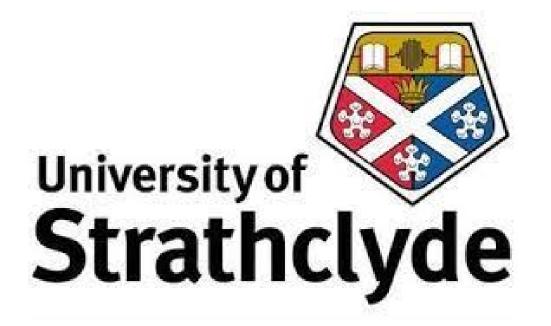
11th Combustion Meeting 2023 April 26-28, Rouen France



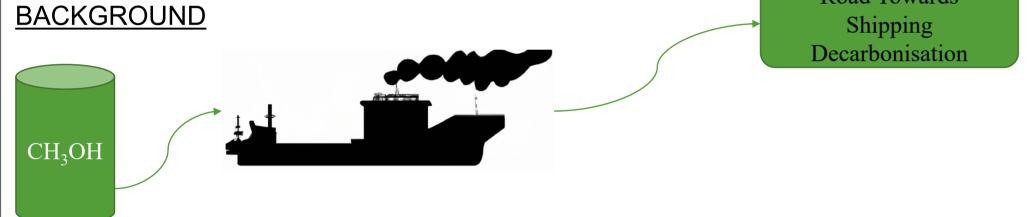
11th EUROPEAN COMBUSTION

APRIL 26-28, 2023 ROUEN, FRANCE

UNIVERSITY of STRATHCLYDE MARITIME SAFETY **RESEARCH CENTRE**

Numerical investigation of diesel – methanol dual-fuel marine engine performance and emissions utilising high methanol fractions.

Karvounis Panagiotis, Gerasimos Theotokatos


Maritime Safety Research Centre, Department of Naval Architecture, Ocean, and Marine Engineering, University of Strathclyde, Glasgow, Scotland, United Kingdom

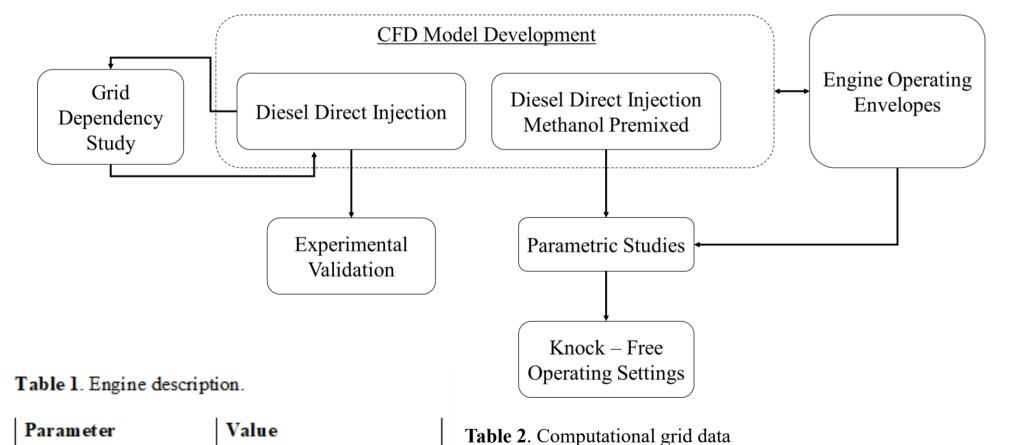
ABSTRACT

Road Towards

FINDINGS

• The CFD model matches well the experimental in – cylinder pressure and hence is considered validated.

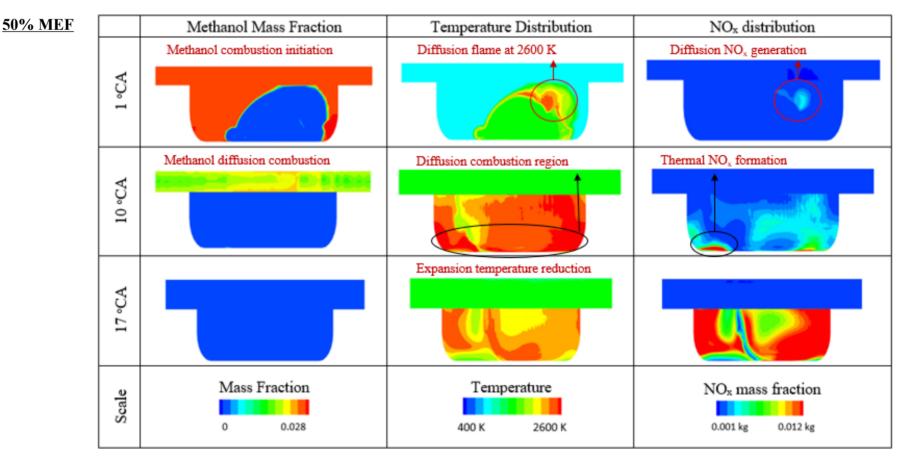
CHALLENGES


- Lack of marine engine studies operating with high methanol fractions
- Knock combustion at high loads with methanol fuel
- Examine limitations of premixed combustion concept under diesel-methanol dual fuel operation

<u>AIM</u>

 Achieving high methanol share knock-free combustion in most frequent operations of marine engines.

