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Abstract

This study is carried out using the COGITO force field to determine whether the

thermodynamic melting point of pure triacylglyceride crystals can be predicted using

molecular dynamics simulations. The triacylglycerides used in this study are both sat-

urated and unsaturated, as well as symmetrical and asymmetrical, to test the robust-

ness of both the force field and the direct heating methodology described in this

paper. Given the nonequilibrium nature of a melting system, a larger number of simu-

lations are required to ensure that the results are sufficiently converged, that is, with

little fluctuation and a small confidence interval. The study also highlights the impor-

tance of the presence of defects, in this case as voids, to lower the melting nucleation

energy barrier of the crystals and avoid superheating of the systems being tested.

The size of these defects is much larger than what would be found in a physical crys-

tal, however, the simple and robust procedure that was developed allows the accu-

rate prediction of melting points of the different triacylglycerides.
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1 | INTRODUCTION

The solid-to-liquid phase transition temperature is an important mac-

roscopic property of any material, and the simulation of this phase

transition has been the research focus of a number of groups,1–8 who

have attempted to simulate the melting of various metals or mole-

cules. Determining the melting point computationally using molecular

dynamics (MD), however, is not trivial. The force field (FF) being used,

and how this has been parameterized, that is, whether melting point

has been part of the parameterization efforts, or not, has a significant

impact on being able to predict melting points. Having a FF which is

able to predict liquid and solid macroscopic properties does not imply

the FF's ability to predict phase transition,3 and hence any such simu-

lations need to be validated thoroughly.

A common problem encountered when trying to determine the

melting point of a crystal using MD is overheating (or superheating) of

the system.2,4,7,9 This is due to the system being a perfect crystal, and

thus having no surface, defect or interface, or alternatively, superheat-

ing may be caused by a very high heating rate compared to empirical

measurements or, the influence of the FF potential.7 The issue of hav-

ing a defect, or void, within a crystal when carrying out MD simula-

tions has been studied extensively1,2,4,8,9 and shown to be critical to

obtaining a good determination of the melting point using

MD. Having such void defects in a crystal allow for the fact that phys-

ical crystals are never perfect, and that boundaries and lattice defects

reduce the possibility of crystal superheating.2 Superheating can be

mitigated by a slower heating rate, however, completing a simulation

at heating rates approximating those obtainable in a lab, over a similar

temperature range, is not feasible as the computation time would be

too long.

Different approaches have been proposed to determine the simu-

lated melting point. The first is a direct approach method, that is, one
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where the system is heated until phase transition is observed,

mimicking an experimental procedure. The second approach is to use

free energy methods, with the latter being deemed to be more accu-

rate than the former, however, it is also more complicated to carry

out,10 and can be very difficult if the solid–liquid coexistence condi-

tions are not known in advance.2 Given this, the direct method can be

preferable as it is simpler, does not require previous knowledge of the

system, and can still provide an accurate estimate of the thermody-

namic melting point.2

Triacylglycerides (TAGs) are used in a wide variety of industries.

Knowing the melting point of these compounds is very important to

their processing and use. In this study, we have attempted to simulate

the melting points of a range of pure TAGs with the recently devel-

oped COGITO FF,11 using the direct heating method. The COGITO

FF is a coarse-grained FF specifically parameterized to simulate the

macroscopic properties of TAGs in different phases. The methodology

provides a robust technique to determine this critical physical prop-

erty, opening up the possibility of predicting the melting point of

TAGs which are not widely available or for which the melting point is

unknown.

2 | METHODS

2.1 | MD simulation settings

All simulations have been carried out using GROMACS12 2021.3

with the COGITO FF.11 All equilibrations were done using an NPT

ensemble, using a time-step of 25 fs and a pressure of 1.01325 bar

using a v-rescale thermostat and a Berendsen barostat. Anisotropic

pressure coupling, with a compressibility of 1 � 10�5 bar�1 in the x,

y and z directions was used. Temperature coupling was set at 1 ps,

while pressure coupling was set at 10 ps. The cut-off scheme was

set to Verlet, with the Coulomb and vdW cut-off distances set to

1.1 nm. The vdW-modifier was set to Potential-shift and the electro-

statics (coulomb type) was set to Particle-Mesh Ewald (PME) (PME

order = 4). All linear heating rates were set to 0.5 K/ns

(5 � 108 K/s).

