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Abstract
We introduce and study a general class of shock models with dependent inter-arrival
times of shocks that occur according to the homogeneous Poisson generalized gamma
process. A lifetime of a system affected by a shock process from this class is repre-
sented by the convolution of inter-arrival times of shocks. This class contains many
popular shock models, namely the extreme shock model, the generalized extreme
shock model, the run shock model, the generalized run shock model, specific mixed
shockmodels, etc. For systems operating under shocks, we derive and discuss themain
reliability characteristics (namely the survival function, the failure rate function, the
mean residual lifetime function and the mean lifetime) and study relevant stochastic
comparisons. Finally, we provide some numerical examples and illustrate our findings
by the application that considers an optimal mission duration policy.

Keywords Homogeneous Poisson generalized gamma process ·
Optimal mission duration · Shock models · Reliability

Mathematics Subject Classification 60E15 · 60K10

1 Introduction

Shock models are widely used for stochastic description of systems operating in ran-
domenvironments. Various shockmodelswere introduced and studied in the literature.
One can classify most of the shock models into four major groups, namely the extreme
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shock model (see, e.g., Gut and Hüsler 1999, 2005; Shanthikumar and Sumita 1983,
1984; Cha and Finkelstein (2016)), the cumulative shock model (see, e.g., A-Hameed,
M.S. and Proschan, F. (1973); Esary et al. (1973); Gut (1990); Gong et al. (2020a)),
the run shock model (see, e.g., Mallor and Omey (2001); Gong et al. (2018)) and
the δ-shock model (see, e.g., Li and Kong (2007); Goyal et al. (2022b, c)). For con-
venience, we provide definitions of these models in Subsect. 2.3. Besides, there are
various mixed shock models that are combinations of two or more shock models from
thesemajor groups (see Cha and Finkelstein (2009); Eryilmaz and Tekin (2019);Wang
and Zhang (2005); Mallor et al. (2006); Eryilmaz (2012), and the references therein).

Most of the studies devoted to shock modeling consider renewal processes or Pois-
son processes (homogeneous Poisson process (HPP) and non-homogeneous Poisson
process (NHPP)) as the corresponding shock point processes affecting engineering
systems. Note that the inter-arrival times in the renewal process are i.i.d., which is
very restrictive in many real-life scenarios, whereas the Poisson process has inde-
pendent increments, which is also a restrictive assumption in many applications. For
example, if there are larger number of shocks in the past, wemay expect the same in the
future (positive dependence). Thus, in many real-life scenarios, it is more appropriate
to consider more general shock process.

Recently, a new point process called the Poisson generalized gamma process
(PGGP) has been introduced by Cha and Mercier (2021). It has a complex mathemat-
ical structure, which makes its implementation in applications limited. However, its
special case, namely the homogeneous Poisson generalized gammaprocess (HPGGP),
not only is mathematically tractable but also has many nice statistical properties. The
HPGGPpossesses the dependent increments propertywith a general dependency struc-
ture and hence, it may be applied to a wider class of problems. Further, the inter-arrival
times of this process are also dependent. Moreover, it contains many well-known pro-
cesses (namely the HPP, the Pólya process, etc.) as the particular cases. Thus, the
HPGGP can be viewed as a more general and flexible process that does not have
limitations of the Poisson and the renewal processes.

It should be noted that the Pólya process, being a special case of the HPGGP, is
also widely used in shock modeling. The inter-arrival times of this process follow the
Pareto distribution that is well known in modeling events with heavy-tailed behavior.
For example, an earthquake or a storm can be considered as a shock for some critical
systems, e.g., a bridge. If the magnitude of an earthquake is sufficiently large, then the
bridge can be severely damaged or completely destroyed (see, e.g., Last and Szekli
(1998); Eryilmaz (2017b); Cha and Finkelstein (2016) based on the Pólya shock pro-
cess). Some of the other specific settings were considered in our recent works (Goyal
et al. (2022a, b, c)).

On the other hand, there exists many popular shock models, which have a great
potential in different applications, namely the run shock model, the generalized run
shock model, the generalized extreme shock model, and some special mixed shock
models. To the best of our knowledge, they have not yet been studied with sufficient
generality taking into account the dependent inter-arrival times. Thus, in this paper,
our goal is to develop and study a unified class of shock models with dependent inter-
arrival times of shocks that occur according to the HPGGP. Moreover, we assume that
the distribution of the fatal shock that causes the system’s failure (i.e., the number
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of shocks until the system failure) is a discrete phase-type (DPH) distribution, which
describes a rather general model of failure. The survival function and other statistical
measures (e.g., mean, variance, etc.) of the DPH can be written in matrix forms that
are convenient in computations by using the relevant mathematical packages. Conse-
quently, the results to be developed for the proposed class of shock models are also
mathematically tractable.

The contribution and novelty of our paper can be summarized as follows:

(a) We propose the unified class of shock models with the specified dependence struc-
ture and a general discrete failure model. This class contains many popular shock
models, namely the run shock model, the generalized run shock model, the gen-
eralized extreme shock model, some special mixed shock models, etc.;

(b) We assume that shocks occur in accordance with the homogeneous Poisson gener-
alized gamma process (HPGGP), which is a rather general process with dependent
increments and inter-arrival times, whereas the failure model (i.e., the distribution
of the number of shocks until the system failure) is defined by the discrete phase-
type (DPH) distribution;

(c) For the proposed class of shock models, we study some important reliability
indices, namely the survival function, the failure rate function, the mean resid-
ual life function and the mean lifetime. Moreover, the derived results are in matrix
forms that can easily be calculated using the relevant mathematical packages.

The rest of the paper is organized as follows. In Sect. 2, we provide some preliminaries
and then define the class of shock models to be considered. In Sect. 3, we derive some
important reliability indices and study some stochastic comparisons for the proposed
class of shock models. In Sect. 4, we give some numerical examples to illustrate the
developed results. In Sect. 5, we illustrate our findings by considering the relevant
optimal mission duration policy. Lastly, the concluding remarks are given in Sect. 6.

To enhance the readability of the paper, all proofs of theorems, lemmas and corol-
laries, wherever given, are deferred to the Appendix, which forms a supplementary
material to our paper.

2 Preliminaries andmodel formulation

For any random variable U , we denote the cumulative distribution function (cdf)
by FU (·), the survival/reliability function by F̄U (·), the probability density function
(pdf) by fU (·) and the failure rate function by rU (·); here F̄U (·) ≡ 1 − FU (·) and
rU (·) ≡ fU (·)/F̄U (·). Further, we denote the set of natural numbers by N, the set of
real numbers by R and the set of complex numbers by C. For any z ∈ C, Re(z) and
Im(z) denote the real part and the imaginary parts of z, respectively. By writing a
matrix A = diag(x1, x2, . . . , xd), we mean that A is diagonal matrix of size d with
i th diagonal entry equal to xi , i = 1, 2, . . . , d.

2.1 Shock processes

Let {N (t), t ≥ 0} be an orderly point process representing the number of shocks
arrived by time t . In the literature, different point processes of shocks were developed
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to model different real-life scenarios (see Cha and Finkelstein (2018), Teugels and
Vynckier (1996), and the references therein). In what follows, we give the formal
definitions of some point processes that will be used in this paper. But first, we recall
the definition of the generalized gamma distribution (see Agarwal and Kalla (1996)).

