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a b s t r a c t 

We set up and analyse a mathematical model, the Serious Crime Model, which describes 

the interaction of mild and serious offenders and potential criminals. However we get 

more complete results for a simpler version of this model, the Mild Crime Model, with 

no serious offenders. For the full Serious Crime Model there are two key parameters R 1 0 
and R 2 0 corresponding to the basic reproduction number in the mathematics of infectious 

diseases, which determine the behaviour of the system. For the Simpler Mild Crime Model 

there is just one such parameter R 1 0 . Both forward and backward bifurcation can occur 

for this second model with two subcritical non-trivial equilibria possible for R 1 0 < 1 in the 

backwards case. For backwards bifurcation there is another threshold value R ∗0 such that 
the upper non-trivial equilibrium is unstable for R 1 0 < R ∗0 and stable for R 

1 
0 > R ∗0 . For for- 

wards bifurcation there is a second additional threshold value R ∗∗
0 such that the stability of 

the unique non-trivial equilibrium switches from unstable to stable as R 1 0 passes through 

R ∗∗
0 . At the end we return to the full Serious Crime Model and discuss the behaviour of this 

model. The results are meaningful and interesting because in all of the other epidemiolog- 

ical and sociological models of which we are aware, analogous thresholds to R ∗0 and R 
∗∗
0 do 

not exist. For forwards bifurcation the unique non-trivial equilibrium, and for backwards 

bifurcation with two subcritical endemic equilibria the higher non-trivial equilibrium, are 

also usually always locally asymptotically stable. So our models exhibit unusual and inter- 

esting behaviour. 

© 2023 The Authors. Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

1. Introduction 

There has been a great deal of work done on using mathematical models to describe how infectious diseases spread. 

However similar techniques are applicable to many other areas, for example the spread of rumours or the spread of tech-

nological innovations in a populated area. In this paper we attempt to apply these techniques to another area: the spread
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of criminal activity in a population [1–4,6] . We explore the questions of how criminal offences spread and what levels

of criminal offences spread, and what the mechanisms of the transmission of violence across individuals and groups are 

[7,8,13] . We point out that there is a predisposing factor to violence that would result in an act of violence, and that given

the highly contagious nature of the causes and effects of violence it is appropriate to refer to it as a type of infectious

disease [19,20,37] . In this way, we assume that some behaviours, including some types of violence, may spread in ways

analogous to the contagious spread of infectious diseases, a process that has been characterized as behavioural contagion 

[14,17,21,30,31,34] . Our model is more closely aligned to the idea of contagion than with infectious disease transmission as 

such. The arguments are based on models that have been developed to describe how infectious diseases spread in popula- 

tions. Thus, our analysis serves to highlight the similarities between violence and disease and to violence being viewed as a

disease process. We begin by surveying existing work in the area. 

2. Literature review 

There has recently been an increase of interest in using mathematical modelling to predict the spread of criminal be- 

haviour. Useful reviews of this area are provided by Lacey et al. [15] and Sookanan et al. [43] . They point out that a variety

of approaches have been taken to model how crime spreads through society. The first of these is agent-based models which

simulate agents which can transition to different states [5,18] . They also discuss differential equation models similar to the 

ones which will be discussed here [28,44] . Then they progress to game-theoretic models, including McCalla et al. [25] who

study the effect of individual networks and common values on criminal coalitions in an adversarial evolutionary game, and 

Short et al. [39] who also use an adversarial evolutionary game. They next look at stochastic simulation models [9,27,42] . A

final approach is continuous stochastic models [38,40,41] . 

As our model uses differential equations we focus on differential equation models which have been used to model 

criminal activity. Nuno et al. [28] describe a differential equation model, with individual terms resembling the terms in 

a predator-prey model for owners, X , criminals, Y and security guards, Z. A simpler version of this model is considered ini-

tially which assumes that Y plus Z is a constant. A bifurcation study is then performed which shows the onset of bistability.

For the complete model a number of bifurcations occur. This model is different than the one we shall consider and not

directly comparable with the bifurcation diagrams normally found in epidemic models, which we shall discuss in our paper. 

Sookanan et al. [44] describe a model that has more similarity to our model and uses techniques from mathematical epi-

demiology to study the spread of gang membership through a community by interactions amongst the individual members 

in a gang and the general population. There are three equilibrium states, of these two contain no individuals in the gang.

They adapt the SIR (susceptible-infected-removed) model from mathematical epidemiology. There are four compartments, 

namely non-susceptible community members, N, community members who are potential gang members, S, committed gang 

members, G and ex-gang members who are in prison, R . An expression for the basic reproduction number of this model, 

which consists of a system of four differential equations, is derived. Although the figure shows a similar bifurcation diagram 

to ones found in mathematical epidemiology when there are two types of infectious individuals, or two different types 

of susceptible individuals, the stability pattern is similar to the usual type with the lower subcritical endemic equilibrium 

being unstable and the upper subcritical endemic equilibrium being stable for R 0 < 1 . 

Sookanan et al. [43] review mathematical models of crime. They look at models involving differential equations. They 

discuss the work of Sah [36] where the idea of peer pressure being put on an individual to commit a crime is introduced.

