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A B S T R A C T   

This article presents a computational homogenization framework for viscoelastic composites within the frame-
work of non-ordinary state-based peridynamic theory. The motivation to develop this framework stems from the 
desire to develop a homogenization scheme that can model processes and phenomena that are driven by nonlocal 
behaviour such as size effect and fracture for which frameworks based on the classical continuum theory lack the 
capability of modelling. The proposed framework was used to calculate the effective properties in both time and 
frequency domains of two viscoelastic matrix-inclusion composite systems, one with an elastic inclusion and 
viscoelastic matrix, and the other with viscoelastic inclusion and matrix. The results of calculations were found to 
compare well with results from the literature. A parametric study was also conducted to investigate the influence 
of nonlocal interaction on the effective properties by varying the horizon size. Results showed that increasing the 
degree of nonlocality reduces the stiffness of the composite system as well as increase its rate of creep. The 
capability to account for nonlocal interaction highlights the potential of this proposed scheme to provide a more 
comprehensive understanding of the behaviour of viscoelastic composite materials over a wide range of material 
behaviour.   

1. Introduction 

The design and optimization of viscoelastic composite materials is an 
important and growing area of research in materials science and engi-
neering. The increasing acceptability of viscoelastic composite materials 
in industries such as civil, aerospace, automotive, and biomedical en-
gineering is partly due to the advantage it offers designers and engineers 
to tailor its microstructure to achieve optimal overall or ’effective’ 
performance. This is achieved not only through choosing the optimal 
parameters of the constituent materials but also choosing the optimal 
layout and arrangement of the constituent materials. 

Computational homogenization schemes are a popular method for 
characterizing the properties of viscoelastic composite materials. These 
schemes are numerical frameworks that are used to predict the effective 
properties of a composite material by simulating the behaviour of the 

individual constituent materials and their interactions at the subscale. 
Traditionally, most computational homogenization schemes for analysis 
of composite systems [1-3] in general and viscoelastic composite sys-
tems [4,5] in particular, have been developed based on classical con-
tinuum mechanics, which is built upon the assumption of local action as 
well as smooth and continuous deformation. However, there are many 
mechanisms that give rise to processes in composite materials which 
invalidate these fundamental assumptions of the classical theory. 

Discontinuous material behaviour, such as fracture, presents a sig-
nificant challenge for modelling within the framework of classical con-
tinuum mechanics. This is because the theory relies on spatial 
derivatives to describe physical system which necessarily impose the 
conditions of smooth and continuous deformation on the material. This 
mathematical framework is not suitable for modelling fracture processes 
such as brittle fracture and fragmentation [6]. 
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Strain localization in materials that exhibit strain softening due to 
damage is another problem that is difficult to model using the classical 
continuum theory. Using the classical framework to model such phe-
nomenon presents two problems. The first is the non-uniqueness of the 
result due to the loss of ellipticity of the governing differential equations 
of the classical theory and the second is a numerical problem that 
typically manifest as the spurious localization of strain into a narrow 
band that is dependent on grid size of the numerical scheme, e.g. 
element size in finite element model [7]. As a result, it is deemed 
inappropriate to utilise models based on the classical continuum 
framework to characterise materials that exhibit strain-softening 
behaviour [7,8]. 

Crazing is a key mechanism of deformation in polymers, which is 
characterized by the nucleation and propagation of small cracks at the 
surface of the material. The size of the specimen plays a crucial role in 
the behaviour of crazed polymers. This is because as the specimen size 
decreases, the probability of craze nucleation at the surface increases, 
leading to more deformation. Thus, the larger the ratio of surface to 
volume in the specimen, the more likely it is for crazes to nucleate and 
propagate, leading to a decrease in the mechanical strength of the ma-
terial. This is a manifestation of a more general phenomenon known as 
size effect. Size effect is known to be notoriously difficult to model in the 
framework of the classical theory. This is because the resolution of this 
effect require a length scale parameter to be present in the constitutive 
model [9]. Unfortunately, such a parameter does not exist in the 
constitutive model of the classical theory. 

Considering these challenges many attempts have been made to 
develop continuum theories with extended capabilities to overcome 
these limitations. The result of one of such attempts is the peridynamic 
theory which provided a one stop solution to all the limitation of the 
classical theory highlighted above. The peridynamic theory overcomes 
the problem of modelling discontinuous behaviour by replacing the 
spatial derivatives with integral operators thereby eliminating the 
requirement for the smoothness and continuity conditions. As a result of 
this capability, peridynamics have been extensively applied to charac-
terise materials undergoing fracture and other discontinuous processes 
[10,11]. 

In peridynamics, the force acting at a point is defined as an integral 
over a finite neighbourhood called the influence domain. The force 
density integral operator introduces a notion of horizon into the peri-
dynamic model. If the influence domain is taken to be a sphere, then the 
radius of the sphere is designated as the horizon. All material points that 
lie within the domain of influence of a point are said to belong to its 
family. The nonlocality of force interaction which allow a point to 
interact with other points located within its horizon endows peridy-
namic with nonlocal characteristics, and the horizon is the parameter 
that controls the degree of nonlocality in the peridynamic theory. The 
horizon not only endows peridynamics with nonlocal characteristics but 
also introduces the notion of internal length scale into the per-
idynamic framework [12,13], thus making peridynamics a viable con-
tinuum theory for modelling phenomena such as size effects [14]. 
Endowed with the forgoing capabilities, peridynamics continues to 
attract growing interest from researchers across different disciplines and 
have been applied to study a wide spectrum of engineering problems, 
see [15-34]. 

A critical frontier of computational modelling of material in the PD 
framework that is steadily receiving attention form researchers is the 
development of nonlocal homogenization schemes for the characteri-
sation of heterogeneous materials such as composites and materials with 
important microstructure. In this regard, several homogenization the-
ories for PD have been proposed. One such method is the Peridynamic 
unit cell homogenization method proposed in [35] and involves using a 
strain concentration tensor to establish the coupling between the micro 
and macro scales. The strain concentration tensor is a function that 
considers the geometry and constitutive properties of the materials that 
make up a unit cell, and it is used to describe the fluctuations in micro- 

strain in relation to the average strain at the macro scale. To determine 
the components of this tensor, an equilibrium problem is solved by 
imposing periodic boundary conditions on the unit cell. The method 
assumes that the heterogeneous medium has a periodic microstructure. 