Definition 2.1 A randomvariable Q is said to have the generalized gamma distribution
(GGD) with the set of parameters {ν, k, α, l}, ν ≥ 0, k, α, l > 0, denoted by Q ∼
GG(ν, k, α, l), if its pdf is given by

fQ(q) = αk−ν

�ν(k, αl)

qk−1 exp{−αq}
(q + l)ν

, q > 0, (1)

where

�ν(k, αl) =
∫ ∞

0

yk−1 exp{−y}
(y + αl)ν

dy =
∫ ∞

0

αk−ν yk−1 exp{−αy}
(y + l)ν

dy. (2)

Definition 2.2 A mixed Poisson process {N (t), t ≥ 0} is said to be the Pólya process
with the set of parameters {β, b}, β > 0, b > 0, if

P(N (t) = n) = �(β + n)

�(β)n!
(

t

t + b

)n (
b

t + b

)β

=
∫ ∞

0
exp{−χ t} (χ t)

n

n! dH(χ), n = 0, 1, 2, . . . ,

where H , named as the structure distribution, is the gamma distribution with the
density given by

dH(χ) = bβ

�(β)
χβ−1 exp{−bχ}dχ.

Remark 2.1 Let X1, X2, . . . be a sequence of inter-arrival times of the Pólya process
with set of parameters {β, b}. Then, Xi follows the Pareto distribution with the cdf
given by

FXi (t) = 1 −
(

b

b + t

)β

, t ≥ 0, i = 1, 2, 3, . . .

Definition 2.3 A counting process {N (t), t ≥ 0} is said to be the Poisson general-
ized gamma process (PGGP) with the set of parameters {λ(t), ν, k, α, l}, λ(t) >

0 for all t ≥ 0, ν ≥ 0, k, α, l > 0, if

(a) {N (t), t ≥ 0|Q = q} ∼ NHPP(qλ(t));
(b) Q ∼ GG(ν, k, α, l).

If λ(t) = λ (> 0), then it is called the homogeneous Poisson generalized gamma
process (HPGGP) with the set of parameters {λ, ν, k, α, l}. �
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Note that the PGGP is a mixed Poisson process with the generalized gamma as a
mixing distribution. Moreover, it can be understood as a Poisson process having the
stochastic intensity function which is a product of the deterministic intensity function
and a random variable.

As we discussed in the Introduction, the HPGGP possesses the dependent incre-
ments property. The dependence structure in the increments of the HPGGP is given
by the positive upper orthant dependent increments property (see Cha and Mercier
(2021)), i.e., for any arbitrary integer m ≥ 2 and 0 < t1 < t2 < · · · < tm ,

P(N (ti + 	ti ) − N (ti ) > ni , i = 1, 2, . . . ,m) ≥
m∏
i=1

P(N (ti + 	ti ) − N (ti ) > ni ),

for all ni , i = 1, 2, . . . ,m, where ti + 	ti ≤ ti+1, i = 1, 2, . . . ,m − 1.

Remark 2.2 The following statements are true

(a) The HPGGP with the set of parameters {λ, ν, k, α, l}, where ν = 0, α = k and
k → ∞, is the HPP with the intensity λ, regardless of l;

(b) The HPGGP with the set of parameters {λ, ν, k, α, l}, where λ = 1/b (> 0),
ν = 0, k = β, α = 1, is the Pólya process with the set of parameters {β, b},
regardless of l.

2.2 Discrete PH distribution

Below, we give the definition of a discrete PH distribution (see, e.g., Eryilmaz (2017a),
Bozbulut and Eryilmaz (2020)).

Definition 2.4 A discrete phase-type distribution can be viewed as the distribution of
the time to absorption in an absorbing Markov chain. A random variable N is said to
have the discrete PH distribution, denoted by N ∼ DPH(a, A), if

P(N = n) = aAn−1u, n ∈ N,

where A is a squarematrix of sizem that includes the transition probabilities among the
m transient states, and a = (a1, a2, . . . , am) is a vector of sizem such that

∑m
i=1 ai =

1. Moreover, u = (I − A)e is a vector which includes the transition probabilities from
transient states to the absorbing state, ae = 1, and I is the identity matrix, and e is
the column vector of size m with all elements being one. Further, the matrix A must
satisfy the condition that I − A is non-singular. �

Note that the survival function of N is given by F̄N (n) = aAne and E(N ) =
a(I − A)−1e.

2.3 Model formulation and specific cases

Let L be a random variable defining a lifetime of a system incepted into operation at
time t = 0 and subject to external random shocks. We assume that shocks is the only
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cause of its failure. Let Xi be a random variable representing the time between the
(i − 1)th and the i th shocks, i ≥ 1. Further, let Yi be a random variable defining the
magnitude (or, the damage caused by) by the i th shock, i = 1, 2, 3, . . . . Furthermore,
let M be a random variable representing the fatal shock, i.e., the number of shocks
arrived till the failure of the system.We define now a general class of shock models for
which the lifetime of a system can be represented as a random sum of the inter-arrival
times of shocks, i.e., L = ∑M

i=1 Xi . We study this class of shock models under the
following assumptions.

Assumptions:

• Shocks occur according to the HPGGP with the set of parameters {λ, ν, k, α, l};
• M ∼ DPH(a, A);
• {Yi : i ∈ N} is a sequence of independent and identically distributed random
variables. Moreover, {Yi : i ∈ N} and {Xi : i ∈ N} are independent;

• M and {Xi : i ∈ N} are independent.
Below, we list some well-known shock models that belong to this class.

• Extreme shock model (Gut and Hüsler 1999, 2005): In this model, a system
fails at the i th shock if its magnitude exceeds the predetermined threshold γ , i.e.,
Yi > γ . Consequently,

P(M = m) = P(Y1 ≤ γ,Y2 ≤ γ, . . . ,Ym−1 ≤ γ,Ym > γ ) = p(1 − p)m−1,

where p = P(Y1 > γ ). Clearly, M ∼ DPH(1, 1 − p). Further, note that M and
{Xi : i ∈ N} are independent. Thus, the extreme shock model is a member of the
defined class of shock models.

• Generalized extreme shock models I and II (Bozbulut and Eryilmaz (2020)): In
these models, it is assumed that shocks may arrive from more than one possible
sources (say, n sources). Let θi be the probability that shocks come from source i ,
and let pi be the probability that the magnitude of a shock from source i exceeds
the critical level γ ; i = 1, 2, . . . , n. In bothmodels, a system fails upon occurrence
of a shock of size, at least γ . Thus, shocks that come from source i are harmless
with probability 1 − pi ; i = 1, 2, . . . , n. In Model I, it is assumed that shocks
may arrive from different sources over time, i.e., two consecutive shocks may
come from two different sources. Note that, in this model, M ∼ DPH(1, 1− p),
where p = ∑n

i=1 θi pi and
∑n

i=1 θi = 1 (see Bozbulut and Eryilmaz (2020)). In
Model II, it is assumed that shocks initially come from a specified source, say i ,
and after the i th source completes its task, shocks continue to arrive from another
source. In this case, M ∼ DPH(agem, Agem), where agem = (θ1, θ2, . . . , θn),
Agem = diag(1− p1, 1− p2, . . . , 1− pn) and

∑n
i=1 θi = 1. If n = 1, then both

models reduce to the classical extreme shock model. Clearly, in both models, M
follows the discrete PH distribution, and M and {Xi : i ∈ N} are independent.
Therefore, these two models belong to the defined class of shock models.