This is a concept we also introduce in our model. Sookanan et al. then discuss the model of Ormerod et al. [29] who

introduce a differential equation model with similarities to models found in mathematical epidemiology with three cate- 

gories: individuals susceptible to crime, criminals, and individuals not susceptible to crime. Ormerod et al. also discuss an 

extension of this basic model. They fit the model to data and perform a stability analysis numerically from the Routh-

Hurwitz conditions for the stability of the unique positive model solution. It is possible for the unique endemic equi- 

librium to exist and be unstable for R 0 > 1 for some parameter values. Sookanan et al. then finally discuss agent-based

models. 

Lacey and Tsardakas [15] discuss a mathematical model using minor and serious criminal activity, similar to the ideas 

in our paper. ρ1 and ρ2 are respectively the number of minor and serious criminals in an area at time t . The behaviour of

criminals is driven by the attractiveness of the area which consists of an intrinsic (given) part A (t) and a dynamic part B (t) .

They describe a system of three differential equations for ρ1 , ρ2 and B . In the case that the attractiveness A (t) is constant

there is a unique endemic equilibrium which has positive values for ρ1 , ρ2 and B which they then solve numerically. After

that they introduce stochastic noise into the model, solve it numerically and discuss parameter estimation. 

Raimundo et al. [33] consider the implications for crime-control policies of criminal career dynamics again using two 

epidemiologically-based models. In the first of these, the partially contagious criminality model, the variables are people 

who are not currently offenders but susceptible to offending, people in prison for the first time, people who have been in

prison once who are again susceptible to re-offending, people who are currently in prison for the second or subsequent time,

and people who have been in prison twice or more but are still susceptible to re-offending. They consider the first model

and a modification of it where the flow of people into offending is a function solely of their contact with the incarcerated.

For both models the existence and uniqueness of equilibria and their stability and backwards and forwards bifurcation are 

examined but the bifurcation diagrams have their normal stability pattern. For forward bifurcation the one and only one 
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criminality-present steady-state is always locally asymptotically stable when it exists, and for backwards bifurcation for 

R 0 < 1 the higher criminality-present steady-state is always locally asymptotically stable and the lower criminality-present 

steady-state is unstable. 

In more recent work Mebratie and Dawed [26] again motivated by mathematical models in epidemiology consider a 

mathematical model of crime dynamics with a disease awareness program, so that the susceptibles are split into aware and 

unaware individuals, and aware susceptibles have a decreased rate of disease transmission compared with unaware ones. 

The population also contains compartments of prisoners, non-criminals and police. An expression for the basic reproduc- 

tion number is derived. There is always a crime-free equilibrium point and if R 0 > 1 there is a unique crime-persistent

equilibrium point. The unique crime-persistent equilibrium point is locally asymptotically stable when it exists. 

Terefe [45] analyses a mathematical model for the diffusion of violence. There are four compartments: susceptible indi- 

viduals, violence-exposed individuals, violently infectious individuals, negotiators and reconciled individuals. The results are 

qualitatively similar to Membratie and Dawed [26] . An expression for the basic reproduction number is derived. An equi-

librium point free from violence is always possible and there is a violence-persistence equilibrium point which exists for 

R 0 > 1 and is locally stable when it exists. 

Teklu and Terefe [46] investigate the presence of violence and racism (separately and together) in a population using in- 

fectious disease dynamical methods. Each of violence and racism are considered similar to chronic infections. In the full 

model the population classes are susceptible to either violence or racism, infected by violence, infected by racism, co- 

infected with violence and racism, recovered from racism, recovered from violence, violence and racism co-infected and 

recovered from co-infected. They also study the violence submodel and the racism submodel. In the violence submodel 

they find the basic reproduction number, the violence-free steady-state and the violence-persistence steady-state. Similarly 

for the racism submodel they find the basic reproduction number, the racism-free steady-state and the racism-persistence 

steady-state. Teklu and Terefe study the stability of the racism-free steady-state but not the racism-persistent steady-state 

in the racism submodel and the violence-free but not the violence-persistent steady-state in the violence submodel. In the 

full model the co-existence-free steady-state is the steady-state with no violence and no racism present. For this model they 

discuss the local stability of the co-existence-free steady-state. 

Maturu et al. [24] discuss tactics for managing criminal offences in developing countries using a differential equa- 

tion model. There are a total of five subpopulations, the unemployed, the susceptible, the exposed to crime, the active 

criminal population, people in vocational training and lastly the employed population. A mathematical model based on ones 

found in mathematical epidemiology is formulated and analysed. There is a crime-free equilibrium and an expression is 

derived for the crime basic reproduction number. There is also a unique crime-persistent equilibrium point. The model can 

display backward bifurcation as R 0 passes though one with the usual stability patterns of one stable higher and one unstable

lower crime-persistence equilibrium. The paper concludes with some simulations. 

So in summary we have seen that a variety of mathematical models exist in the literature that examine criminality. How-

ever as far as we are aware for all of them that examine the bifurcation structure of the equilibria, for forwards bifurcation

the unique crime-persistence equilibrium is locally asymptotically stable when it exists, and for backwards bifurcation the 

upper crime-persistence equilibrium is locally asymptotically stable and the lower crime-persistence equilibrium is unstable. 

