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Abstract

Thermal performance is a major part of the building envelope and is getting more attention globally. Nowadays, parametric
esign methods are used in building envelope design, such as facade design, for optimization of building envelopes, which
ould affect thermal performance and energy consumption. Moreover, new technologies applied to building design have not
nly changed the appearance of cities but also increased occupant comfort. This paper illustrates a systematic review that
xplains some tools and techniques that have been used in recent years to improve thermal comfort by applying parametric
esign panels to a second skin façade for residents. It attempted to collect and synthesize the most relevant evidence and
ethodologies. In this paper, 30 articles have been analyzed. They are classified by methodologies, years, and climate zones.
esults suggest that simulation is the most accurate in comparison with other methodologies.
2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

It was in 1978 when Hillyard and Braid developed a framework that could combine two parameters, such as
easurements and resistances, to plan a mechanical component, which can be viewed as the first instance of
hat is now known as a parametric approach [1]. However, according to Robert Stiles, the first appearance of
arametric concepts was made in 1940 by architect Luigi Moretti, who wrote extensively about parametric design
n his book Writings of an Architect (Writings of an Architect, 1940) Whatever the case may be, Daniel conducted
n examination [2]. According to Dana [3], there was also a time when he used the language of parameters, factors,
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and proportions to describe how to draw an area of crystals. This language was used in his paper on the drawing
of figures of crystals, which Dana cited.

Parametric architecture is “the discipline of connections between dimensions that are dependent on various
parameters” [2]. The term parametric in mathematics can be modified in order to manipulate the equation outcome,
such as Antoni Gaudi, who investigated the design environment by applying analog models [4]. Parametric design
is a mathematical process in which the relationship between design elements is represented as parameters that can
be reformulated to generate complex geometries; these geometries are based on the parameters of the elements, and
by changing these parameters, new shapes are created concurrently. At the same time, CAD systems simplify the
process of drawing a model based on geometric relationships with stated parameters and dimensions. Nevertheless,
if we need to update or modify any part of the model, we may do it independently of other connected elements.
Parametric design can be thought of as an upgraded version of CAD because it is based on “Generative Algorithms”,
which is a way to look at the design and algorithmic solutions with formulas instead of standard shapes [1].

Parametric design is a computational method for applying both generative and analytical approaches to design
explorations, implying a fundamental shift away from design options and toward design logic [5]. As a result,
computational features are used to expand the search area for diverse perspectives on the design space [6]. On the
one hand, there is the 3D model interface, which displays the geometric configurations; on the other hand, there
is an editor, which enables the designer to encode the algorithmic process [7]. The autonomous development of
design solutions consists of four major processes: (i) Initial conditions and parameters; (ii) generative mechanism
rules, algorithms; (iii) The act of generating variations; and (iv) The best variant selection [8,9].

Multiple skins have been described as DSFs (Double Skin Facade). They were intended to supplement traditional
façades in colder regions, while their use in hot climates has been frequently documented [10,11]. DSFs are
generally applicable to both new and renovated structures. According to, “the vented cavity acts as a thermal buffer,
minimizing undesirable heat gains during the cooling season, heat loss during the heating season, and thermal
discomfort caused by asymmetric thermal radiation” [12]. DSFs are used to cover numerous levels of a building
with various skins and are characterized as either airtight or ventilated. Additionally, DSF typologies are categorized
according to their cavity ventilation techniques.

Air-flow DSFs improve thermal insulation during the winter months, whilst ventilated DSFs absorb heat from
the sun and reduce heat gain during the summer [13]. Moon expressed that DSFs are mostly classified according
to their design. The first type covers the internal skin of each level of the building with an external skin while
keeping the air cavity of that level separate from the others; the second type covers the entire internal skin with an
external layer and connects the air cavities of all different floors (Fig. 1) [14]. DSFs are categorized according to
four conditions of ‘closed’, ‘mechanical exhaust’, ‘natural convection to outside’ and ‘window ventilation’ [15,16].

Fig. 1. Double-Skin Façade structure.