Several peridynamic homogenization methods that are based on the 
concept of strain energy equivalence have been proposed and used in 
various publications. These methods posit that two materials with 
different microstructures can be considered constitutively equivalent if 
they have the same strain energy when subjected to affine deformation. 
In this regard, a homogenization theory in the framework of Bond-based 
PD was proposed in [36] for computation of the effective properties of 
composites. An ordinary state-based peridynamic homogenization was 
proposed in [37] to characterise the behaviour of composite materials. 
In [38], the capability of PD to admit constitutive models from CCM was 
explored to develop a peridynamic computational homogenization 
theory (PDCHT) in the non-ordinary state-based framework to study the 
behaviour of composites. This method was further utilised to study the 
behaviour of materials with evolving microstructure in [39]. 

The homogenization schemes discussed above were only applied to 
characterise materials which exhibit elastic behaviour. However, many 
composite materials, especially those containing polymers, exhibit time- 
and rate-dependent behaviour that cannot be accurately described by 
elasticity theory alone. These materials experience creeping de-
formations, relaxed stresses, and damped mechanical vibrations. 
Because they display both viscous and elastic characteristics, these 
materials are referred to as viscoelastic. On the one hand, viscoelastic 
materials are increasingly finding application across a wide spectrum of 
industries including automobile, aerospace, civil and biomedical engi-
neering. On the other hand, it has been established that there exist many 
problems for which computational frameworks based on the CCM is 
unable to produce any meaningful predictions, such as size-scale effects 
which is observed particularly in the field of micro and nanomaterials 
and microstructural effects arising from the arrangement of grains or the 
distribution of defects in polymers. 

Motivated by the capability of PD to capture the size-scale effects and 
nonlocal spatial interactions in composites [40], quasi-brittle materials 
[14] and bilayered systems [41], this study presents a numerical 
modelling method that utilizes the PDCHT proposed in [38] to assess the 
influence of microscopic variations on the macroscopic response of 
viscoelastic composites. This method involves solving boundary value 
problems in a microscopic domain to calculate a homogenized stiffness 
based on the microstructure of the composite. The PD model represents 
the material as a network of bonds that interact via a nonlocal interac-
tion kernel, allowing for the capture of nonlocal effects and the pre-
diction of the effective properties of the composite. 

The remainder of this article is organized as follows. In the next 
section, we provide a brief overview of the peridynamic model and its 
application to the analysis of viscoelastic composites. We then describe 
the proposed homogenization framework in detail, including the 
mathematical formulation and the numerical algorithms used to solve 
the resulting equations. Finally, we present some numerical examples to 
demonstrate the effectiveness of the proposed method and to compare 
its results with those obtained using other approaches. 

2. Non-ordinary state-based peridynamics and viscoelastic 
constitutive model 

The mathematical basis of peridynamic theory is centred around the 
concept of a bond, which represents the nonlocal interaction between 
two points in a material. Let B in Fig. 1 be a deformable body such that 
B 0 and B t represent the reference and deformed configurations of B , 
respectively. Let P be a point in B such that P is identified by its co-
ordinate vector x in B 0 and let the coordinate vector of P in B t be y. The 
PD theory posit that the interaction domain of x extend beyond the set of 
points in contact with x to include points located at a finite distance from 
x. Let Q be another point in B such that Q is identified by its coordinate 
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vector x′ in B 0 and let the coordinate vector of Q in B t be y′. The set of 
all x′ ∈ B that interacts with x is called the family of x. If the region 
occupied by this set is assumed to be a ball of radius δ > 0 that is 
centered at x then the family of x is defined as 

B δ(x) = {x′

∈ R : |x′

− x| < δ } (1) 

The interaction between x and x′ is called a bond, and the distance ξ =

x′

− x between them in the undeformed configuration is referred to as the 
bond length (also called bond for short so that precise meaning is clear 
from the context). The set of bonds for point x, denoted as H x, is given as 

H x = {ξ ∈ (R\0)|(ξ + x) ∈ (B δ(x) ∩ B ) } (2) 

Let F : B 0→B t be the nonlocal deformation gradient that maps x to 
y and x′ to y′, respectively, so that u(x) = y − x and u(x′

) = y′

− x′

represent the displacements undergone by x and x′, respectively, 
therefore, the relative displacement between x and x′ is expressed as η =

u(x′

) − u(x). 
The equation of motion of material point x as it interacts with all 

points x′ belonging to its family is given by the linear momentum Eq. [6] 

ρü(x) =
∫

B δ(x)
f(x, x′

)dx′

+ b(x, t) (3)  

where ü is the second order time derivative of the displacement at x, b is 
the prescribed body force density at x, and f is a vector valued pairwise 
bond force density that point x′ exerts on x. The specific form of f de-
pends on the complexity of the material model adopted. The bond-based 
model is the most basic type of peridynamic model in which f(x, x′

) is 
only dependent on the deformation of the bond x′

− x. Although the 
easiest PD model, the BBPD suffers from the limitation of admitting 
Poisson’s ratio of 1/3 and 1/4 for 2- and 3-D problems, respectively for 
isotropic materials. State-based peridynamic (SBPD) models offer a 
more generalised modelling framework in which f(x, x′

) does not only 
depend on the bond x′

− x, but rather on all bonds in H x. This allows for 
a more generalized representation of material behaviour beyond the 
capability of the BBPD. 