• Run shock model (Mallor and Omey (2001)): In this model, a system fails when
the magnitudes of r consecutive shocks exceed the predetermined threshold value
γ . Here, the random variable M follows the geometric distribution of order r with
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the success probability p, where p is the probability that the magnitude of a single
shock exceeds the threshold value γ . Later, Tank and Eryilmaz (2015) showed that
the distribution of M can equivalently be represented as a discrete PH distribution
i.e., M ∼ DPH(arm, Arm), where arm = (1, 0, . . . , 0)1×r and

Arm =

⎛
⎜⎜⎜⎜⎜⎝

1 − p p 0 · · · 0
1 − p 0 p · · · 0

...
...

...
. . .

...

1 − p 0 0 · · · p
1 − p 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

r×r

.

Consequently, the run shock model belongs to the defined class of shock models.

• Mixed shock model (Eryilmaz and Tekin (2019)): In this model, the classical run
and extreme shock models are combined. Let γ1 and γ2 be two fixed threshold
values such that γ1 < γ2. Here, the failure of a system takes place when either r
consecutive shocks of size, at least γ1 or a single shock of size, at least γ2 occur(s).
In this case, M ∼ DPH(amm, Amm), where amm = (1, 0, . . . , 0)1×r and

Amm =

⎛
⎜⎜⎜⎜⎜⎝

1 − p1 − p2 p1 0 · · · 0
1 − p1 − p2 0 p1 · · · 0

...
...

...
. . .

...

1 − p1 − p2 0 0 · · · p1
1 − p1 − p2 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

r×r

,

with p1 = P(γ1 ≤ Yi < γ2) and p2 = P(Yi ≥ γ2) for i = 1, 2, . . . . Conse-
quently, this model also belongs to the defined class of shock models.

• Generalized run shock model I (Gong et al. (2018)): Consider two critical levels
γ1 and γ2 such that γ1 < γ2. For given two positive integers r1 and r2, the system
is assumed to fail if, at least r1 consecutive shocks with magnitude above γ1 or r2
consecutive shocks with magnitude above γ2 occur. It is obvious that r1 > r2. Let
p1 = P(Yi ≤ γ1), p2 = P(γ1 < Yi ≤ γ2) and p3 = P(Yi > γ2), i = 1, 2, 3, . . . .
Then, M ∼ DPH(agrm1, Agrm1), where agrm1 = (1, 0, . . . , 0) and

Agrm1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

Er1 + Sr1 Tr1
Er1−1 Sr1−1 Tr1−1

Er1−2 Sr1−2
. . .

...
. . . Tr1−r2+2

Er1−r2+1 Sr1−r2+1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

E j =

⎛
⎜⎜⎜⎝

p1 0 . . . 0
p1 0 . . . 0
...

...
. . .

...

p1 0 . . . 0

⎞
⎟⎟⎟⎠

j×r1

,
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S j =

⎛
⎜⎜⎜⎜⎝

0 p2 . . . 0

0
...

. . . 0
... 0 . . . p2
0 0 . . . 0

⎞
⎟⎟⎟⎟⎠

j× j

, Tj =

⎛
⎜⎜⎜⎝

p3 . . . 0
...

. . . 0
0 . . . p3
0 . . . 0

⎞
⎟⎟⎟⎠

j× j−1

.

Clearly, this model belongs to the defined class.

• Generalized run shock model II (Yalcin et al. (2018)): In this model, a system
fails due to the occurrences of n non-overlapping runs of r consecutive critical
shocks. This model can be useful for describing the performance of the n cold
standby identical systems because, in this case, a system needs to be replaced with
a new one after the occurrence of r consecutive critical shocks. For this model,
M ∼ DPH(agrm2, A

(n)
grm2), where

agrm2 = (1, 0, . . . , 0)1×nr , A(n)
grm2 =

(
A(n−1)
grm2 S

0 T

)
, n ≥ 3,

and A(n)
grm2 is an nr × nr matrix with

A(2)
grm2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 − p p 0 . . . 0 0 0 . . . 0
1 − p 0 p . . . 0 0 0 . . . 0

...
...

...
...

...
...

...
...

...

1 − p 0 0 . . . 0 p 0 . . . 0
0 0 0 . . . 0 1 − p p . . . 0
0 0 0 . . . 0 1 − p 0 . . . 0
...

...
...

...
...

...
...

...
...

0 0 0 . . . 0 1 − p 0 . . . 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2r×2r

.

Further, the matrices S and T are given by

S =

⎛
⎜⎜⎜⎜⎝

0 0 0 . . . 0
...

...
... . . .

...

0 0 0
... 0

p 0 0 . . . 0

⎞
⎟⎟⎟⎟⎠

(n−1)r×r

, T =

⎛
⎜⎜⎜⎝

1 − p p 0 . . . 0
1 − p 0 p . . . 0

...
...

... . . .
...

1 − p 0 0 . . . 0

⎞
⎟⎟⎟⎠

r×r

.

Thus, this model also belongs to our class.

The suggested in our paper class of shock models is general, but obviously, it does not
contain all existing models. The following examples illustrate this reasoning:

• Cumulative shock model (A-Hameed, M.S. and Proschan, F. (1973)): In this
model, a system fails at i th shock if the cumulative damage till the occurrence of
i th shock exceeds the predetermined threshold value γ and the cumulative damage
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till the occurrence of the (i − 1)th shock is less than γ , i.e.,
∑i

j=1 Y j > γ and∑i−1
j=1 Y j ≤ γ . Then,

P(M = m) = P

⎛
⎝m−1∑

j=1

Y j ≤ γ,

m∑
j=1

Y j > γ

⎞
⎠ = F (m−1)(γ ) − F (m)(γ ),

where F (m)(·) is the cdf of∑m
j=1 Y j . In general,M does not follow the discrete PH

distribution and hence, the cumulative shock model is not a member of the defined
class of shock models. However, if the distribution of M follows the discrete PH
distribution, for a particular choice of F (m)(·), then the cumulative shock model
will also be a member of the defined class of shock models.

• δ-shock model (Li and Kong (2007)): In this model, a system fails when the time
between two consecutive shocks is less than the predetermined threshold δ. Here,
P(M = m) = P(X1 > δ, X2 > δ, . . . , Xm−1 > δ, Xm ≤ δ). Clearly, M and
{Xi : i ∈ N} are not independent. Thus, the δ-shock model does not belong to our
class.

3 Survival of systems under shocks

In this section, we discuss some reliability indices (namely the survival function, the
failure rate function, the mean residual lifetime function and the mean lifetime) for the
defined class of shock models. We also discuss some relevant stochastic comparisons.