METHODOLOGY

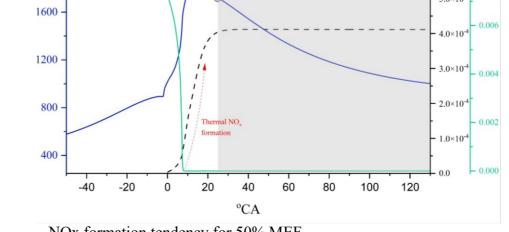


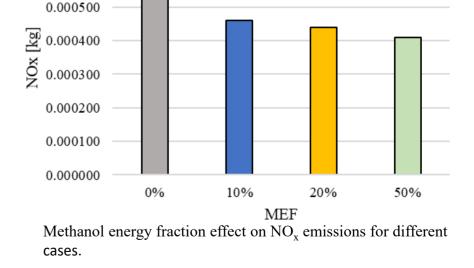
Parameter

- 50% methanol energy fraction is the upper limit of knock-free premixed combustion.
- NO_x emissions are affected by the methanol high latent heat of vaporisation and the high oxygen content; the former reduces the maximum in-cylinder temperature whereas the latter, would result in increased temperature and hence NOx.
- NO_x emissions reduced by 8% and 37% with methanol energy share of 10% and 50% respectively.
- For higher methanol energy fractions other combustion strategies are required, such as low pressure direct methanol injection at compression stroke.

 Table 3. Engine parameters for knock – free combustion

Injection Method	Code Name	Diesel Injection	Methanol Injection	Charge Pressure [bar]	Intake Temperature [K]	Equivalence Ratio Φ	EGR [mass %]
	BL	-6 CAº BTDC	-	2.8	360	0.045	30
	1M9D-PI	-6 CAº BTDC	Port	2.8	360	0.05	30
Port	2M8D-PI	-6 CAº BTDC	Port	2.8	360	0.11	30
Injection	5M5D-PI	-6 CAº BTDC	Port	2.8	360	0.27	30
	8M2D-PI	-6 CAº BTDC	Port	2	380	0.5	45


5M5D-PI - - NOx (kg) - MeOH (kg)


0.000700

0.000600

Power Output [kW]	9450	Element size [mm]	12	10	
Number of Cylinders	9	Maximum Number of Cells*	10900	18838	
Compression Ratio	14.0:1	Adaptive mesh refinement	On	On	
Bore x Stroke [mm] 460 x 580		Solution duration [h]	3	4.5	
Intention Mathed	Diesel: Direct Injection	*At TDC not including embedding and mesh refining			
Injection Method	Methanol: Port Injection	_	-	-	
Injection Timing	Diesel: -7 °CA BTDC				

Grid 2 (10mm)

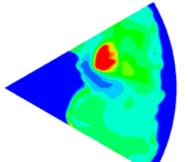
NOx formation tendency for 50% MEF

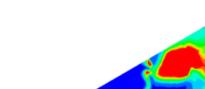
2000

Table 4. MEF effect on engine parameters comparing to baseline case

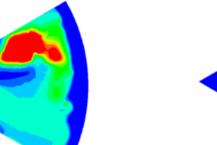
Parameter	P _{max}	T _{max}	HRR _{peak}	CA50	CA90	NOx	RI	ITE
Case	%	%	%	%	%	%	%	%
1M9D-PI	+1.6	-1.3	+5%	-4.11	+1.62	-22.03	+41	-
2M8D-PI	+8.1	-2	+23%	-19.18	-0.65	-25.42	+120	-
5M5D-PI	+35.5	-3	+390%	-51.30	-41.88	-30.51	+594	+5%

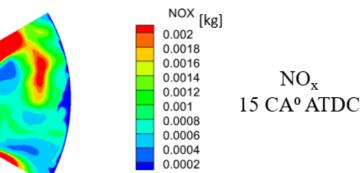
REFERENCES


-Karvounis, P., Tsoumpris, C., Boulougouris, E., Theotokatos, G. Recent advances in sustainable and safe marine engine operation with alternative fuels. Frontiers in Mechanical Engineering, 8, 994942, doi: 10.3389/fmech.2022.994942 -Datta, A., Mandal, B.K., Impact of alcohol addition to diesel on the performance of combustion and emissions of a compression ignition engine. Applied thermal engineering, 98, 670-682, 2016


Acknowledgements

This study was carried out in the framework of the i-HEATS project, which is funded by the Innovate UK Smart Grants under the grant agreement No 99958. Authors would like to acknowledge CONVERGE CFD company for providing the CFD software.


Grid 1 (12mm)


Type

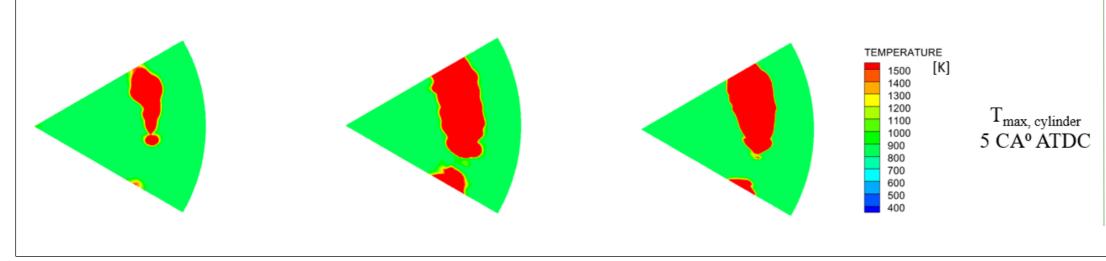
Wartsila 9L46C

Grid 1

Grid 3 (8mm)

Grid 2

Grid 3


36800

 NO_x

80

On

9.5