The model of Ormerod et al. [29] has forward bifurcation with a unique crime-persistent equilibrium for R 0 > 1 which they

showed analytically can be unstable for some parameter values (although they say that it is not possible to deduce the

fact that the crime-persistent equilibrium is unstable from their simulations). However they did not look at the bifurcation 

structure. 

3. Our model 

Since prevalence of a given type of criminal activity may change the propensity of an individual to engage in that same

behaviour, we assume that exposure to violence does not lead immediately to the expression of violence but is one factor

that may lead susceptible individuals to commit either mild or serious offences. The underlying principle is that whenever 

the various parameters combine to produce a situation where an offender (inf ective person) co-opts or incites to commit an

offence (inf ects), on average, more than one person during the course of their criminal career (infectivity), then sustained 

criminal activity (an epidemic) is predicted to occur. 

In what follows, the model presented here assumes that not all susceptible individuals exposed to violence go on to com-

mit offences as well as that the number of susceptible individuals exposed to infection is much higher than those actually 

presenting with a disease. We first present the Serious Crime Model, a mathematical model that describes segments of the 

criminal activity based on participation in crime, incarceration, and recidivism within a population according to different 

levels of offence. However, due to the complexity of our Serious Crime Model, which is a challenging system to analyse,

we will analyse a simplified model. At present, we seek to gain as much mathematical information as we can from the

simplified model presented in this paper. Moreover, we intend to address each of the ongoing challenges of the Serious 

Crime Model in future work. Finally, over time, the focus of this work turned away from a macro-level model of crime to

micro-level analyses of so-called criminal careers and how offending is affected over time [23] . The trajectories of individual

participation in crime begin with initiation and continue until desistance. Therefore the simplified model is a theoretical 

framework that that aims to help the authorities develop schemes to control illegal activity. 
3 
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Fig. 1. Diagrammatic representation of the Serious Crime Model (1) . 

Table 1 

Classes of individual in the model. 

Variables Description 

S 0 People vulnerable to criminal activity who are not currently involved in illegal acts 

C 1 Criminally active mild offenders 

S 1 People who have committed a mild offence in the past and are vulnerable to criminality but not currently involved in 

illegal acts 

C 2 Criminally active serious offenders 

S 2 People who have committed a serious offence in the past and are vulnerable to criminality but not currently involved 

in illegal acts 

D Offenders who have completely ceased illegal activity (criminal desisters) 

 

 

 

 

 

 

 

 

 

4. The serious crime model formulation 

Firstly, we assume that when an individual is charged with a crime, he or she can fall into two categories according to the

different levels of offence: mild and serious offences. The difference between the two is evident in definition, severity and 

sentences. Hence, mild offences are defined as a crime where no injury or force is used on another person and they are often

measured in terms of loss to the victim or economic damage. They are most often some type of theft or larceny (bribery,

prostitution, tax crimes, fraud, alcohol and drug-related crimes, etc). Serious offences, on the other hand, are considered 

offences against a person. This means that another person’s physical body was harmed during the committing of a crime 

(robbery, false imprisonment, domestic violence, assault, homicides, sexual abuse, etc). 

N(t) is used to denote the entire number of individuals under consideration. These individuals are either susceptible 

( S), criminally active ( C) or desisters ( D ). All of susceptible individuals, criminally active individuals and model constants

are then specified according to offences: mild offences ( i = 1 ) and serious offences ( i = 2 ). Thus, we will call S 1 a mild ex-

offender, i.e., individuals who are ex-offenders with a lifetime history of mild offences who are again susceptible to crime, 

and S 2 a serious ex-offender, i.e., individuals who are ex-offenders with a lifetime history of serious offences who are again

susceptible to crime. Similarly, we will call C 1 criminally active mild offenders, and C 2 criminally active serious offenders. 

The diagrammatic representation of the Serious Crime Model is illustrated in Fig. 1 . See Table 1 for the meanings of

the classes and Table 2 for the meanings of the parameters. Susceptible individuals are generated by recruitment through 

births and immigration at a rate �. Hence, the susceptible population exposed to violence (affected by the disease) will 

be compartmentalized into categories. Let S 0 be the fraction of susceptible non-offenders who have a criminal propensity, 

so they are not criminally active but susceptible to crime; S 1 be the fraction of mild ex-offenders and S 2 be the fraction

of serious ex-offenders, both again not criminally active but, once more, susceptible to crime. Similarly, criminally active 

individuals with a lifetime history of serious offences were compared with criminally active individuals having mild offences. 

We suppose that the criminally active population is divided into two categories, C mild offenders and C serious offenders.
1 2 

4 
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Table 2 

Constants of the Model. 