3.1 Survival function

We start with three lemmas that will be used in proving the main results of this
subsection. The proof of the first lemma follows from the fact that the inter-arrival
times of the HPP are i.i.d. and follow the exponential distribution (see also equation
(6) of Eryilmaz (2017a)).

Lemma 3.1 Let M ∼ DPH(a, A). Assume that shocks occur according to the HPP
with intensity θ > 0. Then, the corresponding survival function for this model is given
as F̄L(t) = a exp{−θ t(I − A)}e. �

Before stating the next lemma, we give the formal definition of the Fourier trans-
form of a function (see Osgood (2019), p. 105).

Definition 3.1 Let g : R → R. Then, the Fourier transform of g, denoted by F[g](s),
is given by

F[g](s) =
∫ ∞

−∞
exp{−2π ist}g(t)dt, for s ∈ R,

provided that the integral exists.
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Lemma 3.2 (Osgood (2019), pp. 114,123 and 135) The following results hold true.

(i) Let g(t) = exp{−ct}I0(t), where

I0(t) =
{
0 t ≤ 0

1 t > 0

and c is a positive constant. Then, F[g](s) = 1/(2π is + c);
(ii) F[cg](s) = cF[g](s), where c is a constant number (real or complex);
(iii) dk

dsk
F[g](s) = F[(−2π i t)kg(t)](s).

Lemma 3.3 Let ε ∈ C such that Re(ε) > 0. Then, for any n ∈ N,

∫ ∞

0
exp{−(εx + 1)q}qn−1dq = �(n)

(
1

1 + εx

)n

, x ≥ 0.

The proof of this lemma and of all other results, for convenience, is deferred to the
Appendix (which forms supplementary materials in our paper). Although some of our
results look cumbersome, their structure is probabilistically rather simple. Besides,
they are given in the matrix form that is useful for computations in applications (see
later). In the following theorem, the survival function of a system under the considered
shock process is derived.

Note that there are no assumptions on the structure of matrix A (see Lemma 3.1)
for the shock processes with independent inter-arrival times (e.g., the HPP). How-
ever, when the shock processes with dependent inter-arrival times (e.g., PGGP/Polya
process) are considered, some sufficient conditions on the eigenvalues of the matrix
A (e.g., every eigenvalue of the matrix I − A is real and positive, real part of every
eigenvalue of the matrix I − A is positive) are implemented. These conditions are
feasible and easy to verify. Moreover, they hold for aforementioned specific shock
models (see examples in Section 4).

Theorem 3.1 Let M ∼ DPH(a, A), where A is a square matrix of size d. Further,
let ε1, ε2, . . . , εr be eigenvalues of the matrix I − A with the algebraic multiplicity
d1, d2, . . . , dr , respectively, and let P be a non-singular matrix such that I − A =
Pdiag(J1, J2, . . . , Jr)P−1, where Ji is the εi -Jordan block with dimension di , i =
1, 2, . . . , r , and

∑r
i=1 di = d.

(i) Assume that shocks occur according to the HPGGP with the set of parameters
{λ, ν, k, α, l}. If every eigenvalue of the matrix I− A is real and positive, then the
corresponding survival function for a system under the considered shock process
is

F̄L(t) =
(

αk−ν

�ν(k, αl)

)
aPdiag(D1(t), D2(t), . . . , Dr(t))P−1e, (3)
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where

Di (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

�ν(k,(λtεi+α)l)
(λtεi+α)k−ν

−λt�ν(k+1,(λtεi+α)l)
(λtεi+α)k+1−ν . . .

(−λt)di−1�ν(k+di−1,(λtεi+α)l)
(di−1)!(λtεi+α)k+di−1−ν

0 �ν(k,(λtεi+α)l)
(λtεi+α)k−ν . . .

(−λt)di−2�ν(k+di−2,(λtεi+α)l)
(di−2)!(λtεi+α)k+di−2−ν

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 �ν(k,(λtεi+α)l)
(λtεi+α)k−ν

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

di×di

,

for t ≥ 0, i = 1, 2, . . . , r .
(ii) Assume that shocks occur according to the Pólya process with the set of param-

eters {β, b}, β ∈ N. If Re(εi ) > 0, for all i = 1, 2, . . . , r , then

F̄L(t) = 1

�(β)
Pdiag(˜D1(t), ˜D2(t), . . . , ˜Dr(t))P−1e,

where

˜Di (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�(β)
(

b
tεi+b

)β −�(β + 1)
(

t
tεi+b

) (
b

tεi+b

)β

. . .
�(β+di−1)

(di−1)!
( −t
tεi+b

)di−1 (
b

tεi+b

)β

0 �(β)
(

b
tεi+b

)β

. . .
�(β+di−2)

(di−2)!
( −t
tεi+b

)di−2 (
b

tεi+b

)β

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 �(β)
(

b
tεi+b

)β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

di×di

,

for t ≥ 0, i = 1, 2, . . . , r . Moreover, if Im(εi ) = 0, for all i = 1, 2, . . . , r , then
the above result holds for all β ∈ R. �

The following corollary immediately follows from Theorem 3.1, Remark 2.2(b)
and the fact that all Jordan blocks of a diagonalizable matrix are of size 1.

Corollary 3.1 Let I − A is a diagonalizable matrix such that I − A = Pdiag(ε1, ε2,
. . . , εd)P−1.

(i) Assume that shocks occur according to the HPGGP with the set of parameters
{λ, ν, k, α, l}. If εi ’s are real and positive, then

F̄L(t) =
(

αk−ν

�ν(k, αl)

)
aP D(t)P−1e,

where

D(t) = diag

(
�ν(k, (λtε1 + α)l)

(λtε1 + α)k−ν
,
�ν(k, (λtε2 + α)l)

(λtε2 + α)k−ν
, . . . ,

�ν(k, (λtεd + α)l)

(λtεd + α)k−ν

)
,

t ≥ 0.
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(ii) Assume that shocks occur according to the Pólya process with the set of param-
eters {β, b}, β ∈ N. If Re(εi ) > 0, for all i = 1, 2, . . . , d, then

F̄L(t) = aP˜D(t)P−1e,

where

˜D(t) = diag

((
b

tε1 + b

)β

,

(
b

tε2 + b

)β

, . . . ,

(
b

tεd + b

)β
)

, t ≥ 0.

Moreover, if Im(εi ) = 0, for all i = 1, 2, . . . , d, then the above result holds for
all β ∈ R. �

In the next theorem, we give an alternate representation of the survival function of
the above corollary. This will be used in proving the results given in the forthcoming
subsections. The proof of part (i i) can be done in the same line as in part(i) and hence,
omitted.

Theorem 3.2 Let M ∼ DPH(a, A), where A is a matrix of size d. Further, let I − A
be a diagonalizable matrix such that I − A = Pdiag(ε1, ε2, . . . , εd)P−1.