To achieve this extended capability, the SBPD introduces mathe-
matical objects called states, which are functions defined on bonds. Let 
L m be the set of all order m tensors, then a state A of order m associated 
with the bond H is the function A 〈•〉 : H →L m, where the angle bracket 

signify the bond acted upon by the state. Thus, the bond force density 
f(x, x′

) in the SBPD is given by 

f(x, x′

) = T [x]〈x′

− x 〉 − T [x′

]〈x − x′

〉 = t(x′

, x, t) − t(x, x′

, t) (4)  

where T [x] is the force vector state acting at x whose value acting on the 
bond ξ = x′

− x is the force density vector t(x′

, x, t) acting on x due to its 
interaction with x′ and T [x′

] is the force vector state acting at x′ whose 
value acting on the bond ξ

′

= x − x′ is the force density vector t(x, x′

, t)
acting on x′ due to its interaction with x. By substituting (4) into (3), the 
governing equation of motion in the SBPD framework is given by 

ρü(x) =
∫

B δ(x)

[
T [x]〈x′

− x 〉 − T [x′

]〈x − x′

〉
]
dx′

+ b(x, t) (5) 

On the kinematic front, a reference position vector state X is defined 
as a vector state that maps bonds in B 0 unto themselves, that is for the 
bond ξ 

X [x]〈x′

− x 〉 = x′

− x = ξ (6) 

Another important kinematic state to be defined here is the defor-
mation vector state Y whose value acting on the bond ξ is the image of ξ 
in B t, such that 

Y [x, t]〈x′

− x 〉 = y′

(x′

, t) − y(x, t)

= u(x′

, t) − u(x, t)+ ξ (7) 

The relationship between the deformation state Y and the nonlocal 
deformation gradient F for small perturbation hypothesis is obtained by 
taking a Taylor series expansion of (7) to obtain: 

Y [x, t]〈x′

− x 〉 = (G ωxu(x)+ I ) • ξ  

= G ωxy(x) • ξ  

= F • ξ (8)  

where G denotes the nonlocal gradient operator [38], and the nonlocal 
deformation gradient is given by [42] 

F(x) =
[∫

Rn
ω(|ξ| )(y(x′

, t) − y(x, t) )⨂ξdx′

]

K− 1 (9) 

In (9), K is a second order tensor defined as 

K =

∫

H x

ω 〈ξ〉X 〈ξ〉⨂X 〈ξ〉dVξ (10) 

The forgoing allows for the definition of a nonlocal strain tensor as 

E =
1
2
(
FT F − I

)
(11)  

where E is the nonlocal analogue of the Green-Lagrange tensor which 
under small perturbation hypothesis reduces to 

E ≈ ε =
1
2
(
F+FT) − I (12) 

In (12), ε is the infinitesimal strain tensor and I is the second order 
isotropic tensor. Expressions (6)-(12) gives the nonlocal kinematic 
quantities needed to describe the motion of a point. 

To complete the development of the volume constrained problem 
(VCP) (the analogue of the local boundary value problem (BVP) in the 

Fig. 1. A peridynamic body showing nonlocal interaction between points.  
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nonlocal framework), a constitutive material model T̂ is required that 
will relate the force vector state T with (the appropriate kinematic 
quantity) the deformation vector state Y , such that: 

T [x, t] = T̂
[
Y [x, t]

]
(13) 

Two class of material model arises from (13). When T̂ is such that T 
and Y are colinear, then T̂ is said to be an ordinary state-based peri-
dynamic (OSBPD) material model, otherwise T̂ is said to be non- 
ordinary state-based peridynamic (NOSBPD) material model [42]. In 
this contribution, the NOSBP will be used as the material model. One 
approach [43] to determine the functional form of the material model T̂ 
results to a correspondence NOSBPD material model which admits 
constitutive material models from the CCM. In this framework, 
following from [42], the force density vector is given by the following 
expression 

T [x, t]〈ξ〉 = ω(|ξ| )PK− 1ξ (14)  

where ω is a scalar valued influence function and P = P̂(F) is the first 
Piola-Kirchhoff stress tensor obtained through the response function P̂ 
from CCM. If small perturbation hypothesis is made, then the Piola- 
Kirchhoff stress tensor P approximates to the Cauchy stress tensor σ 
such that σ ≅ P = P̂(F), and (13) can be restated as: 

T [x, t]〈ξ〉 = ω(|ξ| )σK− 1ξ (15)  

3. Zero energy mode suppression 

Despite the many advantages offered by the non-ordinary state- 
based peridynamic correspondence model, its solution often exhibits 
instability in the displacement field. This is mainly due to the inability of 
the nonlocal deformation gradient of the non-ordinary state-based 
constitutive correspondence framework to detect certain unphysical 
deformation modes [44]. These unphysical deformation modes, also 
called zero-energy modes (because no strain energy is required to pro-
duce them), need to be supressed. Several techniques [45-51] have been 
proposed to supress the resultant instability. For reason of ease of 
implementation, this study will adopt the approach proposed in [49]. 
This method prevents the zero-energy mode instability by adding an 
artificial force density vector Ta[x, t]〈x

′

− x〉 to the interaction between x 
and x′ such that (15) becomes: 

T 〈ξ〉 = ω 〈|ξ|〉σK− 1ξ+Ta[x, t]〈x
′

− x〉 (16)  

where: 

Ta[x, t]〈x
′

− x〉 = 1
2

ω 〈|ξ|〉Cz 〈ξ〉 (17) 

In (17), C(ξ) = c(ξ ⊗ ξ)/|ξ|3 is a tensor-valued symmetric micro-
modulus function where c = 18k/πδ4 is the bond force constant in the 
BBPD framework, and z 〈ξ〉 = Y 〈ξ〉 − Fξ. 

4. Linear viscoelastic constitutive model 

The constituents of the composites studied in this communication 

will be assumed to be isotropic and linear in behaviour. From (14) and 
(15), it is clear that the NOSBPD can admit a wide range of constitutive 
models from CCM, and the response function adopted will depend on the 
type of material behaviour anticipated. Since the goal in this commu-
nication is to extend the PDCHT to encompass viscoelastic materials, this 
section will introduce the concept of viscoelastic constitutive model 
from the CCM and derive a form of the constitutive model that can be 
easily and efficiently implemented within the NOSBPD computational 
framework. There are two main approaches to developing viscoelastic 
models in CCM: the integral approach and the differential approach. 
Only the integral approach will be pursued in this contribution. The 
response function in the integral form for a linear non-ageing visco-
elastic material takes the form: 

σij(t) =
∫ t

0
Cijkl(t − τ) d

dτεkl(τ)dτ (18)  

where Cijkl(t − τ) is the fourth order stress relaxation stiffness tensor. The 
relaxation stiffness tensor is typically approximated by a series of 
decaying exponents also called Prony series such that: 