2.2 | Perfect crystal generation

Pure TAG crystals were built by stacking unit cells of the TAG in all

three dimensions. In the case of 1-palmitoyl-2-oleoyl-3-stearoyl-sn-

glycerol (sn-POSt), 1,3-dipalmitoyl-2-oleoyl-sn-glycerol (sn-POP),

1,3-distearoyl-2-oleoyl-sn-glycerol (sn-StOSt) and 1,3-dicapric-

2-oleoyl-sn-glycerol (sn-COC), where each unit cell is made up of

4 molecules, crystals were built by stacking 10, 2 and 10 unit cells in

the a, b and c directions, respectively, to give a perfect crystal of

800 molecules (Figure 1A). In the case of 1,2,3-tristearoyl-sn-glycerol

(sn-StStSt, or tristearin), where a unit cell is made up of 2 molecules,

crystals were built by stacking 4, 10 and 10 unit cells in the a, b and

c directions respectively (Figure 1B).

The coarse-grained (CG) representations of sn-POSt, sn-POP,

sn-StOSt and sn-StStSt were built by mapping the XRD crystalline

structures13–15 as per Cordina et al.11 In the case of sn-COC, given that

no crystal structure was available, a crystal was built using the CG rep-

resentation of sn-POP as the starting point. The sn-COC unit cell was

built by reducing the number of beads on the capric fatty acid chains,

moving the molecules close to each other, using the sn-POP distances

as a guideline, and reducing the unit cell dimensions accordingly.

2.3 | Crystals with void generation

The simulation box at any void size and type was varied between each

individual simulation. These were built by starting with a perfect crys-

tal of 800 molecules (Figure 1, and exemplified in Figure 2A), from

which a molecule was chosen at random. Further molecules were then

chosen at random until the required number of molecules was

reached. In the case of “pit” voids the chosen molecules could be in

any position within the crystal, with no relational proximity of the

missing molecules except for those occurring through the random

choice of molecules (Figure 2B).

In the case of “crack” voids a “seed” molecule was chosen at ran-

dom. The subsequent choice of molecules to remove were chosen by

F IGURE 1 Figure showing the unit cell stacking patterns for the
perfect crystals of (A) sn-POP (the sn-COC, sn-POSt and sn-StOSt
crystals were built using the same unit cell stacking pattern), and

(B) sn-StStSt.

1796 CORDINA ET AL.



randomly choosing a molecule which was up to one molecule away in

all three dimensions from an “anchor” molecule already chosen to be

removed from the crystal. The “anchor” molecule was again chosen at

random each time the next molecule to be removed was to be deter-

mined, until the required number of molecules to remove were cho-

sen. This resulted in a range of crack voids which could be anywhere

in the crystal and with any shape, however, all the chosen molecules

were in close relational proximity (Figure 2C). Void generation was

done in an automated fashion by using a custom Python script (see

Data S1).

2.4 | Melting point determination

Melting point onset for any given simulation was determined as

follows:

1. the Potential energy over the trajectory was extracted using the

gmx energy program in GROMACS,

2. the best-fit line (gradient and intercept) was calculated using linear

regression on the data from 5% to 30% of the trajectory (“the sam-

ple set”) versus temperature (�C), assuming that the temperature

increase is perfectly linear with time,

3. the predicted Potential energy values over the whole trajectory/

temperature range were calculated using the linear regression

parameters found in the previous step,

4. the sum of the square of errors for just the sample set, that is,
Pn

i¼1 actuali�predictedið Þ2, was determined,

5. the standard deviation of the sample set used for linear regression

was determined, where stdev¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sum of square of errors

N�2

q
,

6. the Predicted Interval as PI = z*�stdev was determined (where

z* = 1.96, which statistically covers 95% of all points from

the mean),

7. the actual intervals as best-fit line prediction +/� PI were

calculated,

8. the melting point onset was then determined by starting from the

lower temperature and iterating over the Potential energy data-

points until the number of Potential energy datapoints being

higher than their respective upper PI was more than 95% of the

Potential energy datapoints remaining. (all of the above was auto-

mated using a custom Python script; see Data S2)

2.5 | TAG/crystal melting temperature
determination

The melting temperature for any given TAG and void size was deter-

mined as the average of the melting point onset of the total simula-

tions at that void size. The 95% confidence interval (CI) was

calculated as CI¼ z��σffiffiffi
N

p where z*=1.96 (statistical factor), σ= standard

deviation of all melting point onsets for any given TAG and void size,

and N=number of simulations.

The melting temperature of any given TAG was determined by

varying the void size in the crystal. A plot of average melting point

onset versus void size was then plotted, with the melting temperature

of a TAG being determined to be that at the plateau region of the plot.

A decision tree on how to choose the void size and temperature

ranges is given in the Data S3.

3 | RESULTS AND DISCUSSION

3.1 | Impact of voids on melting point

To avoid superheating of the crystal, and better mimic physical crys-

tals, a defect must be created in the crystal. A defect, be it a void, a

dislocation in the crystal, or an interstitial defect, reduces the melting

nucleation free energy barrier10 which means that the nucleation rate

will rise. In this study the defects were introduced as voids. Specifi-

cally, two types of voids were investigated; pits (randomly chosen

F IGURE 2 (A) 2-dimensional representation of a perfect
molecular crystal; (B) crystal with 16 pit voids (blue dots = missing
molecules); (C) crystal with a 16-molecule crack void.
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single molecules removed from the perfect crystal) and cracks

(molecules chosen for their relational proximity to other already-

chosen molecules) (see Computational Methods section).