(i) Assume that shocks occur according to the HPGGP with the set of parameters
{λ, ν, k, α, l}. If εi ’s are real and positive, then

F̄L(t) =
d∑

i=1

ci

(
α

λtεi + α

)k−ν
�ν(k, (λtεi + α)l)

�ν(k, αl)
, t ≥ 0,

where ci ’s are real constants such that
∑d

i=1 ci = 1.
(ii) Assume that shocks occur according to the Pólya process with the set of parameters

{β, b}, β ∈ N. If Re(εi ) > 0, for all i = 1, 2, . . . , d, then

F̄L(t) =
d∑

i=1

gi

(
b

tεi + b

)β

, t ≥ 0,

where gi ’s are complex constants such that
∑d

i=1 gi = 1. Moreover, if Im(εi ) = 0,
for all i = 1, 2, . . . , d, then the above result holds for all β ∈ R,; here gi ’s are
real constants.

Remark 3.1 In Theorem 3.2 (i), it is given that
∑d

i=1 ci = 1. Thus, if ci ≥ 0, for all
i , then L is a mixture of d random variables V1, V2, . . . , Vd with reliability functions
given by

F̄Vi (t) =
(

α

λtεi + α

)k−ν
�ν(k, (λtεi + α)l)

�ν(k, αl)
, i = 1, 2, . . . , d.
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Similarly, in Theorem 3.2 (i i), if gi ≥ 0, for all i , then L is a mixture of d Pareto
distributed random variables with the sets of parameters {β, b/εi }, i = 1, 2, . . . , d.
Note that, the Pareto distribution has the DFR (decreasing failure rate) property. Thus,
if gi ≥ 0, for all i , then L is also DFR. In particular, if I − A is a diagonal matrix,
then gi ≥ 0, for all i , and hence, L is DFR in this case.

3.2 Failure rate function

The proof of part (i i) of the following theorem, where the failure rate rL(t) for a
system subject to the defined shock process is derived, can be performed in the same
line as in part (i) and hence, omitted.

Theorem 3.3 Let M ∼ DPH(a, A), where A is a square matrix of size d. Further,
let ε1, ε2, . . . , εr be eigenvalues of the matrix I − A with the algebraic multiplicity
d1, d2, . . . , dr , respectively, and let P be a non-singular matrix such that I − A =
Pdiag(J1, J2, . . . , Jr)P−1, where Ji is the εi -Jordan block with dimension di , i =
1, 2, . . . , r , and

∑r
i=1 di = d.

(i) Assume that shocks occur according to the HPGGP with the set of parameters
{λ, ν, k, α, l}. If every eigenvalue of the matrix I − A is real and positive, then

rL(t) = λ

(
aPdiag(H1(t), H2(t), . . . , Hr(t))P−1e

aPdiag(D1(t), D2(t), . . . , Dr(t))P−1e

)
,

where Di (t) is same as in Theorem 3.1, and Hi (t) = Ei (t) − Si (t),

Ei (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εi�ν(k+1,(λtεi+α)l)
(λtεi+α)k+1−ν

−λtεi�ν(k+2,(λtεi+α)l)
(λtεi+α)k+2−ν . . .

(−λt)di−1εi�ν(k+di ,(λtεi+α)l)
(di−1)!(λtεi+α)k+di−ν

0 εi�ν(k+1,(λtεi+α)l)
(λtεi+α)k+1−ν . . .

(−λt)di−2εi�ν(k+di−1,(λtεi+α)l)
(di−2)!(λtεi+α)k+di−1−ν

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 εi�ν(k+1,(λtεi+α)l)
(λtεi+α)k+1−ν

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

di×di

,

Si (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −�ν(k+1,(λtεi+α)l)
(λtεi+α)k+1−ν . . .

−(−λt)di−2�ν(k+di−1,(λtεi+α)l)
(di−2)!(λtεi+α)k+di−1−ν

0 0 . . .
−(−λt)di−3�ν(k+di−2,(λtεi+α)l)

(di−3)!(λtεi+α)k+di−2−ν

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

di×di

,

t ≥ 0, i = 1, 2, . . . , r .
(ii) Assume that shocks occur according to the Pólya process with the set of parameters

{β, b}, β ∈ N. If Re(εi ) > 0, for all i = 1, 2, . . . , r , then

rL(t) = 1

b

(
aPdiag(˜H1(t), ˜H2(t), . . . , ˜Hr(t))P−1e

aPdiag(˜D1(t), ˜D2(t), . . . , ˜Dr(t))P−1e

)
,
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where ˜Di (t) is the same as in Theorem 3.1, and ˜Hi (t) = ˜Ei (t) − ˜Si (t),

˜Ei (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εi�(β + 1)
(

b
tεi+b

)β+1 −εi�(β + 2)
(

t
tεi+b

) (
b

tεi+b

)β+1
. . .

εi�(β+di )
(di−1)!

( −t
tεi+b

)di−1 (
b

tεi+b

)β+1

0 εi�(β + 1)
(

b
tεi+b

)β+1
. . .

εi�(β+di−1)
(di−2)!

( −t
tεi+b

)di−2 (
b

tεi+b

)β+1

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 εi�(β + 1)
(

b
tεi+b

)β+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

di×di

,

˜Si (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −�(β + 1)
(

b
tεi+b

)β+1
. . .

−�(β+di−1)
(di−2)!

( −t
tεi+b

)di−2 (
b

tεi+b

)β+1

0 0 . . .
−�(β+di−2)

(di−3)!
( −t
tεi+b

)di−3 (
b

tεi+b

)β+1

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

di×di

,

t ≥ 0,i = 1, 2, . . . , r . Moreover, if Im(εi ) = 0, for all i = 1, 2, . . . , r , then the
above result holds for all β ∈ R. �

The following corollary immediately follows from Theorem 3.3, Remark 2.2(b)
and the fact that all Jordan blocks of a diagonalizable matrix are of size 1.

Corollary 3.2 Let I − A is a diagonalizable matrix such that I − A = Pdiag(ε1, ε2,
. . . , εd)P−1.

(i) Assume that shocks occur according to the HPGGP with the set of parameters
{λ, ν, k, α, l}. If εi ’s are real and positive, then

rL(t) = λ

(
aPH(t)P−1e

aP D(t)P−1e

)
,

where D(t) is the same as in Corollary 3.1 and

H(t) = diag

(
ε1�ν(k + 1, (λtε1 + α)l)

(λtε1 + α)k+1−ν
,
ε2�ν(k + 1, (λtε2 + α)l)

(λtε2 + α)k+1−ν
, . . . ,

εd�ν(k + 1, (λtεd + α)l)

(λtεd + α)k+1−ν

)
,

for t ≥ 0.
(ii) Assume that shocks occur according to the Pólya process with the set of parameters

{β, b}, β ∈ N. If Re(εi ) > 0, for all i = 1, 2, . . . , d, then

rL(t) = β

b

(
aP ˜H(t)P−1e

aP˜D(t)P−1e

)
,
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where ˜D(t) is the same as in Corollary 3.1 and

˜H(t) = diag

(
ε1

(
b

tε1 + b

)β+1

, ε2

(
b

tε2 + b

)β+1

, . . . , εd

(
b

tεd + b

)β+1
)

,

t ≥ 0.

Moreover, if Im(εi ) = 0, for all i = 1, 2, . . . , d, then the above result holds for
all β ∈ R.