Cijkl(t) = Cijkl∞ +
∑n

m=1
Cijklmexp

(

−
t

τm

)

(19)  

where the first term, Cijkl∞ is the equilibrium or elastic modulus of the 
material while each subsequent term in the series represent a relaxation 
mode of the material. Introducing (19) into (18) yields 

σij(t) =
∫ t

0
Cijkl∞

d
dτεkl(τ)dτ+

∑n

m=1

∫ t

0
Cijklmexp

(

−
t − τ
τm

)
d
dτεkl(τ)dτ  

= Cijkl∞εkl(t)+
∑n

m=1

∫ t

− ∞
Cijklmexp

(

−
t − τ
τm

)
d
dτεkl(τ)dτ  

= σij∞(t) +
∑n

m=1
hijm(t) (20)  

where σij∞(t) = Cij∞εkl(t) represents the elastic component of the ma-
terial response, and 

hijm(t) =
∫ t

0
Cijklmexp

(

−
t − τ
τm

)
dεkl(τ)

dτ dτ (21) 

commonly referred to as state variable is the viscous response of the 
material. Notice that to obtain the stress at a particular time, the 
constitutive relationship given by (20) leads to the requirement of 
computing the integral in (21). This is not suitable for implementation in 
a numerical scheme as this will require the entire history of the defor-
mation to be stored. This is obviously not a computationally efficient 
strategy. To obtain a computationally more efficient form of (20), nu-
merical incremental procedure is normally utilised. To achieve this, the 
loading time t is divided into discrete interval Δt such that tn+1 = tn +

Δt. Now, considering the time interval [tn, tn+1], the deformation history 
can be split into two periods of 0 ≤ τ ≤ tn of known deformation and tn ≤

τ ≤ tn+1 of unknown deformation. The integral in (21) can then be 
additively split into:   

Y.K. Galadima et al.                                                                                                                                                                                                                           
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= exp
(

−
Δt
τm

)

hn
ijm+

∫ tn+1

tn
Cijklmexp

(

−
tn+1 − τ

τm

)
dεkl(τ)

dτ dτ (22) 

If the change in strain in each time interval is assumed to be constant, 
then we can write: 

dεkl

dt
=

Δεkl

Δt
=

εn+1
kl − εn

kl

Δt
(23) 

Substitution of (23) into (22) yields: 

hn+1
ij m = exp

(

−
Δt
τm

)

hn
ijm+

∫ tn+1

tn
Cijklmexp

(

−
tn+1 − τ

τm

)
εn+1

kl − εn
kl

Δt
dτ  

= exp
(

−
Δt
τm

)

hn
ijm+Cijklmτm

(

1 − exp
(

−
Δt
τm

))
εn+1

kl − εn
kl

Δt  

= exp
(

−
Δt
τm

)

hn
ijm(tn)+Cijklm

τm

Δt

(

1 − exp
(

−
Δt
τm

))
[
εn+1

kl − εn
kl

]
(24) 

If we write Am = τm
Δt

(
1 − exp

(
− Δt

τm

))
, then (24) can be written as 

hn+1
ij m = exp

(

−
Δt
τm

)

hn
ijm+AmCijklm

[
εn+1

kl − εn
kl

]
(25) 

Note that equation (25) is a recursive function that depends only on 
the values hn

ijm and εn
kl from the previous time step to calculate the stress 

state at the current time step, thus eliminating the requirement to store 
the entire history of deformation. The components of the stress relaxa-
tion stiffness tensor can be expressed in terms of relaxation modulus 
E(t), shear relaxation modulus G(t) and bulk relaxation modulus K(t)
which are the viscoelastic analogues of elastic Young’s modulus, shear 
modulus and bulk modulus, respectively. These viscoelastic moduli are 
normally obtained via experimentation. To utilise these experimental 
data in mathematical modelling, the discrete data are usually approxi-
mated using a series of decaying exponentials also called Prony series. In 
this representation, E(t), G(t), and K(t) are typically approximated 
respectively as: 

E(t) = E∞ +
∑n

m=1
Eme

− t
τE
m ,G(t) = G∞ +

∑n

m=1
Gme

− t
τG
m ,K(t) = K∞ +

∑n

m=1
Kme

− t
τK
m

(26)  

where the subscript ∞ designate the equilibrium or elastic response of 
the viscoelastic material, so that the stiffness relaxation tensors C∞ and 
Cm in (20) for plane stress condition are respectively given as: 

C∞ =
E∞

1 − ν2

⎡

⎢
⎢
⎢
⎣

1 ν 0

ν 1 0

0 0
1 − ν

2

⎤

⎥
⎥
⎥
⎦
,Cm =

Em

1 − ν2

⎡

⎢
⎢
⎢
⎣

1 ν 0

ν 1 0

0 0
1 − ν

2

⎤

⎥
⎥
⎥
⎦

(27)  

5. Dynamic properties 

Although material properties such as the relaxation modulus arising 
from the result of static measurement are sufficient to produce useful 
characteristics of viscoelastic materials, however, to gain deeper insight 
into certain rheological characteristics of viscoelastic materials some-
times require expressing the mechanical properties in an alternative 
form. A very popular alternative is the representation of viscoelastic 
properties in the frequency domains, often termed as dynamic proper-
ties. This can be achieved through dynamic mechanical tests or by 
converting the result of static measurements. In this communication, the 
robustness of the proposed methodology will be demonstrated by 
recovering the effective dynamic properties of viscoelastic composites 
from the effective static properties. Important dynamic parameters of 
interest in the characterisation of viscoelastic materials are the storage 
modulus E′ and loss modulus E′′. The vector sum of the storage and loss 
moduli is called the complex modulus, and is typically represented as: 

E*(t) = E′

(t) +E′′(t) (28) 

where E′ represents the elastic component of the material response 
while E′′ represents the viscous component. The tangent of the loss angle 
or phase lag between stress and strain given by: 

α = tan(ϕ) =
E′′

E′ (29) 

is called the tangent modulus or loss tangent/damping factor and 
provides information on the proportion of energy lost during a defor-
mation cycle, thus providing a quantitative means to measure the degree 
of viscous response in the total response of a material. The storage and 
loss moduli are respectively given [52] as: 

E
′

= E0

(
∑n

m=1
Em +

∑n

m=1
Em

τ2
mω2

1 + τ2
mω2

)

(30) 

and 

E′′ = E0

(
∑n

m=1
Em

τmω
1 + τ2

mω2

)

(31)  

where Em = Em/E0 and E0 = E(t = 0) is the instantaneous relaxation 
modulus. 