A double-skin facade, alternatively referred to as a double-envelope facade, is a multi-layer skin architecture
consisting of an external skin, an intermediate area, and an internal skin found on the exteriors of modern buildings.
Not only does it look attractive, but the DSF may also collect or evacuate solar radiation absorbed by the glazing
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facades and provide natural ventilation within the structure, enhancing thermal comfort and indoor air quality while
conserving energy for heating and cooling. Due to the fact that the double-skin facade was intended for use in
colder areas, it has received widespread acceptance and use. Recent economic growth has resulted in an increase in
the number of new buildings with double-skin facades appearing in the hot summer and chilly winter. Indeed, the
energy consumption of buildings with double-skin facades is entirely dependent on thermal performance, particularly
thermal heat transfers and solar heat gain, which vary according to season and location. According to previous
studies, the majority of research is performed in cold and moderate climates [17]. There has been very little research
done on how double-skin facades perform in hot-summer and cold-winter climate zones [10].

The principle and implementation of parametric design efficient technologies are urgent to resolve the current
issue of climate change. Buildings, which account for about 30%–40% of primary energy use, greenhouse gas
emissions, and waste generation, should take responsibility for energy consumption reduction [18]. In Europe, 41%
of energy is consumed in the building sector in 2004, most energy consumption in buildings is used for providing
thermal and visual comfort through A/C systems (30%–60%) and artificial lighting (20%–35%) [19]. Nowadays,
significant recognition has been focused on the contribution of daylight to thermal comfort and energy conservation
in buildings [20].

To achieve the maximum benefits of daylight as a renewable energy resource, architects and engineers prioritize
the use of passive design strategies early in the design process [21]. However, optimizing occupant comfort by
using daylight is challenging because there are two distinct spaces including interior (inside) and the environment
(outside), which are interacting together. However, optimizing visual and thermal comfort is difficult due to conflicts
between them. In particular, the sun’s diurnal movements giving rise to different hourly daylight circumstances that
influence the indoor comfort conditions. However, interdisciplinary study through architectural design, light and
human well-being could lead to the detection of optimal solutions regarding all aforementioned criteria. The façade
is a complex interface between the inside of buildings and the outside that has the capability to function as a
protective or regulatory element against severe fluctuations of the external climate [22].

The aim of this study is to review, categorize, and compare previous studies for determining how to improve
thermal comfort for residential buildings in different climates by using the parametric design on the building façade.
To achieve this goal, parametric façades as 3D facades are evaluated in terms of their thermal performances.
Subsequently, by performing all assignments parametrically, an evaluation of thermal comfort regarding different
methodologies which included experimental (real projects) and dynamic simulation (utilizing building simulation
tools such as EnergyPlus, IES VE, etc.) [23,24] can take place in order to assess parametric façades.

2. Literature review

A large number of peer-reviewed research could be found regarding the parametric façade. We have divided
them into two categories in this section: generation and assessment of parametric facade performance, as well as
thermal performance efficiency.

2.1. Performance of parametric façades as a double-skin façade

There are two approaches to analyzing parametric façades. The first approach considers all façade designs to be
parametric because they are based on parameters such as legal aspects, orientation, solar radiation, and wind, whereas
the second approach considers parametric façades design using specific tools (Rhino, Grasshopper, Processing) to
improve the design by integrating and coordinating design components together [25]. Architects can use parametric
façade design technology to perform numerous interactions and monitor modifications during the façade design
process [17,26].

The incorporation of a parametric façade as a double-skin façade in a building can be beneficial to its thermal
behavior, contributing to both a reduction in energy demand and consumption and also an improvement in occupant
comfort. Many studies in this field have been conducted in recent years. Ballestini [27] studied the use of a double-
skin facade system with natural ventilation in the rehabilitation of a factory in the Mediterranean region. Kim
et al. [28] investigated the energy-saving performance of a double-skin facade on a residential building with five-
story on the Korean peninsula. The energy-saving potential of a photovoltaic double-skin facade was assessed by
Peng et al. [29] for a cool-summer Mediterranean zone. Barbosa and Ip [30] used computational simulation models

to predict annual thermal acceptance levels in naturally ventilated office buildings with double-skin facades in
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different Brazilian climates. The thermal and energy-saving performance of the double-skin facades was validated
using measured data from an existing building in Sheffield, UK [31], as well as a dynamic simulation of the
double-skin facades in different orientations in Barcelona, Spain [32].