FromRemark 3.1, we already know that the cdf FL (t) has a decreasing failure rate.
The following intuitively clear theorem (as the failure rate of the Pareto distribution
asymptotically tends to 0) shows that the failure rate that corresponds to FL(t) also
tends to 0.

Theorem 3.4 Let M ∼ DPH(a, A), where A is a square matrix of size d. Further,
let I − A be a diagonalizable matrix such that I − A = Pdiag(ε1, ε2, . . . , εd)P−1.
Assume that shocks occur according to the Pólya process with the set of parameters
{β, b}, β ∈ N. If Re(εi ) > 0, for all i = 1, 2, . . . , d, then

lim
t→∞ rL(t) = 0.

Moreover, if Im(εi ) = 0, for all i = 1, 2, . . . , d, then this result holds for all β ∈ R.

3.3 Mean residual lifetime andmean lifetime

The mean residual life function is also an important reliability characteristic for a
system operating under shocks. In the following theorem, we derive the corresponding
expressions for the defined shock model. We prove only part (i), whereas part (i i) can
be performed in a similar way and, hence, omitted.

Theorem 3.5 Let M ∼ DPH(a, A), where A is a square matrix of size d. Further,
let ε1, ε2, . . . , εr be eigenvalues of the matrix I − A with the algebraic multiplicity
d1, d2, . . . , dr , respectively, and let P be a non-singular matrix such that I − A =
Pdiag(J1, J2, . . . , Jr)P−1, where Ji is the εi -Jordan block with dimension di , i =
1, 2, . . . , r , and

∑r
i=1 di = d.

(i) Assume that shocks occur according to the HPGGP with the set of parameters
{λ, ν, k, α, l}, k > 1. If every eigenvalue of the matrix I − A is real and positive,
then

E(L − t |L > t) = aPdiag(R1(t), R2(t), . . . , Rr(t))P−1e

aPdiag(D1(t), D2(t), . . . , Dr(t))P−1e
,
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where Di (t) is the same as in Theorem 3.1, and

Ri (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

φ(0, t, εi ) −φ(1, t, εi ) . . .
(−1)di−1φ(di−1,t,εi )

(di−1)!

0 φ(0, t, εi ) . . .
(−1)di−2φ(di−2,t,εi )

(di−2)!
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 φ(0, t, εi )

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

di×di

,

φ(n, t, εi ) = (λt)n�ν(k + n − 1, (α + λtεi )l)

λεi (α + λtεi )n+k−ν−1

+ (λt)n

λεi

n∑
i=1

n(n − 1) . . . (n − i + 1)

(λtεi )i
�ν(n + k − i − 1, (α + λtεi )l)

(α + λtεi )n+k−ν−i−1 ,

for t ≥ 0, i = 1, 2, . . . , r and n ∈ N ∪ {0}.
(ii) Assume that shocks occur according to the Pólya process with the set of parameters

{β, b}, β ∈ N, β > 1. If Re(εi ) > 0, for all i = 1, 2, . . . , r , then

E(L − t |L > t) = aPdiag( ˜R1(t), ˜R2(t), . . . , ˜Rr(t))P−1e

aPdiag(˜D1(t), ˜D2(t), . . . , ˜Dr(t))P−1e
,

where ˜Di (t) is the same as in Theorem 3.1, and

˜Ri (t) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ψ(0, t, εi ) −ψ(1, t, εi ) . . .
(−1)di−1ψ(di−1,t,εi )

(di−1)!

0 ψ(0, t, εi ) . . .
(−1)di−2ψ(di−2,t,εi )

(di−2)!
.
.
.

.

.

.
.
.
.

.

.

.

0 0 0 ψ(0, t, εi )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

ψ(n, t, εi ) = (b/εi )�(β + n − 1)

(
t

b + tεi

)n (
b

b + tεi

)β−1

+(b/εi )

(
t

b + tεi

)n n∑
i=1

bi n(n − 1) . . . (n − i + 1)

(tεi )i�(β + n − i − 1)

(
b

b + tεi

)β−i−1

,

for t ≥ 0, i = 1, 2, . . . , r , and n ∈ N ∪ {0}. Moreover, if Im(εi ) = 0, for all
i = 1, 2, . . . , r , then the above result holds for all β ∈ R. �
The following corollary immediately follows from Theorem 3.5, Remark 2.2(b)

and the fact that all Jordan blocks of a diagonalizable matrix are of size 1.

Corollary 3.3 Let I − A be a diagonalizable matrix such that I − A = Pdiag(ε1, ε2,
. . . , εd)P−1.

(i) Assume shocks occur on the system according to the HPGGP with the set of
parameters {λ, ν, k, α, l}, k > 1. If εi ’s are real and positive, then

E(L − t |L > t) = aP R(t)P−1e

aP D(t)P−1e
,
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where D(t) is the same as in Corollary 3.1, and

R(t) = diag(φ(0, t, εi ), φ(0, t, ε2), . . . , φ(0, t, εd)),

φ(0, t, εi ) = �ν(k − 1, (α + λtεi )l)

λεi (α + λtεi )k−ν−1 , t ≥ 0, i = 1, 2, . . . , d.

(ii) Assume that shocks occur on the system according to the Pólya process with the
set of parameters {β, b}, β ∈ N, β > 1. If Re(εi ) > 0, for all i = 1, 2, . . . , d,
then

E(L − t |L > t) = aP ˜R(t)P−1e

aP˜D(t)P−1e
,

where ˜D(t) is the same as in Corollary 3.1, and

˜R(t) = diag

(
(b/εi )

(
1

β − 1

)(
b

b + tεi

)β−1

, . . . ,

(b/εi )

(
1

β − 1

)(
b

b + tεi

)β−1
)

,

for t ≥ 0. Moreover, if Im(εi ) = 0, for all i = 1, 2, . . . , d, then the above result
holds for all β ∈ R. �

In the following theorem, the mean lifetime of the system is given for the defined
shock model. Although it is a specific case for the mean residual lifetime, it is more
efficient and simple to obtain this result directly and under weaker assumptions.

Theorem 3.6 Let M ∼ DPH(a, A). Assume that shocks occur according to the
HPGGP with parameters {λ, ν, k, α, l}, k > 1. Then,

E(L) = α(a(I − A)−1e)
λ

�ν(k − 1, αl)

�ν(k, αl)
.

Corollary 3.4 Assume that shocks occur according to the Pólya process with the set of
parameters {β, b}, β > 1. Then,

E(L) = b(a(I − A)−1e)
β − 1

.

3.4 Stochastic comparisons

In this subsection, we study some stochastic comparisons for systems for the defined
shock model. First, we recall the following definition
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Definition 3.2 A random variable V is said to be smaller than another random variable
W in the usual stochastic order, denoted by V ≤st W , if F̄V (t) ≤ F̄W (t) for all t > 0.