Parameters Description 

� Rate of recruitment of susceptible individuals 

βi (i = 1 , 2) Co-optation rate 

β3 Incitement rate between C 2 and S 1 
μ Natural mortality rate 

α1 Additional mortality rate when in C 1 
α2 Additional mortality rate when in C 2 
τ1 Rate of ceasing criminal activity when in C 1 
τ2 Rate of ceasing criminal activity when in C 2 
φ1 Factor of perpetration of violence when in S 1 
φ2 Factor of perpetration of violence when in S 2 
γ1 Rate at which individuals in C 1 give up illegal activity 

γ2 Rate at which individuals in C 2 give up illegal activity 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The average length of continuous criminal activity, that is, the rate at which inmates move from state C i to S i ( i = 1 , 2 ) is

given by 1 /τi , i = 1 , 2 , with 1 /τ2 < 1 /τ1 . We also define β1 and β2 to be the co-optation rates. These also include individuals

who had ceased criminal activity but then came back to crime so that β1 and β2 are the rates that individuals perform illegal

acts depending on influence by mild and serious criminally active individuals, respectively. 

It is also worth noting that in criminal law, incitement is the act of using coercion and other tactics to induce or encour-

age a person to commit a criminal offence when the potential criminal expresses a desire not to go ahead. The essence of

the law of incitement is that a person (the ”inciter”) urges another person or persons (the ”incitee(s)”) to commit a criminal

offence [12] . In this way, we assume that if the criminally active individual induces or encourages another offender to com-

mit a serious offence, that otherwise they would not do, the crime has gone from mild to serious offence, not from serious

to mild. 

Building on the above, we then suppose that mild ex-offenders S 1 can be incited (“reinfected by another virus”) to 

commit a serious offence by the criminally active serious offenders C 2 . In other words, an inciter C 2 urges the incitees S 1 to

commit a serious offence. On the other hand, serious ex-offenders S 2 , are not encouraged to change their personality and

behaviour patterns because they have a tendency to repeat the same offence types in successive crimes as a way of life. 

Hence β3 describes the rate with which serious offenders C 2 contribute to the incitement of the class S 1 to commit

serious crimes. The parameter β3 could be defined as a modification parameter that measures the efficacy of incitement in 

inducing individuals to commit serious offences. This could be analogous to the antibody-dependence enhancement (ADE) of 

virus infection. ADE is a disease spreading process causing individuals with their secondary infection to be more infectious 

(for example serious offenders) than during their first infection (for example mild offenders) by a different disease serotype 

or strain [35] . 

In this way and motivated by analogous scenarios where viral production is increased during a secondary infection due 

to ADE, and violence is increased during the co-optation and recidivism process, we introduce parameters analogous to ADE 

to increase the probability of an ex-offender committing more offences. Thus, we define φ1 to be the relative increase in

the likelihood of the chances of an individual being co-opted to commit a mild crime on contact with a mild offender due

to the individual being contacted having a previous history of mild offending (as opposed to no criminal history). Similarly 

φ2 is the relative increase in the likelihood of the chances of an individual being co-opted to commit a serious crime on

contact with a serious offender due to the individual being contacted having a history of serious offending. 

We also suppose that crime prevention programs ( γi , i = 1 , 2 ) may change the underlying thinking about engaging in

illegal activity [21] . So we assume that such programs make ex-offenders in the S 1 and S 2 classes cease crime and return to

the mainstream society, thus lowering recidivism. Hence let D be those individuals who have given up illegal activity either

by themselves or due to intervention programs. 

Lastly μ is the background per capita death rate, and α1 and α2 are the per capita criminality associated extra death rates 

(prisoners dying due to diseases, for example AIDS-related effects, violence in prison, taking their own life, unintentional 

harm to themselves, or another cause associated with incarceration). Also as the classes in the model represent populations 

all the constants of the model are assumed to be non-negative. Additionally the only heterogeneity in the population is due

to criminal activity (none, mild or serious) and that within these classes the population is homogeneous (for example we 

do not consider differences due to age). 

We have chosen to study a simple model using only the two classes of criminally active individuals, mild offences ( i

= 1) and serious offences ( i = 2). In theory the model could be extended to include more levels of criminal offence, however

as we wish to focus on qualitative results we keep the model simple by not doing this. Also we suppose that the crime

prevention programs occur both in prison and after a prisoner returns to the community. The focus of crime prevention

programs is to prevent prisoners or ex-prisoners from engaging in illegal activity and to stop them from coming back to

incarceration. It is possible that some prisoners can be involved in illegal acts soon after coming back into the community,

or returning to previous illegal activity [47] . This point is of great interest here. 
5 
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In summary our ordinary differential equation model for the spread of illegal activity in the vulnerable population is ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d S 0 
dt 

= � − β1 S 0 C 1 − β2 S 0 C 2 − μS 0 

dC 1 
dt 

= β1 S 0 C 1 + φ1 β1 S 1 C 1 − (μ + α1 + τ1 ) C 1 

dC 2 
dt 

= β2 S 0 C 2 + φ2 β2 S 2 C 2 + β3 S 1 C 2 − (μ + α2 + τ2 ) C 2 

dS 1 
dt 

= τ1 C 1 − φ1 β1 S 1 C 1 − β3 S 1 C 2 − (γ1 + μ) S 1 

dS 2 
dt 

= τ2 C 2 − φ2 β2 C 2 S 2 − (γ2 + μ) S 2 

dD 
dt 

= γ1 S 1 + γ2 S 2 − μD, 

(1) 

with generic initial conditions S 0 (0) ≥ 0 , C 1 (0) ≥ 0 , C 2 (0) ≥ 0 , S 1 (0) ≥ 0 , S 2 (0) ≥ 0 and D (0) ≥ 0 . By adding the system

(1) we find 

dN 

dt 
= � − μN − α1 C 1 − α2 C 2 . (2) 

So if α1 = α2 = 0 so that there are no extra deaths of criminally active individuals, the population has a constant immi-

gration rate � and a constant per capita death rate μ, in other words dN 
dt 

= � − μN. There is a single steady state value

N = �/μ and it is straightforward to show that for any initial value N(0) the population size ultimately approaches �/μ.