The first TAG to be investigated was β2 sn-POSt, where pit and

crack voids were created in the perfect crystal, and heated. A detailed

explanation of how the void sizes and temperature range to use for

each void size was determined is provided in Data S3. Briefly, initial

simulations revealed a trend consistent with what was previously

described by Eike et al.2 with the results showing a decrease in the

melting point of the crystal with increasing void size (Figure 3). The

decrease continues until a plateau is reached (in the case of β2
sn-POSt this occurs at a 40-molecule void size), after which there is a

sudden decrease in the melting point due to mechanical instability.

The melting temperature of the crystal was taken to be the tempera-

ture at the plateau before the drop.2 (see Data S4 for full melting

point results).

Comparing the plots for β2 sn-POSt, the melting onset for pit

voids was observed to be higher than that for crack voids by approxi-

mately 10�C at any given void size (Figure 3). In this case, it is clear

that the free energy barrier is higher in the cases where pit voids

where used. Given these results, with the very close agreement of the

simulated melting point of β2 sn-POSt when using crack voids to the

empirical melting point, as well as the fact that a crack void mimics

defects found in crystals more closely than missing individual mole-

cules, the remainder of the simulations, and results reported, were all

carried out using crack voids.

3.2 | Accuracy of the determined melting point by
bootstrap statistics

In a melting simulation on any given crystal with a void, given the

nonequilibrium nature of the system, the determined melting point

onset varies between repeats, even when using the same starting con-

figuration. Given this, a number of simulations are needed to

determine an average melting point. As more simulations are carried

out, the changing calculated melting point (Figure 4A), and its standard

error (Figure 4B), at any given void size, can be determined by using

bootstrap statistics.16,17 This statistical methodology creates numer-

ous sub-samples by repeated resampling from a data population

(in this case, using 10,000 sub-samples), thus allowing for the calcula-

tion of a population mean, standard error and confidence interval.

Bootstrap statistics were chosen to minimize any disproportionate

effect of an outlier on the calculation of the average melting point

onset. The difference in average melting point onset using a simple

arithmetic mean and bootstrap statistics turned out to be negligible.

Bootstrapping, however, was still useful in determining the mini-

mum number of simulations required. As can be seen, the bootstrap

error decreases and plateaus, while the average melting point fluctua-

tions are reduced, with an increasing number of simulations. To deter-

mine the required number of simulations to obtain an accurate

melting point at a specific void size, 250 simulations were carried out

using a β2 sn-POSt crystal with a 40-molecule crack void.

F IGURE 3 Plot of melting point of β2 sn-POSt with increasing
void size with pit and crack voids. Circles = determined average
melting point onset; error bars = 95% CI; green shaded
area = empirical melting point range.

F IGURE 4 (A) Plot of melting point as determined using bootstrap
statistics, with increasing number of simulations of a β2 sn-POSt
crystal with a 40 molecule crack void. m.pt. = average melting point
±95% confidence interval. StdErr = bootstrap standard error when
using 250 datapoints. B) Plot of bootstrap standard error with
increasing number of simulations.
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As can be seen in Figure 4A, the calculated melting point had sta-

bilized at around 140 simulations. A jump can then be observed, with

the average melting point showing only small fluctuations after that.

This jump was due to a small number of simulations with a higher

melting point onset between the 140th and 150th run. Notwithstand-

ing this, the average melting point bootstrap error increase was very

small (less than 0.1�C—Figure 4B), while the change in average melting

point was around 0.5�C (Figure 4A). Running more than 150 simula-

tions did not result in an appreciable decrease in the bootstrap error

or a large change in the average melting point. The average melting

point for the β2 sn-POSt crystal with a 40-molecule crack void calcu-

lated over 150 and 250 runs was determined to be 34.4 and 34.1�C,

respectively, showing that the increase in the number of runs did not

change the predicted melting point appreciably. Hence, all further

melting point onsets were determined using data from

F IGURE 5 (A) Plot of Potential energy (kJ/mol) versus
Temperature (�C) for β2 sn-POSt with a 40-molecule crack void (run
4 out of 150). Jagged green line = simulation potential energy as
extracted from GROMACS. Solid blue line = Best-fit line as
determined by linear regression, using the data points from the initial
5%–30% of the data set. Dashed orange lines/shaded area = Upper
and lower 95% Predicted Interval. Red line = Determined melting
point onset. (B) Histogram of melting point onset for 150 runs of β2
sn-POSt with a 40-molecule crack void. m.pt. = average melting point
onset ±95% confidence interval.