6. Computational homogenization 

In this contribution, a first-order computational homogenization 
procedure is proposed for a composite made partly or wholly of visco-
elastic constituents. The objective is to determine the overall mechanical 
properties of the composite material. This objective is born out of the 
need to understand how the microstructure of the composite material 

hn+1
ij m =

∫ tn

0
Cijklmexp

(

−
tn+1 − τ

τm

)
dεkl(τ)

dτ dτ+
∫ tn+1

tn
Cijklmexp

(

−
tn+1 − τ

τm

)
dεkl(τ)

dτ dτ  

=

∫ tn

0
Cijklmexp

(

−
tn + Δt − τ

τm

)
dεkl(τ)

dτ dτ+
∫ tn+1

tn
Cijklmexp

(

−
tn+1 − τ

τm

)
dεkl(τ)

dτ dτ  

=

∫ tn

0
Cijklmexp

(

−
Δt
τm

)

exp
(

−
tn − τ

τm

)
dεkl(τ)

dτ dτ+
∫ tn+1

tn
Cijklmexp

(

−
tn+1 − τ

τm

)
dεkl(τ)

dτ dτ  

= exp
(

−
Δt
τm

)∫ tn

0
Cijklmexp

(

−
tn − τ

τm

)
dεkl(τ)

dτ dτ+
∫ tn+1

tn
Cijklmexp

(

−
tn+1 − τ

τm

)
dεkl(τ)

dτ dτ   
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influences its overall behaviour at the macroscale. This information is 
useful in predicting and optimizing the performance of composite ma-
terials. By understanding the relationship between the microstructure 
and the macroscopic behaviour of composite material, it is possible to 
design composite materials with specific properties and performance 
characteristics for a particular application. 

This proposed nonlocal homogenization scheme just like most 
computational homogenization schemes is composed of three main 
components. The first is the identification of relevant scales in the 
problem which are usually denoted as microscale and macroscale. Sec-
ondly, a localization procedure that involves finding the stress solution 
of a mechanical model at the microscale given a macrostrain. Lastly, the 
development of a homogenization rule that yields macroscopic stress 
based on the micro fields of the stress tensor. 

6.1. Definition of scales and homogenization rule 

Given a heterogeneous material M composed of more than one 
constituent phase (at least one of which is viscoelastic), the objective in 
this nonlocal first-order computational homogenization scheme is to 
find an equivalent or substitute material M that will have the same 
overall behaviour as M. The approximation of M with M is based on two 
key assumptions. The first is that if the constituent phases in M exhibit 
linear behaviour, then the response of the effective (substitute) material 
M will likewise be linear [53,54]. Thus, in this regard, the constitutive 
function that relates stress and strain fields in M* takes the linear form: 

σij(t) = Cijklεkl(t) (32)  

where Cijkl is the time dependent effective stiffness relaxation tensor, and 
overbar in (32) and elsewhere in this communication indicates field 
variables associated with the substitute homogeneous material. The 
substitute homogeneous material M will henceforth be designated as the 
macroscale. The second assumption is that of statistical homogeneity of 
the composite system M. This means that M exhibits the same average 
behaviour over any randomly selected subregion that is sufficiently 
large in comparison with the size of individual microstructural elements 
or phase such as the size of inclusions [53]. Any such subregion is called 
a representative volume element (RVE) and represents the microscale 
for the purpose of this homogenization scheme. Since the average 
properties of the composite material are the same within the RVE as they 
are for the entire material, this allows the use of volume average of field 
over the RVE instead of volume average of fields over the entire 
material. 

Once the implication of linear effective behaviour and statistical 
homogeneity is granted, the next task is to find the relationship between 
the microscopic field of stress and strain with their macroscopic coun-
terparts. This is achieved through the application of nonlocal stress and 
strain average theorems [38]. Consider a heterogeneous body B which 
occupies a region Ω = Ωs

⋃
Ωc such that Ωs represents the region where 

solution is sought and Ωc represents the boundary region. The average 
stress and average strain over Ωs are denoted as 〈σ〉 and 〈ε〉, respectively. 
The nonlocal average stress theorem states that if B attains static 
equilibrium when a constant stress tensor σ is applied on the boundary 
domain Ωc, then the volume average of the stress field in Ωs is equal to σ, 
that is: 

〈σ〉 = σ (33) 

On the other hand, the nonlocal average strain theorem states that if 
B is subjected to displacement on the boundary domain Ωc which is 
produced by a constant strain tensor ε such that u0 = εx for all x ∈ Ωc, 
then: 

〈ε〉 = ε (34)  

where the quantities 〈σ〉 and 〈ε〉 are respectively given by: 

〈σ〉 = 1
VΩs

∫

Ωs

σ
(
xμ
)
dVΩs (35) 

and 

〈ε〉 = 1
VΩs

∫

Ωs

ε
(
xμ
)
dVΩs (36)  

6.2. Localization and solution of the microscale RVE problem 

To ensure that the macroscale homogeneous material M can repro-
duce the behaviour of the original microscale heterogeneous material M, 
energy equivalence is prescribed between the two materials. This en-
ergetic equivalence requires the two material systems to have the same 
internal energy despite possessing different microstructure. This is 
achieved by satisfying the nonlocal macrohomogeneity condition [38]: 
〈
σijεij

〉
= σijεij (37) 

It was shown in [38] that the macrohomogeneity condition is satis-
fied by the following statement of nonlocal Hill’s lemma: 

〈
σijεij

〉
− σijεij =

1
VΩs

∫

Ωc

(
(σik − σik)S

s
ωxk
(
ui − xjεij

) )
dVΩc (38)  

where S
s
ω denotes a weighted nonlocal gradient operator, ω(x, x′

) :