In the case where α1 and α2 are not zero it is a consequence of (2) that lim t→∞ N(t) ≤ �/μ. 

It is straightforward to show that if (1) has a solution which commences in R 
6 + (all variables greater than or equal to

zero) it either approaches, comes into, or stays in the subset 	 ⊂ R 
6 + given by 

	 = 

{
(S 0 , C 1 , C 2 , S 1 , S 2 , D ) ∈ R 

6 
+ : (3) 

S 0 + C 1 + C 2 + S 1 + S 2 + D ≤ �/μ} . 
If we consider the initial value problem given by equations (1) for solutions originating in 	 it is straightforward to

show the existence of solutions and on a maximal interval there is only one solution [10] . As the solutions stay in 	 they

are bounded and thus we have that solutions exist analytically and they make biological and sociological sense [11] . So it is

enough to consider the system (1) with initial values in 	. It is important to highlight that throughout this paper, we refer

to system (1) as the Serious Crime Model. 

4.1. Analytic strategy 

Because the Serious Crime Model is very complicated to analyse we will adapt an analytic strategy of simplifying the 

model so that an analysis of the simplified model will help us to gain some intuition for the dynamical behaviour of the

more complex model. This strategy is to decouple the analysis of the equilibrium points of system (1) hence we relax

the assumption that the total criminally active population is composed of both mild ( C 1 ) and serious ( C 2 ) offenders by

substituting either C 2 = 0 or C 1 = 0 into system (1) . 

In this way, we consider that only one level of violence persists in the criminally active population, which yields a simpli-

fied system that retains the key features of the Serious Crime Model. Although a less realistic possibility, understanding the 

dynamical behaviour of this simplified model is a necessary step to check the possibility of occurrence of the phenomenon 

of bifurcations in the Serious Crime Model. Finally, it is worth noting that this step is necessary to gain some intuition for

the understanding of the outstanding challenges of our system (1) , mainly the possible ways that bifurcation may occur. 

Next, we will carry out the brief qualitative analysis of system (1) . 

5. Brief analysis of the serious crime model 

In what follows there are four different possibilities to consider for criminality for the equilibrium points of system (1) ,

which lead to the following criminality equilibrium points. 

Path 1. If C 2 = 0 and C 1 = 0 , then system (1) has criminality-free equilibrium P ∗
0 

= (S ∗
0 
, 0 , 0 , 0 , 0 , 0) which indicates that

the community is free from all forms of criminality. 

Path 2. If C 2 = 0 and C 1 	 = 0 , i.e., β1 S 0 + φ1 β1 S 1 − (μ + α1 + τ1 ) = 0 , then P ∗
1 

= (S ∗
0 
, C ∗

1 
, 0 , S ∗

1 
, 0 , D 

∗) is a mild criminality

equilibrium point of system (1) , which indicates that the offenders committed mild crimes only. Hence, we can treat 

system (1) as a Mild Crime Model. 

Path 3. If C 1 = 0 and C 2 	 = 0 , i.e., β2 S 0 + φ2 β2 S 2 − (μ + α2 + τ2 ) = 0 , then system (1) has P ∗
2 

= (S ∗
0 
, 0 , C ∗

2 
, 0 , S ∗

2 
, D 

∗) as a
serious criminality equilibrium point, which indicates that the offenders committed serious crimes only. Hence, we 

can treat system (1) as a Serious Crime Only Model. 
6 
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Path 4. If C 1 	 = 0 , i.e., β1 S 0 + φ1 β1 S 1 − (μ + α1 + τ1 ) = 0 and C 2 	 = 0 , i.e., β2 S 0 + φ2 β2 S 2 − (μ + α2 + τ2 ) = 0 , then sys-

tem (1) has a mild-serious criminality equilibrium point P ∗
3 

= (S ∗
0 
, C ∗

1 
, C ∗

2 
, S ∗

1 
, S ∗

2 
, D 

∗) , which indicates that the offenders

committed both mild and serious crimes. 

Having established the above paths, we begin by analysing the stability of criminality-free equilibrium (Path 1). In the 

following we also compute for system (1) an explicit expression for the thresholds separating the steady state with no crime

and the steady state where crime is endemic between the criminality-free equilibrium and the criminality-endemic equilib- 

ria, analogous to the basic reproduction number for infectious diseases R 0 [22,32,48] . We shall see that these thresholds are

the same as the threshold of each simplified system. 