F IGURE 6 Plots of simulated melting temperature (�C) versus
void size for (A) β2 sn-COC, (B) β2 sn-POP, (C) β2 sn-POSt, (D) β
sn-StStSt. Blue markers/line = Melting point onset temperature (�C);
error bars = 95% CI; green shaded area = empirical melting point
range; red line = melting point for the TAG.
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150 simulations. This number of simulations proved enough for all

TAGs and void sizes (see Data S5 for all bootstrap error and average

melting onset plots, and melting onset distributions).

3.3 | Pure TAG crystals melting point

The determination of the melting point was carried out for five differ-

ent TAGs, namely β sn-StStSt, β2 sn-StOSt, β2 sn-POP, β2 sn-POSt and

β2 sn-COC. These TAGs were chosen as they melt at very different

temperatures (from 72�C for β sn-StStSt to �5�C for β2 sn-COC), are

a mixture of fully saturated and monounsaturated TAGs, and β2 sn-

StOSt, β2 sn-POP, β2 sn-POSt have similar, but different melting

points, with these varying as β2 sn-StOSt > β2 sn-POP > β2 sn-POSt.

Given the fast heating rate of the MD simulations, most crystals

did not exhibit a sharp discontinuity when going from solid to melt at

any given temperature and instead showed a gradual melting, starting

at the void nucleus and extending towards the rest of the crystal,

observed as a gradual change in the potential energy (Figure 5A).

Given this, the melting point of that crystal is assumed to be the same

as the melting onset temperature (red line in Figure 5A), that is, the

temperature at which the potential energy of the system started to

deviate from the expected (predicted) value (upper orange dashed line

in Figure 5A). For each TAG and void size the melting points showed

a distribution (Figure 5B), with the melting point determined as the

arithmetic mean, and the 95% CI determined from the standard devia-

tion and the number of simulations.

Similar to what was observed for β2 sn-POSt, on increasing the

void size for any TAG, a drop in the average melting point was

observed until a plateau was reached, followed by another drop due

to mechanical collapse (Figures 3 and 6A–D). Comparing the deter-

mined melting points with the empirical melting points, these showed

very good agreement (Table 1, Figure 7). Not only was the general

trend from low to high melting point reproduced, but the determined

melting points were also close to the empirically determined values, as

well as the predicted values from different models.

One thing of note from these results is that the plateau was

reached at different void sizes for the different TAGs (Table 1).

While the exact value will be dependent on the specific void sizes

being used to determine where the plateau is reached, a general

trend can be observed, namely, the void size required to reach

the plateau increases with the melting point of the crystalline

TAG. This is due to the increased thermodynamic stability of the

crystal, and, hence, the increased need for a lowering of the melt-

ing energy barrier. This also means that the ideal void size for any

given TAG cannot be known a priori but needs to be determined

for each system. Given an initial crystal size of 800 molecules, a

void size of 32–112 molecules (at the plateau) means that

4%–14% of the molecules were removed from the perfect crystals

to create the defects. As stated by Eike et al.,2 this level of simu-

lated defect within the crystal is orders of magnitude larger than

that observed in real crystals, but this approach nonetheless pro-

vides a robust methodology to determine the thermodynamic

melting point.

TABLE 1 Published melting
temperatures of various TAGs and
simulated melting temperatures ±95% CI.

TAG
Empirical melting
temperature (�C)

Simulated melting
temperature (�C)

Void size
at plateau

β2 sn-COC �4.8a18 �11.9 ± 1.1 32

1.6–2.7b

β2 sn-POSt 33.8–38.0a13,19–21 34.4 ± 0.8 40

35.6–37.6b

β2 sn-POP 34.8–37.5a21–26 33.5 ± 1.3 48

37.3–37.7b

β2 sn-StOSt 41.0–44.0a21,22,26–29 38.9 ± 1.0 72

44.1–44.9b

β sn-StStSt 71.5–75.7a30–35 78.3 ± 1.4 112

69.6–72.7b

aEmpirical values.
bPredicted values obtained from the triglyceride property calculator and references therein.36

F IGURE 7 Plot of empirical and simulated melting temperatures
(�C) versus void size for different TAGs. Error bars = empirical melting
point range/simulated 95% CI.
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4 | CONCLUSIONS

This study has shown that the thermodynamic melting point of

pure TAG crystals can be estimated accurately. This is achieved by

introducing void defects into a perfect crystal, heating the result-

ing structure and determining the melting point onset. Due to the

non-equilibrium nature of a melting simulation, an increased num-

ber of simulations per void size are required to estimate an accu-

rate melting point, although we find that after 150 simulations the

results are sufficiently converged. All simulations were carried out

using the COGITO FF,11 which has proven to be able to repro-

duce the thermodynamic melting point of various TAGs, despite

not being specifically parameterized against this macroscopic

property.
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