Rn × Rn→R+ is a weight function and the superscript S implies that S is 
a symmetric gradient operator (please see [38,55] for detailed expla-
nation on nonlocal gradient operator and general element of nonlocal 
vector calculus). The Hill’s lemma (38) is satisfied by prescribing 
appropriate boundary conditions [38]. These include application of 
homogeneous displacement, homogeneous stress, and periodic volume 
constraint conditions (See [38,56] for discussion on volume constraint 
arising due to the nonlocal interactions allowed in peridynamics). In this 
communication, only the homogenous displacement volume constraint 
condition will receive attention notably because it is the most compat-
ible of the volume constraint conditions with the peridynamic frame-
work and the easiest to implement. An appropriate displacement field is 
applied to the boundary volume of the RVE so that the gradient of the 
displacement terms of the integrand of the boundary volume integral 
(38) is vanished. A typical way to achieve this is to apply linear 
displacement of the form: 

u(x) = εx∀x ∈ Ωc (39) 

which has been shown [38] to vanish the right-hand side of (38). 
Equation (39) provides the volume constraint of the microscale problem 
in terms of field of macro strain. To complete the definition of the 
computational homogenization scheme, it is necessary to define the 

Fig. 2. Micro computational domain showing solution and boundary domains.  
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microscale volume constraint problem. 

6.3. RVE volume constraint problem 

Consider the composite material M. Let Ω represents the region 
occupied by an RVE of M. Let Ω be assumed to be in a state of static 
equilibrium. To formulate a well-posed microscale VCP, Ω is split into 
two sub volumes as shown in Fig. 2. The first is ΩS where solution is 
sought and the second ΩC where boundary constraints are imposed. Let 
σμ and εμ be the micro fields stress and strain in Ω obtained as solution to 
the following initial volume constraint problem (IVCP): 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫

B δ(x)

[
T
[
xμ
]〈

x′

μ − xμ

〉
− T[x′

]
〈

xμ − x′

μ

〉]
dx′

μ+b
(
xμ,t
)
=0 ∀xμ∈ΩS

uμ
(
xμ
)
=gμ ∀xμ∈ΩC

uμ
(
xμ,0

)
=uμ(I) ∀xμ∈Ω,fort=0

u̇μ
(
xμ,0

)
=u̇μ(I) ∀xμ∈Ω,fort=0

(40)  

where the subscript μ in (40) and anywhere else in this communication 
designate field variables associated with the microscale. The force 
density vector T

[
•μ
]
〈••〉 is given by (15) and the response function that 

relates the micro field stress σμ and strain εμ is given by (18) (for linear 
material behaviour). 

7. Implementation strategy 

The proposed homogenization scheme consists of the following 
steps: 

1. This step consists of solving the viscoelastic volume constraint 
problem (40) at the microscale to obtain the micro fields of stress and 
strain within the RVE. To do this, a nested spatial and time numerical 
integration strategy is used. In spatial integration, the total force acting 
on a material point is evaluated at a given time, while in time integra-
tion, material points are tracked over time. Using a meshfree method 
[62], the spatial integration of the NOSBPD model is numerically 
implemented using a discrete form of the first of (40) given as 

∑N

q=1

[
T
[
xp, t

]〈
xq − xp

〉
− T

[
xq, t

]〈
xp − xq

〉 ]
Vq + bp = 0 (41)  

where N denotes the total number of material points located within the 
horizon of the primary material point p. To compute the current accel-
erations, velocities, and positions of points, the time integration pro-
cedure uses the forward Euler method. The explicit time integration of 
(41) yields the following acceleration, velocity, and displacement at 
time t = tn: 

ün
p =

L
n
p + bp

ρp

u̇n+1
p = u̇n

p + ün
pΔt

up
n+1 = un

p + u̇n+1
p Δt

(42)  

where L
n
p =

∑N
q=1

[
T
[
xp, t

]
〈xq − xp〉 − T

[
xq, t

]
〈xp − xq〉

]
Vq. Since the 

RVE VCP is a quasi-static problem, implementing equation (40) using 
the forward Euler method will require solving the model as a dynamic 
problem and then extracting the steady-state solution from the dynamic 
solution. It is thus proposed in this study to utilize Adaptive Dynamic 
Relaxation (ADR) [57] to recover the steady state solution of equation 
(42). This strategy gives rise to two notions of time parameters: a nu-
merical time tnum which defines the time necessary for the dynamic so-
lution to converge to the steady-state solution and a material time tmat 
which is the period over which the viscoelastic response is measured. 

For numerical implementation, the two times are respectively dis-
cretized into interval Δtnum and Δtmat . 

2. In the second step, macro field stress σij and strain εij are obtained 
as volume averages of the micro fields σij and εij using (35) and (36). The 
micro field variables are then utilised in (32) to extract the effective 
stiffness relaxation tensor Cijkl. 

3. Once the effective stiffness relaxation tensor is obtained, effective 
viscoelastic material functions such as the effective relaxation modulus 
E(t) and hence G(t) and K(t) are easily computed. This is usually ach-
ieved by assuming constant Poisson’s ratio. 

4. Prony series (26) is then used to mathematically represent the 
discrete values of the effective relaxation moduli determined in step 3 
above. To achieve this in the present contribution, a least squares curve 
fitting code was written in MATLAB to determine the coefficients E∞, Em 

and τE
m. 

5. Dynamic properties such as the storage and loss moduli as well as 
tangent of phase lag are respectively obtained from (30), (31), and (29). 

8. Numerical examples 

In this section, the capability of the proposed homogenization 
scheme to predict the effective properties of composite materials made 
wholly or partly of viscoelastic materials. To achieve this aim, compu-

Fig. 3. RVE showing microstructure topology of composites.  

Fig. 4. Effective stress relaxation stiffness tensor. Graph showing the 
C11 component. 
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tational experiments are carried out to determine the effective material 
properties of two sets of composite materials. The first is a two-phase 
matrix-inclusion composite in which one of the phases is elastic and 
the other viscoelastic. The second is a two-phase matrix-inclusion 
composite material consisting of a viscoelastic inclusion in a viscoelastic 
matrix. All numerical experiments are conducted for an inclusion vol-
ume fraction of 50%. All computations are carried out under the 
assumption of plane stress state and that all constituent materials are 
isotropic and nonaging and the response is measured in the linear 
regime. The RVE that is representative of the composite materials 
characterised in this study is shown in Fig. 3. 