Some of the key parameters of the system are the rate of co-optation of non-criminals and the rate of incitement of

non-criminals to serious criminal activity ( β1 , β2 and β3 ) as well as the relative increases φ1 (or φ2 ) of the chances of

committing a mild (or serious) crime on contact with a mild (or serious) offender due to the individual being contacted

having a previous history of mild (or serious) offending. We shall investigate how these parameters affect the thresholds 

and the proportion of criminally active individuals in the system. 

5.1. Local stability of criminality-free equilibrium and reproduction numbers 

From Path 1 it follows then that equations (1) have a steady state with no crime present given by P ∗
0 

=
(�/μ, 0 , 0 , 0 , 0 , 0) . To determine its stability, we look at the Jacobian of equations (1) at P ∗

0 
. So the steady-state P ∗

0 
with

no crime present is locally asymptotically stable, if R i 
0 

< 1 with i = 1 , 2 , where R 1 0 and R 
2 
0 are given by 

R 1 0 = 

β1 

(μ+ α1 + τ1 ) 
�
μ (4) 

and 

R 2 0 = 

β2 

(μ+ α2 + τ2 ) 
�
μ . (5) 

These are called the Criminality Reproduction Numbers (CRNs). Similarly to epidemic models [22] the CRN R 1 
0 
(or R 2 

0 
),

represents the “average expected number of new offenders originated by a single offender in class C 1 (or C 2 ), whilst in a

criminal career”. In practice, one criminally active individual C 1 (or C 2 ) gets into contact with ex-offenders S 1 (or S 2 ) and

successfully induces R 1 
0 
(or R 2 

0 
) persons to commit crime. In other words, R 1 

0 
and R 2 

0 
are the expected numbers of susceptibles

who perform illegal acts due to association with one offender in the class C 1 and C 2 , respectively. 

Thus, equations (4) and (5) are the thresholds that distinguish the path in which all solutions converge to the 

criminality-free equilibrium P ∗
0 

from the path in which all solutions converge to P ∗
1 

or P ∗
2 
, as well as P ∗

3 
. In what follows,

an important result is then established. 

Lemma 1. Provided R 1 0 < 1 and R 2 0 < 1 , the criminality-free equilibrium P ∗
0 
of the model (1) is locally asymptotically stable, oth-

erwise it is unstable. 

Following terminology of the basic reproduction number for infectious diseases, Lemma 1 implies that is it possible to 

eliminate the criminality (or disease) from the community when R 1 0 < 1 and R 2 0 < 1 , if the initial size of the criminally active

individuals (or infectious individuals) of model (1) are in the basin of attraction of the criminality-free equilibrium P ∗
0 
. 

It should be noted however that the equations (4) and (5) for the CRN do not include the factor φi , ( i = 1 , 2 ) of the

relative increase in the chances of committing a crime due to the previous offending history of the individuals being con-

tacted or the incitement rate between mild ex-offenders and serious offenders given by β3 , despite the fact that these terms

should contribute significantly to the emergence of new offending individuals ( C 1 and C 2 ). Hence, this already suggests that

R 1 
0 
and R 2 

0 
alone are unable to quantify some key features of the dynamics of the criminality into the community, and is in

fact the first sign that bifurcations might be involved. In general, in a dynamical system, when a parameter is varied, then

the differential system may change. It can happen that a slight variation in a parameter can have significant impact on the

solution: an equilibrium can become unstable and a periodic solution may appear or a new stable equilibrium may appear 

making the previous equilibrium unstable. 

In our simplified criminality models, we will see that the parameters φi , ( i = 1 , 2 ) also play an important role and they

are responsible for the presence of qualitative changes in dynamical behavior of each system. 

Besides that, when parameter values cross the threshold (bifurcation value), the solution structure changes qualitatively 

and the simplified system undergoes bifurcation. However, due to the complexity of our simplified systems, the solutions 

do not have a concise, explicit form, and we can prove the existence and uniqueness of the equilibrium points performing

the dynamics only numerically. In the following, we will focus on the pathway when there is no serious offender (Path 2)

which leads to a Mild Crime Model. Moreover, we investigate the possibility of backward bifurcation, especially where the 

criminality-free equilibrium co-exists with two criminality equilibria [32] . 

Remembering that since we use either C 2 = 0 or C 1 = 0 in system (1) , both simplified criminality models become sym-

metric and they have, therefore, similar dynamical behaviour. 

In what follows, due to the symmetry, the results obtained for the Mild Crime Model can be then translated into the Seri-

ous Crime Only Model (Path 3). Finally, the full Serious Crime Model is more difficult to analyse, but a better understanding
7 
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Fig. 2. The flow diagram for the Mild Crime Model (6) . 

 

 

 

 

 

 

 

 

 

 

of the dynamic of the simplified models, will provide tools for a better understanding and knowledge of the dynamical 

behavior of the full Serious Criminality System (Path 4). 

6. Analysis of the mild crime model 

Firstly, for the sake of simplicity, here and throughout this paper we will use the same notation of variables S 0 , C 1 , S 1 
and D of system (1) in the simplified model. Moreover, the sociological classes given in Table 1 and the model constants

given in Table 2 still hold for the Mild Crime Model. 