2.2. Assessment of parametric façade’s thermal comfort

The most widely accepted definition of thermal comfort is provided by ASHRAE [33], which describes thermal
comfort as a “state of mind that expresses satisfaction with the surrounding environment”. Thermal comfort
formulations are numerous and vary depending on the approach used.

Rizi conducted research on a new methodology that was designed to incorporate the occupant’s position
within the area while addressing comfort problems. The paper suggests increasing visual and thermal comfort and
also using parametric simulation and genetic algorithm optimization. Moreover, the suggested solution improved
the occupant’s visual comfort by 76% over the course of the year as compared to the standard shading state.
Additionally, when the target function was adjusted to increase heat gain, there was an average 60% improvement
in heat gain via the suggested adaptive façade as a parametric façade compared to the standard shading state.
Additionally, when the goal function is adjusted to reduce heat gain, a 59% improvement over the no shading state
is attained. Finally, the proposed adaptive facade and unique design strategy can be employed to address the user’s
position inside the area, hence improving visual and thermal comfort [34].

The goal of this study is to show a way to show how design knowledge is stored in a design workflow.
We found design patterns at several stages of the parametric façade design process by looking at other design
projects. Preliminary investigations toward developing a pattern language for parametric design, we demonstrate
the implementation of parametric design patterns in practice [35].

The purpose of this research is to analyze the motion aspect of interactive facade design and to simplify the
conceptual and performance design processes through the use of parametric strategies. This research will utilize a
hybrid of parametric and simulation tools, such as Rhino Grasshopper, Ladybug, and Daysim, to create interactive
facade designs that can be verified in a virtual reality environment while also generating performance outcomes that
can be optimized in a holistic and efficient process [36].

To evaluate different methodologies used in double-skin building façade thermal performance, 30 relevant articles
have been analyzed (see Table 1). They have been classified by climate zone, year, and their approaches. According
to the methodologies that researchers used in their articles, there have been employed four methods included
the dynamic simulation method, numerical method, experimental method, and literature review. Among these
methods, dynamic simulation (Fig. 2) has been used the most (using various building simulation tools such as
EnergyPlus, IESVE, CFD, TRNSIS, DesignBuilder, and so on). EnergyPlus has been used more than the other
building simulation tools (Fig. 3).

Fig. 2. Examined the use of different methods in evaluating thermal comfort in parametric facades among 30 articles.
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Fig. 3. Building simulation tools used in dynamic simulation method among 30 articles.

Table 1. The most relevant investigations in recent years (between 2015 to 2022).

Ref Year Climate Method Main Conclusion

[37] 2015 – Digital Model by Grasshopper and
Kangaroo and Comparing Result

Optimized Origami

[38] 2015 DFA Simulation (CFD) Natural ventilation

[39] 2015 BWH Simulation (Rhinoceros Grasshopper
(Ladybug and Honeybee))

design parameters on the thermal
performances

[40] 2015 DFA Simulation (IESVE) Optimizing the annual acceptable thermal
comfort

[41] 2016 – Simulation (Fluent) Shading inside the cavity/Airflow/heat
transfer

[42] 2016 – Simulation (BPS) and Literature
Review

Ability to model energy and occupant
comfort performance

[43] 2017 CFA, CSA,
CSB, AW,
BSK, DSB,
DFC, AM

Parametric Simulation Model and
Experimental Test and Comparing
Results

performance of different dynamic shading
typologies/energy saving/daylighting/solar
insolation

[44] 2017 BSK Simulation (TRNSYS) Transparent thermal envelope, and an
adaptive shading system.

[45] 2017 AS Comparing result and Simulation
(Building Energy and Environment
Modeling (BEEM))

Comparative thermal comfort in tropical and
temperate climates

[46] 2018 BWH Simulation (EnergyPlus) Thermal functioning/Optimize material
characteristics

[47] 2018 CSA Simulation (DesignBuilder) Improvement insulation and ventilation

[48] 2018 DWA Simulation (EnergyPlus) Window design according to the type of the
envelope

[49] 2019 BWH Dynamic Simulation and Numerical A comparative analysis of indoor thermal
comfort

[50] 2019 CFA Experimental (DOE) and Meta
Modeling and Mathematical Model
and ANOVA Test

Optimize building design for thermal
comfort

[51] 2019 CFA Simulation (EnergyPlus) To evaluate the indoor climate

[52] 2019 CFA Comparison and Simulation
(EnergyPlus)

energy performances of the hypothetical
models

[53] 2020 BWH Experimental Test A prototype Double Skin Façade integrated
into a Double-Glazed Window

(continued on next page)
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Table 1 (continued).

