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The text medium has begun to play a prominent role in the processing of visual data over the last years, such as images [1,
2, 3, 4, 5, 6, 7], or videos [8, 9, 10]. The use of language allows human users to easily adapt the computer vision tools to their
needs and so far, it has primarily been used for purely creative purposes. Yet, vision-language models could also pave the way
for many remote sensing applications that can be defined in a zero-shot manner, without the need for extensive training or any
training at all.

At the core of many text-based vision solutions stands CLIP, a vision-language model designed for measuring alignment
between text and image inputs [1]. In this work, the capability of the CLIP model to recognize cloud-affected satellite images
is investigated. The approach to this is not immediately obvious; the CLIP model operates on RGB images, while a typical
solution to detect clouds in satellite imagery involves more than the RGB visible bands, such as infrared, and is often sensor-
specific. Some past works have explored the potential of an RGB-only cloud detection model [11], but the task is considered
significantly more challenging. Furthermore, the CLIP model has been trained on the general WebImageText dataset [1], so it
is not currently obvious how well it could perform with a task as specific as classification of cloud-affected satellite imagery.

In this work, the capability of the official pre-trained CLIP model (ViT-B/32 backbone) is put to test. There are two important
insights gained here: it allows to estimate the utility of representations learned by CLIP for cloud-oriented tasks (which can
potentially lead to more complex uses such as segmentation or removal), and further, it can act as a tool for filtering datasets
based on the presence of clouds.

The CLIP model [1] has been designed for zero-shot classification of images where labels can be supplied (and hence,
specified as text) upon inference. The CLIP model consists of separate encoders for text and image input, with jointly learned
embedding space. A relative measure of alignment between a given text-image pair can be obtained by computing the cosine
similarity between the encodings.

The manuscript explores four variants of using CLIP for cloud presence detection, shown in Table 1, one (fully zero-shot)
based on text prompts (1), and (2)-(4) based on minor (1,000 gradient steps with batch size of 10, on only the training dataset)
fine-tuning of the high-level classifier module. In the case of (2), a linear probe is attached to the features encoded by the image
encoder. In the case of (3), a CoOp approach is employed, as described in [12]. Finally, the Radar (4) approach applies a linear
probe classifier to the image encodings of both RGB data and a false-color composite of the SAR Data (VV, VH, and mean of
the two channels are encoded as 3 input channels). Furthermore, the learned approaches (2)-(4) are tested for (dataset/sensor)
transferability. The (a) variants correspond to the training and testing data coming from the same sensor, while the (b) variants
employ transfer. The text prompts for method (1) were arbitrarily selected as “This is a satellite image with clouds” and “This
is a satellite image with clear sky” with no attempt to improve them.

The approach is tested on two benchmark datasets: (i) CloudSEN12 [13], containing Sentinel-2 and Sentinel-1 data and
(ii) SPARCS [14], containing Landsat-8 imagery. Both datasets contain examples of cloudy images as well as images with no
clouds present, representing the two labels. Testing on two datasets with Sentinel-2 and Landsat-8 data allows to measure the
transferability of the proposed methods. Furthermore, the annotators of the SPARCS dataset, while labeling the images, have
been shown false-color images with bands B6 (SWIR), B5 (NIR), and B4 (Red) assigned to RGB channels, respectively. While
these images are artificial, they might still be interpreted by a CLIP model. Hence, two versions of the SPARCS dataset are
tested here, one with the RGB bands and one with the false-color images observed by the annotators.

The results indicate that text-prompts can be used to achieve a non-trivial performance in a purely zero-shot manner, with
very high accuracy for the cloudy images (0.929, 0.922, 0.900 on CloudSEN12, SPARCS/RGB, and SPARCS/False-Color,
respectively) and lower accuracy for clear images (0.638, 0.737, 0.737 for the same dataset order). Further improvements
can be achieved by an inexpensive fine-tuning stage (several minutes on a single consumer-grade GPU), yielding improved
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Table 1. Accuracy of cloud presence detection for the tested datasets and detection methods.

Test Dataset CloudSEN12 SPARCS
Modality S2/RGB L8/RGB L8/B6-B4

Cloudy Clear F1 Cloudy Clear F1 Cloudy Clear F1
1. Text Prompts 0.929 0.638 0.919 0.922 0.737 0.907 0.900 0.737 0.895
Trained on: S2/RGB L8/RGB L8/B6-B4
2a. Linear Probe 0.924 0.975 0.957 0.856 1.000 0.922 0.822 1.000 0.902
3a. CoOp 0.936 0.980 0.964 0.878 0.921 0.919 0.822 0.974 0.897
4a. Radar 0.930 0.960 0.959 N/A N/A N/A N/A N/A N/A
Trained on: L8/B6-B4 S2/RGB S2/RGB
2b. Linear Probe 0.961 0.759 0.950 0.811 1.000 0.896 0.811 1.000 0.896
3b. CoOp 0.988 0.578 0.943 0.789 1.000 0.882 0.844 0.974 0.910

performance, with high accuracy of around 0.9 and above for both cloudy and clear images, compared to text-based zero-shot
variant. Finally, it is shown that the features learned via the linear probe method are most effective for generalizing across
datasets and sensing modalities.

The results presented herein demonstrate the potential of harnessing a general vision-language model of CLIP for processing
clouds in satellite imagery with minimal training requirements.
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