Hence, from Path 2, by taking C 2 = 0 into system (1) , the simpler more intuitive approach is to examine the Mild Crime

Model, given by ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

d S 0 
dt 

= � − β1 S 0 C 1 − μS 0 

dC 1 
dt 

= β1 S 0 C 1 + φ1 β1 S 1 C 1 − (μ + α1 + τ1 ) C 1 

dS 1 
dt 

= τ1 C 1 − φ1 β1 S 1 C 1 − (γ1 + μ) S 1 

dD 
dt 

= γ1 S 1 − μD, 

(6) 

with generic initial conditions S 0 (0) ≥ 0 , C 1 (0) ≥ 0 , S 1 (0) ≥ 0 and D (0) ≥ 0 . 

It can be seen that model (6) is much simpler than system (1) , but an important (and still complex) model because it

gives an understanding of the bifurcation that is likely to occur in the system (1) , and provides conclusions that coincide

with Path 3. The diagrammatic representation of the Mild Crime Model given by system (6) is shown in Fig. 2 and the

sociological classes given in Table 1 and the model constants given in Table 2 still hold. From system (6) , evaluated at an

equilibrium from the second equation one gets either C 1 = 0 or β1 S 0 + φ1 β1 S 1 − (μ + α1 + τ1 ) = 0 . For C 1 = 0 , then model

(6) has the criminality-free equilibrium given by P 0 = (S 0 , C 1 , S 1 , D ) = (�/μ, 0 , 0 , 0) which indicates that the community is

free from criminality. To examine whether the criminality-free steady-state is stable or not the Jacobian matrix of (6) is ex-

amined at P 0 . However, note that simplified system (6) has the same Criminality Reproduction Number as system (1) which

is given by equation (4) . In what follows, as we did previously, an important result can be then established. 
8 
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Lemma 2. Provided R 1 0 < 1 , the criminality-free equilibrium P 0 of the model (6) is locally asymptotically stable, otherwise it is

unstable. 

We have the following theorem: 

Theorem 1. The equations (6) possess: 

(i) One and only one steady state greater than zero P 1 if b 0 < 0 (i.e., R 1 
0 

> 1 ); 

(ii) One and only one steady state greater than zero P 1 if b 0 = 0 (i.e., R 1 0 = 1 ) and b 1 < 0 ; 

(iii) One and only one steady state greater than zero P 1 if b 0 > 0 (i.e., R 1 
0 

< 1 ), b 1 < 0 and b 2 
1 

− 4 b 2 b 0 = 0 ; 

(iv) Two positive equilibria, P 1 , if b 0 > 0 (i.e., R 1 
0 

< 1 ), b 1 < 0 and b 2 
1 

− 4 b 2 b 0 > 0 with φ1 > φ∗∗2 
1 

; 

(v) No positive equilibrium, otherwise. 

Proof. See Appendix A . �

It should be mentioned that we choose to examine bifurcation as β1 varies. Moreover as for φ1 > φ∗∗2 
1 model (6) has

two positive equilibria then we can suspect that there is a threshold criterion for parameter β1 where model (6) could

undergo backwards bifurcation. However to find out whether backwards bifurcation can occur in the system of differential 

equations (6) we must introduce a second subordinate critical value. This will be denoted R thr 
0 

. Because the system of dif-

ferential equations (6) is too complicated to find the exact formula of the value of R thr 
0 

by hand, its value can be found by

computational methods. 

We next examine the behaviour of the feasible (greater than zero) steady states P −
1 

and P + 
1 

of system (6) in terms of

both parameters φ1 and β1 . 

Theorem 2. The stability of a positive equilibrium P 1 ( P 
−
1 

or P + 
1 
) is determined by the roots of the third degree characteristic

equation F 3 (λ) = 0 where F 3 (λ) = a 3 λ
3 + a 2 λ

2 + a 1 λ + a 0 . Here 

a 3 = 1 , 

a 2 = β1 C 1 (1 + φ1 ) + 2 μ + γ1 , 

a 1 = μ(μ + γ1 ) + β1 C 1 

[ 
k 1 + 2 μ + γ1 − φ1 (1 − φ1 ) 

[ 
R 1 0 k 4 −

1 

η1 

k 1 (R 
1 
0 − 1) 

] ] 
+ φ1 β

2 
1 C 

2 
1 , 

a 0 = β1 C 1 [2 φ1 β1 C 1 (μ + α1 ) + (μ + γ1 )(μ + α1 ) + γ1 τ1 (1 − φ1 ) + φ1 μk 1 (1 − R 1 0 )] , (7) 

with k 4 = 

(μ+ α1 ) C 1 
μ(φ1 −φc 

1 
) 
. 

Proof. See Appendix B . �

To verify the stability of the equilibrium point P 1 we look at the Routh-Hurwitz stability criterion which establishes that 

if a 0 > 0 , a 1 > 0 , a 2 > 0 and a 1 a 2 − a 0 > 0 hold then J(P 1 ) given by (B.1) has eigenvalues with real part less than zero and

so the steady state is locally asymptotically stable [16,33] . Because all of the model constants are greater than or equal to

zero and C 1 > 0 , using (7) we deduce that a 2 always exceeds zero. However, the conditions a 0 > 0 , a 1 > 0 and a 1 a 2 − a 0 > 0

are complex, thereby making it impossible to verify these conditions analytically. Therefore, the stability analysis will be 

performed only numerically. 