8.1. Two-phase composite with elastic inclusion and viscoelastic matrix 

In this numerical example, the composite consists of an elastic in-
clusion and viscoelastic matrix as obtained from [5]. The elastic 
modulus and Poisson’s ratio of the inclusion phase are respectively given 
as E = 20 and ν = 0.21, while the relaxation modulus and Poisson’s 
ratio of the inclusion phase are given respectively as E(t) = 3+17e− t and 
ν = 0.38. 

To implement this problem, the RVE is discretised into 100 × 100 
material points. The choice of a horizon size of 3Δx, where Δx represents 
the length of a material point, was made to facilitate a comparison of the 
results obtained from peridynamic simulation with those obtained from 
classical continuum models. It has been previously demonstrated [58] 
that this horizon size effectively yields results that converge towards the 
classical solution. Simulation is done with time step Δtmat = 0.01s over a 
total period of 103s. A numerical time step Δtnum = 1s is used. 

The results of the effective stress relaxation stiffness tensor and 
effective loss tangent computed using the proposed nonlocal computa-
tional homogenization scheme and those computed using an asymptotic 
homogenization framework [5] are presented in Fig. 4 and Fig. 6, 
respectively. Fig. 4 shows the effective stress relaxation stiffness tensor 
computed by both the nonlocal computational homogenization scheme 
and the asymptotic homogenization scheme over the specified simula-
tion period. It is clear from the figure that the results obtained by the 
nonlocal computational homogenization scheme closely match those 
obtained by the asymptotic homogenization framework. This agreement 
indicates that the proposed nonlocal computational homogenization 
scheme can accurately predict the time-domain properties of a hetero-
geneous material, as represented by the component of the effective stress 
relaxation stiffness tensor. 

For further analysis, the effective relaxation modulus of the com-
posite system is extracted from the effective stress relaxation stiffness 
tensor obtained from the simulation. The effective relaxation modulus 
obtained is presented in Fig. 5. The data presented in Fig. 5 is curve fitted 
using the curve fitting code developed in MATLAB to obtain the Prony 
series coefficients. This allows for the representation of the data in the 
form (26), which can be useful for further analysis and understanding of 
the underlying dynamics of the system. The Prony coefficients obtained 
are presented in Table 1. To compute the effective dynamic properties of 
the composite system, the coefficients of the effective relaxation 
modulus obtained above are used in (30) and (31) to compute the 
storage and loss moduli, respectively. These are then used in (29) to 
compute the tangent modulus. 

Fig. 6 shows the effective loss tangent computed using this proposed 

Fig. 5. Effective relaxation modulus obtained from the effective stress relaxa-
tion stiffness tensor. 

Fig. 6. Effective loss tangent in frequency domain.  

Table 1 
Prony coefficients for effective relaxation modulus 
data.  

Parameter Fitted value 

E∞  5.4219 
E1  7.5459 
E2  7.1634 
τ1  2.6270 
τ2  0.9876  

Fig. 7. Component C11 of the effective stiffness tensor of a two-phase matrix- 
inclusion composite system with both matrix and inclusion made of visco-
elastic materials. 
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framework and compared with results from [5]. Again, it can be 
observed that the nonlocal computational homogenization scheme 
shows good corelation with results obtained by the asymptotic homog-
enization framework. This agreement demonstrates that the proposed 
nonlocal computational homogenization scheme can accurately predict 
the frequency-domain properties of a composite material made of elastic 
inclusion and viscoelastic matrix, as represented by the effective loss 
tangent. 

8.2. Two-phase composite with viscoelastic inclusion and matrix phases 

This example considers a composite with both inclusion and matrix 

Fig. 8. Effective relaxation modulus of the composite system obtained from the 
effective stiffness tensor. 

Fig. 9. Effective loss tangent of a two-phase matrix-inclusion composite system 
made of viscoelastic inclusion and matrix. 

Table 2 
Coefficients of Prony series representation of 
effective relaxation modulus.  

Parameter Fitted value 

E∞  3.0 
E1  14.5 
E2  2.5 
τ1  1.7760 
τ2  27.1185  

Fig. 10. Effect of nonlocality on the effective relaxation modulus of a two- 
phase matrix-inclusion composite system. 

Fig. 11. Effect of nonlocality on the effective loss modulus of a two-phase 
matrix-inclusion composite system. 

Fig. 12. Effect of nonlocality on the effective storage modulus of a two-phase 
matrix-inclusion composite system. 
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phases to be viscoelastic. The material properties are obtained from [5]. 
The relaxation modulus and Poisson’s ratio for the inclusion phase 
respectively given as E(t) = 3+17e− t/10 and ν = 0.38 while those for the 
matrix phase are respectively given as E(t) = 3+17e− t and ν = 0.38. 
The RVE is discretised into 100 × 100 points, and a horizon size of 3Δx is 
used for the same reason stated in 8.1. 

The results of the effective stress relaxation stiffness tensor and 
effective loss tangent for the matrix-inclusion composite made wholly of 
viscoelastic materials are presented in Fig. 7 and Fig. 9, respectively. 
These figures compare the results obtained using this proposed nonlocal 
computational homogenization scheme to those obtained using an 
asymptotic homogenization framework [5]. Fig. 7 shows a strong cor-
elation between the effective stress relaxation stiffness tensor for the 
composite material computed using both the nonlocal computational 
homogenization scheme and the asymptotic homogenization framework 
over the entire simulation period. 

To enable the determination of the effective dynamic properties of 
this composite system, its effective relaxation modulus is extracted using 
the procedure stated in 8.1. The effective relaxation modulus is pre-
sented as Fig. 8 and the coefficients of the Prony series representation of 
the effective relaxation modulus as obtained by curve fitting process are 
presented in Table 2. The Prony series coefficients in Table 2 are utilised 
to determine the effective loss tangent of the composite system and the 
result presented in Fig. 9. The effective loss tangent presented in Fig. 9 
shows good agreement with result of computation using the asymptotic 
homogenization in [5]. This demonstrates the capacity of the proposed 
nonlocal homogenization scheme to accurately predict both time and 
frequency domain effective characteristics of composites made wholly of 
viscoelastic constituents. 

