12.

(a) Kettle (b) Microwave (c) Dishwasher

Figure 17. PD and ICE Plots for the Actual Outcome on the UK-DALE Testing Set vs. EDGE_P for
the DT (K-M-DW) Classifier.

The unknown “Others” appliance class affects the microwave performance, as seen in
Table 13a. Among the three appliances, the microwave has the lowest power signature and
is therefore most likely to be hidden by the unknown appliances in“Others”.

Comparing the PD and ICE plots of EDGE_P for the toaster and washing machine in
Figure 19 with those in Figure 9, we can observe that both plots have a similar shape and
value. Therefore, we expect the recall performance of the toaster and washing machine to
be high; this is indeed the case, with a recall score of 1, as shown in Table 14. The precision
score of less than 1 is due to the false positives from few activations from appliances other
than the toaster and washing machine.
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(a) Kettle (b) Microwave (c) Dishwasher

Figure 18. PD and ICE Plots for the Actual Outcome on the UK-DALE Testing Set vs. DURATION
for the DT (K-M-DW) Model.

Table 12. Actual Performance of the DT (K-M-DW) Classifier on Unseen UK-DALE House 1.

Appliance PR RE F-Score

Dishwasher 0.90 1 0.95
Kettle 0.98 1 0.99

Microwave 0.76 1 0.87

(a) Toaster (b) Washing machine
Figure 19. PD and ICE Plots for the Actual Outcome on the UK-DALE Testing Set vs. EDGE_P for
the DT (T-WM) Model.

Table 13. Confusion Matrix of the DT (K-M-DW) and DT (T-WM) Model Tested on UK-DALE House 1.

(a) EDGE_P & DURATION Features

Predicted Class

DW K M Other

Tr
ue

C
la

ss DW 76 1 0 0
K 0 239 0 0
M 0 0 78 0

Other 8 3 24 0

(b) EDGE_P Feature

Predicted Class

T WM Other

Tr
ue

C
la

ss

T 32 0 0
WM 0 65 0

Other 20 15 0

Table 14. Actual Performance of the DT (T-WM) Classifier on Unseen UK-DALE House 1.

Appliance PR RE F-Score

Washing Machine 0.81 1 0.90
Toaster 0.62 1 0.76
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6.3. Benchmarking

Finally, in Table 15, we compared the performance of our proposed classifiers trained
on REFIT House 2 and tested on both REFIT House 2 (as presented in Section 5 following
feature selection) and REFIT House 6 (as presented in Section 6.2), with the reviewed,
event-based, low-rate NILM multiclass DT implementation of [14] and the event-based
semisupervised (SGSP) and unsupervised (UGSP) graph signal processing implementations
with a dynamic time warping (DTW) distance measure of [32], where a one-against-all
approach for each class, one at a time, was adopted for multiclass classification. We also
benchmarked against the best performing DT results of [20] for the dishwasher and washing
machine in REFIT House 2 with median filtering as the preprocessing and a postprocessing
steps. Benchmarks were trained and tested on REFIT Houses 2 and 6, and both require
small amounts of data for training, similarly to the proposed DT multiclass classifiers.

Table 15. F-SCORE Performance Comparison of the Proposed DT-Based Multiclassifiers and Other
Event-based Multiclass Classifiers on the REFIT dataset.

Appliance K WM DW MW T

DT (K-M-T-WM-DW)H2 0.99 0.56 0.72 0.90 0.80
DT H2[14] 0.9 0.80 0.83 0.70
DT (K-M-DW)H2 0.98 0.94 0.91
DT (T-WM)H2 0.80 0.65
DT H2 [20] 0.52 0.77
SGSP H2 [32] 0.87 0.64 0.63 0.68 0.58
UGSP H2 [32] 0.90 0.70 0.61 0.79 0.72
DT (K-M-DW)H6 0.99 0.82 0.85
DT (T-WM)H6 0.50 0.56
SGSP H6 [32] 0.79 0.57 0.63 0.45
UGSP H6 [32] 0.77 0.69 0.70 0.44

K—kettle; WM—washing machine; DW—dishwasher; M—microwave; T–toaster; H2—REFIT House 2; H6—
REFIT House 6.