�

Theorem 3.7 Let L1 = �
M1
i=1Xi and L2 = �

M2
i=1Xi be the lifetimes of two systems

subject to the sameHPGGPof shockswith the set of parameters {λ, ν, k, α, l}. Further,
let Mi ∼ DPH(γi , Ai ), where I − Ai is a diagonal matrix of order d with positive
and real eigenvalues ε

(i)
1 , ε

(i)
2 , . . . , ε

(i)
d such that ε(i)

1 ≤ ε
(i)
2 ≤ · · · ≤ ε

(i)
d , i = 1, 2. If

γ1 ≥st γ2 and ε
(1)
j ≥ ε

(2)
j , for all j = 1, 2, . . . , d.

Then, L1 ≤st L2. �

The following corollary immediately follows from Theorem 3.7.

Corollary 3.5 The following results hold true.

(a) Assume that A1 = A2. If γ1 ≥st γ2, then L1 ≤st L2;

(b) Assume that γ1 = γ2. If ε
(1)
j ≥ ε

(2)
j , for all j = 1, 2, . . . , d, then L1 ≤st L2;

(c) Assume that shocks occur on the system according to the Pólya process with the
set of parameters {β, b}. If γ1 ≥st γ2 and ε

(1)
j ≥ ε

(2)
j , for all j = 1, 2, . . . , d, then

L1 ≤st L2.

Theorem 3.8 Let L1 = �M
i=1X

(1)
i and L2 = �M

i=1X
(2)
i be the lifetimes of two systems

subject to different HPGGP shock processes with parameter sets {λ1, ν1, k1, α1, l1}
and {λ2, ν2, k2, α2, l2}, respectively, where X (1)

i and X (2)
i are the i th inter-arrival times

of shock processes that impact the first and the second systems, respectively. Further,
let M ∼ DPH(a, A). Suppose that λ1 ≤ λ2, and one of the following conditions
holds.

(a) α1 = α2, k2 ≥ k1 and k2 − k1 ≥ ν2 − ν1;
(b) α2 < α1 and (α1 − α2 + k2 − k1 + ν1 − ν2)

2 − 4(α1 − α2)(k2 − k1) ≤ 0;
(c) α2 < α1 and α1 − α2 + k2 − k1 + ν1 − ν2 ≥ 0.

Then, L2 ≤st L1. �

The following corollary immediately follows fromTheorem3.8 andRemark 2.2(b).

Corollary 3.6 Assume that shocks occur on the first and the second systems according
to the Pólya processes with parameter sets {β1, b1} and {β2, b2}, respectively. If b1 ≥
b2 and β1 ≤ β2, then L2 ≤st L1.

4 Illustrative examples

In this section, we discuss some numerical examples to illustrate the results given in
Sect. 3.

Example 4.1 Consider the generalized extreme shock model I as mentioned in Sub-
sect. 2.3. We assume that n = 3, θ1 = 0.6, θ2 = 0.3 and θ3 = 0.1. In Fig. 1a, c and
e, we plot the survival function, the failure rate function and the mean residual life
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function, respectively, for different pi ’s and for fixed process parameters b = 2 and
β = 4. Further, in Fig. 1b, d, f we plot the survival function, the failure rate function
and the mean residual life function, respectively, for different process parameters and
for fixed p1 = 0.1, p2 = 0.2 and p3 = 0.3. Clearly, Fig. 1a and b demonstrates the
results given in Corollaries 3.5 and 3.6, respectively. Figure1c and d demonstrates the
result given in Theorem 3.4. Moreover, from these figures, we see that the failure rate
of the system is DFR (see Remark 3.1). Further, Fig. 1e and f shows that the system’s
mean residual life function is nondecreasing.

We plot Fig. 2 that illustrates the impact of the dependent increments property of the
HPGGP on different reliability measures derived in the previous sections. In Fig. 2a,
we compare systems’ survival functions for the HPP (the process with independent
increments) and theHPGGP (the processwith dependent increments) shock processes.
We clearly see that survival functions for dependent and independent increments cases
are significantly different. Similarly, in Fig. 2b and c, we compare systems’ failure
rate functions and mean residual lifetime functions, respectively, for the HPP and the
HPGGP cases. These figures also show a similar conclusion.

Example 4.2 Consider the classical run shock model (with r = 2) as mentioned in
Subsect. 2.3. Then,

arm = (1, 0), Arm =
(
1 − p p
1 − p 0

)
.

Clearly, I − Arm is diagonalizable and has positive and real eigenvalues for all p ∈
[0, 1). For p = 0.2, eigenvalues of thematrix I−Arm are given by ε

(1)
1 = 1.16568542

and ε
(1)
2 = 0.03431458. Similarly, for p = 0.3, eigenvalues of the matrix I − Arm

are given by ε
(2)
1 = 1.22662813 and ε

(2)
2 = 0.07337187. Clearly, all eigenvalues, for

p = 0.2 and p = 0.3, are real and positive. In Fig. 3a, c and e, we plot the system’s
survival, failure rate and mean residual life functions, respectively, for different p
values by assuming that shock process is the HPGGP with the set of parameters
{2, 2, 2, 2, 3}. In Fig. 3b, we plot the system’s survival function for fixed p = 0.2 and
for the HPGGP with different values of parameters {λ, ν, k, α, l}. In Fig. 3d and f, we
plot the system’s failure rate and mean residual life functions for fixed p = 0.3 and
for the HPGGPwith different values of parameters {λ, ν, k, α, l}. Since ε

(1)
j ≤ ε

(2)
j for

j = 1, 2, Fig. 3a illustrates the result given in Theorem 3.7. Further, Fig. 3b illustrates
the result given in Theorem 3.8 as condition (a) of Theorem 3.8 holds. Figure3c and
d demonstrates that the failure rate of the system asymptotically tends to 0. Figure3e
and f shows that the system’s mean residual life function is nondecreasing.

Example 4.3 Consider the classical run shock model (with r = 3) as mentioned in
Subsection 2.3. Then,

arm = (1, 0, 0), Arm =
⎛
⎝1 − p p 0
1 − p 0 p
1 − p 0 0

⎞
⎠ .
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Fig. 1 Plot of the system’s survival, failure rate andmean residual life functions for the generalized extreme
shock model I
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(a) Survival function
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(b) Failure rate function
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(c) Mean residual life function

Fig. 2 Plot of the system’s survival, failure rate and mean residual life functions for HPP and HPGGP
shock processes
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(f)

Fig. 3 Plot of the system’s survival, failure rate, and mean residual life functions for the run shock model
(r = 2)

We assume p = 0.2 and 0.3. For p = 0.2, eigenvalues of the matrix I − Arm are
1.096736514 + 0.15117i , 1.096736514 − 0.15117i and 0.006526972, where i =√−1. Similarly, for p = 0.3, eigenvalues of the matrix I − Arm are 1.13995689 +
0.211432i , 1.13995689 − 0.211432i and 0.02008622. Clearly, all eigenvalues, for
both p = 0.2 and p = 0.3, are either real or complex with positive real parts. In
Fig. 4a, c and e, we plot the system’s survival, failure rate and mean residual life
functions, respectively, for different p values and for the Pólya shock process with
parameters b = 2 and β = 4. In Fig. 4b, we plot the system’s survival function for
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Fig. 4 Plot of the system’s survival, failure rate, and mean residual life functions for the run shock model
(r = 3)

fixed p = 0.2 and for the Pólya shock process with different values of parameters
b and β. In Fig. 4d and f, we plot the system’s failure rate and mean residual life
functions for fixed p = 0.4 and for the Pólya shock process with different values of
parameters b and β. Figure4a shows that an increment in the parameter p decreases
the system’s survivability. Further, Fig. 4b illustrates the result given in Corollary 3.6.
Figure4c and d demonstrates the result given in Theorem 3.4. Further, Fig. 4e shows
that an increment in the parameter p decreases the system’s mean residual life.
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(b) Failure rate function
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Fig. 5 Plot of system’s survival, failure rate, and mean residual life functions for generalized run shock
model I

Example 4.4 Consider the generalized run shock model I with k1 = 2 and k2 = 1.
Then,

agrm1 = (1, 0) and Agrm1 =
(
p1 p2
p1 0

)
.