8.3. Effect of nonlocality on the effective mechanical properties of 
composites 

To demonstrate the capacity of the proposed nonlocal homogeniza-
tion scheme in capturing nonlocal interactions, a parametric study on 
the composite system presented in 8.1 will be undertaken in this section. 
The purpose of this study is to investigate the effect of the nonlocal 
parameter, as represented by the peridynamic horizon δ, on the effective 
properties of composites in both the time and frequency domains. 

The parametric study will involve varying the horizon size, which is 
the parameter that controls the degree of nonlocal interactions in PD, 
while keeping all other model parameters fixed. By doing so, it is 
possible to observe how the effective properties of the composite system 
change as the degree of nonlocality is varied. To quantify the effect of 
the horizon size on the effective properties of the viscoelastic composite, 
the effective stress relaxation modulus, the effective storage modulus, 
and the effective loss modulus will be calculated for a range of different 
horizon sizes. 

Results of the parametric study on the effect of nonlocal interaction 
on the effective properties of the viscoelastic composite are presented in 
Fig. 10, Fig. 11 and Fig. 12. Fig. 10 shows the effective relaxation 
modulus of the composite for different horizon sizes. The results of the 
parametric study indicate that as the horizon size, which represents the 
degree of nonlocal interaction, increases, the effective relaxation 
modulus decreases. This demonstrates that an increase in nonlocal 
interaction results in a reduction in the ability of the material to resist 
stress. This phenomenon can be attributed to the fact that increasing the 
degree of nonlocality leads to a more diffused stress distribution 
throughout the material, which results in a lower stress level within the 
material. As a result, the average value of the stress field is also reduced, 
leading to a decrease in the effective stiffness of the composite system. 

To study the effect of nonlocal interaction on the dynamic properties 
of the composite, the effective storage and loss moduli were computed 
over a range of horizon sizes, and the results are presented in Fig. 11 and 
Fig. 12, respectively. Analysis of these results shows that increasing the 

nonlocal interaction not only reduces the storage modulus, which is a 
measure of the resistance of the material to deformation under an 
applied load, but also the loss modulus, which is a measure of the ma-
terial’s dissipation of energy. 

Since nonlocal behaviour is the basis for size effects observed in 
materials [59], attempts will be made in the following passage to 
correlate the results of the parametric studies undertaken and presented 
above with experimental results reported in the literature. When the 
sample size of a material decreases, the surface to volume ratio increases 
thus increasing the likelihood of occurrence and relevance of mecha-
nisms occurring at the surface such as crazing in viscoelastic polymer 
which causes damage and energy dissipation [60] and is also an 
important mechanism of fracture [61]. In other words, the effect that the 
specimen size as described by the ratio of surface area to volume has on 
the behaviour of polymers manifest as size effect which is characterised 
as nonlocal behaviour. Thus, increasing the surface area to volume ratio 
can be interpreted as increasing the degree of nonlocal interaction in the 
material. To be able to compare the implications of results from the 
parametric studies with experimental observations, a numerical relax-
ation test to compute the creep strain in a rod of a unit cross-sectional 
area and unit length is undertaken. The creep strain is computed for 
material stress relaxation moduli corresponding to horizon sizes 10dx, 
15dx and 20dx as presented in Fig. 10. Results from these simulations 
are presented in Fig. 13. 

Fig. 13 shows that increasing the horizon size has the effect of 
increasing the rate of creep as indicated by the increasing steepness of 
the curve. This behaviour correlate well with result of experiment in 
[62] in which increasing the ratio of the surface area to volume of 
polymers was observed to increase the rate of creep for a given applied 
stress. 

9. Conclusion 

In this study, a nonlocal computational homogenization scheme, was 
proposed for determining the effective properties of viscoelastic com-
posite materials using non-ordinary state-based peridynamic theory. 
The scheme builds on an earlier nonlocal homogenization scheme by 
introducing a further nonlocality in time through the integral visco-
elastic constitutive model. Numerical experiments were carried out on 
two viscoelastic matrix-inclusion composite systems to demonstrate the 
capability of the scheme in reproducing results from asymptotic ho-
mogenization in the framework of classical continuum mechanics, and 
good agreement was found between the results from the proposed 
scheme and those from referenced literature. 

In addition to the numerical experiments, a parametric study was 

Fig. 13. Creep strain during stress relaxation in a bar for effective relaxation 
moduli obtained from different degree of nonlocality. 
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conducted to study the influence of nonlocal interaction on the effective 
properties of the composite materials. The horizon size was varied while 
holding other model parameters constant to investigate the effect of 
varying the degree of nonlocality on the behaviour of the composite 
system. The results of this parametric study showed that as the degree of 
nonlocality was increased, the effective behaviour of the composite 
system became more ductile. This result highlights the importance of 
accounting for nonlocal interactions when determining the effective 
properties of viscoelastic composites. 

This is especially important with the increasing application of 
viscoelastic materials in nanocomposites and nanotechnologies. At these 
small length scales, the significance of nonlocal interactions increases, 
and thus, it is important to account for these interactions to accurately 
predict the behaviour of the composite system. This proposed scheme 
provides a useful tool for understanding the effect of nonlocal in-
teractions on the effective properties of viscoelastic composite materials 
and could be used as foundation for future studies in this area, especially 
in the context of nanocomposites and nanotechnologies. 

Other potential areas for further research include the application of 
the proposed scheme to more complex geometries, multiphase systems, 
and other phenomena that lead to nonlocal interactions such as fracture. 
Since fracture is inherently a nonlocal process, as such, a nonlocal 
framework such as the one proposed in this paper is necessary to pro-
duce accurate results when analysing viscoelastic composite systems 
undergoing fracture. 
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[7] Jirásek M. Nonlocal models for damage and fracture: Comparison of approaches. 
Int J Solids Struct 1998;35(31):4133–45. 
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