Ref Year Climate Method Main Conclusion

[54] 2020 BWH Simulation (EnergyPlus) passive cooling applications

[55] 2020 BWH Simulation (Rhinoceros Grasshopper
(Ladybug and Honeybee))

Optimizing the shape

[56] 2020 BSH Comparison and Simulation
(DesignBuilder and CFD)

Factors affecting the performance of
coherent façades

[57] 2020 CSA Simulation (DesignBuilder) adaptive set point temperatures

[58] 2021 BWH Simulation (Autodesk Ecotec Analysis) enhance indoor thermal comfort

[59] 2021 CSA Simulation (EDSL) Enhance the atrium thermal performance
without shading

[60] 2021 BWH Simulation (TRNSYS) Sensitivity analysis on the correlations
between indoor thermal comfort and energy
consumption

[61] 2021 CSA Simulation (DesignBuilder) Optimization of the double-skin facade

[34] 2021 BWH Simulation (Rhinoceros Grasshopper
(Ladybug))

Simultaneous optimization of both visual
and thermal comfort

[62] 2022 BSK Experimental and Numerical Modeling
and Simulation (Rhinoceros
Grasshopper (Honeybee))

Using microalgae

[63] 2022 DFB R Software and Shapiro–Wilk Test
and Statistical Methods and Q-Q Plot

Façade design on occupant satisfaction

[64] 2022 CFA Simulation (CFD) Thermal environment

[65] 2022 BSH Simulation (CFD) thermal comfort by natural ventilation

According to their methodology they can be classified in three groups;
Groups 1: One of the research projects is based on simulations using Grasshopper software, digital algorithms

ave been used. Grasshopper makes more use pre-defined scripts to facilitate information manipulation and update
s needed. The initial stage in developing the algorithmic design is to take advantage of the opportunity using
omponentized scripts [66]. The generated geometry is determined by parametric inputs that cause the shape to
ary from its initial state. To design the method, components must be connected in such a way that a collaborative
ssignment is generated. Each component completes a task using the data provided by the inputs; the output is then
sed as an input for the subsequent phase. The design algorithm gradually takes shape as a result of the order in
hich components are connected. The digital model can indicate which geometric properties are modifiable and
hich are not. Thus, change in design parameters serves as a design motivator for developing solution strategies
ased on the examination of the optimal [67].

Group 2: Experimental test is a type of test that includes modifying a variable in a system to determine how it
mpacts the outcome. In an ideal world, experiments would also include the control of as many additional variables
s feasible in order to isolate the reason of the experimental results.

Group 3: Numerical Test is a normal distribution fit test. With the help of this test and its statistics, you can
etermine whether the data follow a normal distribution or not. This test was the first to discover deviations from
ormalcy caused by skewness, kurtosis, or both. Due to its superior power qualities, it has become the standard
est [68].

. Conclusions

This paper concentrates on presenting parametric façades as double-skin façades to improve the thermal perfor-
ance of the building envelopes. According to previous investigations, a double-skin façade can improve thermal

omfort and indoor environmental quality and also reduce energy consumption. Improving the environmental
fficiency of buildings envelope is crucial in the goal of a sustainable society. The findings indicate that the multi-
bjective optimization and parametric method for façade building design is an excellent method to get optimized

esults. Additionally, for evaluating the performance of parametric double-skin facades there are methods included
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experimental method, dynamic simulation method, numerical method. This literature review demonstrated the use
of dynamic simulation is more common among these methods to investigate the performance of parametric façades
as a double-skin façade in saving energy and also thermal comfort efficiency. For this purpose, there are building
simulation tools that can be utilized in dynamic simulation methods such as DesignBuilder, EnergyPlus, Grasshopper
and IESVE which enable researchers to employ for evaluating parametric facades in different climates and contexts.
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