We assume p1 = 0.7 and p2 = 0.1. In Fig. 5a, we plot the system’s survival function
for the Pólya shock process with different parameter values. This illustrates the result
given in Corollary 3.6. In Fig. 5b and c, we plot the system’s failure rate and mean
residual life functions for fixed p1 = 0.6 and p2 = 0.3. Figure5b demonstrates the
result given in Theorem 3.4. From Fig. 5c, we can see that mean residual life function
is nondecreasing.

5 Application: optimal mission duration

In this section, we consider the optimal mission duration policy (see Finkelstein and
Levitin (2018)) for a system subject to shocks, whereas its failure is defined in accor-
dance with the classical run shock model. The same can be done for other models as
well. To avoid a failure of a system during a mission of a fixed duration t (that can
cause substantial losses), in many real-life scenarios, it may be a reasonable strategy to
abort the mission before its completion. For example, consider a chemical production
system that has to supply a contracted amount of some commodity. If the contract is
fulfilled (i.e., the predetermined amount of the commodity is supplied), the producer
receives an award. However, external impacts can cause a failure of the system during
the operation. The failure can destroy the system (in some cases, it also destroys the
commodity produced so far). If the producer estimates the risk associated with the
failure and decides to terminate the operation, it can pay certain penalties for default
of the contract. Depending on the nature of the commodity, the producer can or cannot
sell the amount of commodity produced before the mission termination (see Finkel-
stein and Levitin (2018)). The mission abort usually results in a reward that depends
on the system’s operation time and the corresponding penalty. On the other hand,
the mission completion results in an additional reward. Moreover, the failure of the
system during the mission also results in a penalty because it incurs additional costs
due to failure of a mission. The decision about the mission termination at any time τ
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should be made if the profit in case of termination exceeds the expected profit in case
of its continuation with respect to risk associated with the system future failure (see
Finkelstein and Levitin (2018)).

Assumptions:

1. Let a new system be installed at time t = 0, and let its lifetime be modeled by the
classical run shock model. Further, let L and t (> 0) denote the lifetime of the
system and the mission duration, respectively. The mission can be terminated at
any time τ ∈ (0, t].

2. Shocks occur according to the Pólya process with parameter set {β, b}.
3. The profit C(t) is obtained when the mission is completed (i.e., the system does

not fail during the mission or the mission is not aborted in [0, t])). The per time
unit reward, when the system is operating, is cp and the per time unit operational
cost is c0, where c0 < cp.

4. The penalty C f is imposed if the system fails during the mission. In case of
the premature termination, the fixed penalty Cpt (Cpt < C f ) is administrated.
Further, Cr is an additional reward for the mission completion.

5. The reward after the failure is discarded.

Based on the aforementioned assumptions, the profit C(t) for the mission completion
is given by (see Finkelstein and Levitin (2018))

C(t) = (cp − c0)t + Cr .

Note that the mission is aborted at time τ if the total profit at termination exceeds the
expected profit in case of mission continuation. The profit at termination at time τ is
equal to (cp −c0)τ −Cpt . On the other hand, the expected profit in the case of mission
continuation is

F̄L(t)

F̄L(τ )

((
cp − c0

)
t + Cr

) −
(
1 − F̄L(t)

F̄L(τ )

)
C f ,

where F̄L(t)/F̄L(τ ) is the probability that a system will not fail in the remaining
mission timegiven that it is operable at time τ ; here F̄L (t) is the sameas inTheorem3.1.
Thus, if for some τ , the expression

A(τ )
def.= F̄L(t)

F̄L(τ )

((
cp − c0

)
t + Cr

) −
(
1 − F̄L(t)

F̄L(τ )

)
C f − (

(cp − c0)τ − Cpt
)

is nonnegative, then the mission should not be terminated at time τ . Clearly, A(0) ≥ 0,
as there is no need to terminate the mission that had just started. Since the expression
of A(τ ) is complicated, it is not analytically possible to find out the values of τ for
which A(τ ) ≥ 0. Thus, we consider the following numerical example.

Let us assume t = 10, cp = 2.5, c0 = 0.5,Cr = 3,C f = 8, Cpt = 5. Further, we
assume that the run shock model parameters are r = 2 and p = 0.25, and the process
parameters are b = 1 and β = 5. In Fig. 6, we plot the profit comparison function
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Fig. 6 Profit comparison function A(τ ) against τ ∈ [0, 10]

A(τ ) against τ ∈ [0, 10]. This figure shows that A(τ ) is in U-shape. Further, it takes
negative values in τ ∈ [0.89, 6.17]. This implies that the mission should be aborted
just at τ = 0.89. In case the mission cannot be aborted at this time (due, for example,
to operational or environmental reasons), it may be aborted at any time in the interval
(0.89, 3.68], where at τ = 3.68, the function achieves its minimum. Note that there
is no other ’optimal’ time to abort except τ = 0.89 in our setting, however, it is not
cost-efficient to abort in (3.68, 6.17] and in (6.17, 10] as well, as the plotted function
is increasing in these intervals.

6 Concluding remarks

In this paper, we have introduced a general class of shock models when a system life-
time can be written as a random sum of shocks inter-arrival times. The proposed class
contains many popular shock models, namely the classical extreme shock model, the
generalized extreme shock model, the classical run shock model, the generalized run
shock model, specific types of mixed shock models, etc. We study this model under
the assumption that shocks occur according to the homogeneous Poisson generalized
gamma process (HPGGP). This process is a generalization of many commonly used
in applications counting processes, namely the HPP, the Pólya process, etc. This pro-
cess possesses the dependent increments property that describe real-life phenomena.
Moreover, we assume that the distribution of a fatal shock is a discrete PH distribution.
As its distribution function and other statistical measures (e.g., mean, variance, etc.)
can be written in the matrix forms, the results obtained for the defined class of shock
models are also in the matrix forms that can easily be numerically analyzed using
different software packages.

For the defined class of shock models, we have derived the major reliability indices
(namely the survival function, the failure rate function, the mean residual lifetime
function and the mean lifetime) and have discussed some stochastic comparisons with
relevant numerical examples. Finally, as an application, the optimal mission duration
policy was studied.
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Even though the proposed class of shock models contains many popular shock
models, there are some other well-known shock models (namely cumulative shock
model, δ-shock model) that are not the members of this class. Therefore, the future
study of these models under the HPGGP of shocks can constitute a topic for further
research.
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