We observe that the proposed DT-based 5-classifier approach offers the best per-
formance for the Toaster and Kettle, although the Kettle generally performs well for all
DT-based multiclass classifiers. It is worth noting the DT implementation DT H2 [14] classi-
fied Fridge, Kettle, Toaster, Microwave and Dishwasher. While it also classified one event
to 5 appliances, it did not include the Washing Machine, which is why the Dishwasher
has better performance than the equivalent proposed DT (K-M-T-DW-WM) classifier. The
proposed DT (K-M-T-DW-WM) classifier outperforms that of DT H2 [14] for Microwave
and Toaster, due to the consideration of all 3 features in the proposed approach unlike the
average power value considered as feature in all the benchmarks. As observed in Section 5,
explainability-informed class composition for each classifier and feature selection does
improve classification performance of all appliances except toaster, as shown by F-scores
indicated in bold for the DT (K-M-DW) and DT (T-MW) models. Toaster suffers from
the influence of other unknown appliances, which have similar EDGE_P and EDGE_N
features. Furthermore, including dishwasher and washing machine in the same classifier
causes confusion of the two appliances and resulting poor performance for both appliances
as evidenced by DT H2 [20] results, which are in line with our DT (K-M-T-WM-DW) classi-
fier results. Comparing the performance of REFIT House 2 trained DT multiclassifiers on
REFIT House 6 with those of the SGSP and UGSP classifiers tested on House 6, we can see
that the proposed DT multiclassifiers achieve better performance for Kettle, Dishwasher,
Microwave and Toaster.

7. Conclusions

In this paper, we propose and validate a methodology for explainability-informed
appliance-level feature selection and multiclass classifier design by (i) first predicting the
performance of a trained multiclass classifier, then validating the prediction via testing;
(ii) quantifying the relative feature importance for each appliance within the multiclass
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classifier, which in turn informs class composition of the multiclass classifier models with
explainability-informed feature selection; and (iii) predicting why a particular trained
classifier model will generalise well for individual appliances across other houses in the
same dataset or transfer well to other houses in different datasets.

The explainability tools, namely PD and ICE plots, help a human visualise how
features affect the model in general as well as each predicted outcome. They also help
algorithm developers to understand which appliances can be confused with each other
through visualisation of the distinguishing features of each appliance. For example, the
kettle, toaster, and washing machine are expected to be detected more accurately with
EDGE_P as the distinguishing feature, and the dishwasher with DURATION as the fea-
ture. To distinguish between the toaster and microwave, EDGE_N is needed. This in turn
informs feature selection per appliance and multiclass classifiers that avoid misclassification
and improve the classification performance of each appliance. This results in significant
improvement in the classification accuracy of 36% for the washing machine and 22% for
the dishwasher, maintaining the performance of the kettle and microwave.

When exploring the generalisability of the model trained on House 2 of the REFIT
dataset to House 6 in the same REFIT dataset, we expect from the PD and ICE plots for
kettle and microwave to retain their performance but dishwasher to drop a little due to
differences in DURATION, as confirmed by the classification score during testing. While
the PD and ICE plots show that the toaster and washing machine are well distinguished and
will retain their performance, as evidenced by a recall of 1, we also observe a drop in F-score
due to false positives from unknown appliances. Finally, transferability to another dataset
can also be estimated by looking at the actual outcomes on a sample of the testing set of
the target house before deployment, thus saving resources on testing effort. Specifically,
the PD plots show that the kettle and dishwasher would transfer well from the REFIT to
the UK-DALE dataset, and similarly for the toaster and washing machine, and these are
confirmed by the F-score and confusion matrices, with similar performance to the REFIT
house 2.

Even though the proposed explainability-informed feature selection and class compo-
sition of multiclassifier models has the ability to transfer across datasets with minimum
performance drop, resulting in the appliances within the multiclassifier model not being
confused with each other, it cannot avoid the influence of unknown/unlabelled appli-
ances, which have similar features. Future work will investigate leveraging unsupervised
methods to help identify these unknown appliances, as well as to generalise the proposed
explainability-informed feature selection and class composition for multiclassifier models
for a larger range of appliances such as electric vehicles, air conditioners, and heat pumps.
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