After extensive numerical simulations we conjecture that, although necessary, the Routh-Hurwitz stability criterion is not 

sufficient to guarantee the stability of the positive criminality endemic equilibrium P + 
1 

of system (6) . Moreover, the positive

criminality endemic equilibrium P −
1 

of system (6) is always unstable. 

We would emphasise that the purpose of these simulations is to understand the theoretical behaviour of the model and 

we do not claim to be using real parameter values in our study. Note also that we follow Raimundo et al. [32] and take the

total population recruitment rate � to be equal to the per capita death rate μ. At first sight this may appear not to be a

realistic choice as it implies that the criminality-free (disease-free) equilibrium point has population size �/μ = 1 . However 

we would like to note that by changing the units in which the population is measured this restriction is not as limiting as

it may appear. If we take a model with general population recruitment rate � and per capita death rate μ, then the size of

the crime-free (or the disease-free) equilibrium population is �/μ. If we change the units of the population and take �/μ
as the unit of population size then with this unit we have � = μ. However were we to do this then we would also need to

change the units of the β ’s ( β1 , β2 and β3 ) so that they also use this unit. But the point is that the restriction � = μ is not

as limiting as it may first appear. 

Fig. 3 and Fig. 4 show the plotting of the Routh-Hurwitz conditions for a 0 > 0 , a 1 > 0 and a 1 a 2 − a 0 > 0 at P + 
1 

as R 1 
0 

increases. To illustrate we chose some values for φ1 , namely φ1 = 2 . 0 and φ1 = 4 . 0 (see Fig. 3 ) and φ1 = 12 . 311 and φ1 =
61 . 411 (see Fig. 4 ). The solid curve represents where the conditions a 0 > 0 , a 1 > 0 and a 1 a 2 − a 0 > 0 hold. The dashed curve

represents where those conditions do not hold. Note that P + 
1 

will be locally asymptotically stable if a 0 > 0 , a 1 > 0 , a 2 > 0

and a 1 a 2 − a 0 > 0 are simultaneously satisfied. 

Now that we have examined when the steady states of the system of differential equations (6) can be stable, as a next

step we want to check if system (6) undergoes backward and forward bifurcations. This is a subject of major importance.

We then explore the system behaviour when R 1 < 1 and R 1 > 1 . 

0 0 

9 
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Fig. 3. Plot of the Routh-Hurwitz stability conditions for the 3rd degree polynomial (B.2) for φ1 = 2 . 0 and φ1 = 4 . 0 as R 1 0 increases. The solid curve 

represents where the Routh-Hurwitz stability criterion holds, while the dashed curve represents where the criterion does not hold. Parameter values used 

are as given in Table 3 . 

Table 3 

Constants used in system (1) . 

Constant Value 

� 0.0167 (per annum ) 

β1 To be altered (per annum ) 

β2 To be altered (per annum ) 

β3 0.15 (per annum ) 

μ 0.0167 (per annum ) 

α1 0.05 (per annum ) 

α2 0.1 (per annum ) 

τ1 0.2 (per annum ) 

τ2 0.067 (per annum ) 

φ1 To be altered (per annum ) 

φ2 To be altered (per annum ) 

γ1 0.1 (per annum ) 

γ2 0.08 (per annum ) 

 

 

 

 

 

 

 

 

Next we will see that falling back into criminality is not solely a function of the starting value of the class C 1 to tell us

whether or not backwards bifurcation will occur, there also exist other critical values for the occurrence of both bifurcations. 

It is important to stress that due to the complexity, these critical values will be calculated only computationally. Doing this

our numerical computational results demonstrate the existence of threshold values where model (6) undergoes backward 

and forward bifurcations. 

7. Numerical results 

Despite the innocuous form of the equations of system (6) , it may be impossible to find exact solutions, P + 
1 

and P −
1 
.

Hence, we resort to numerical simulations to gain some insight into the behaviour of the model (6) as well as the serious

model (1) . The differential equations are integrated using MATLAB’s ODE45 integrator. For the simulations presented here, 

we use a sample collection of parameters that are similar to those used by Raimundo et al. [32] . These do not necessarily

represent realistic values, as at this point our main goal is to examine the behaviour rather than the solutions of systems. 

As stated earlier a system that exhibits the usual backward bifurcation has two positive equilibria given by the locally 

asymptotically stable equilibrium (corresponding to the higher solution of our system, C + 
1 
) and the unstable equilibrium 

(corresponding to the smaller solution of our system, C −
1 
) which coexist with the equilibrium with no crime present when

R 1 0 is immediately less than one. This characteristic, however, may not always be the case for system (6) as shown in Fig. 5 . 

In Fig. 5 the profile of the proportion of mild offender incarcerated and criminally active populations C −
1 

and C + 
1 

are

plotted as functions of R 1 
0 
with some values of the parameter φ1 . Furthermore, C −

1 
and C + 

1 
, which in turn correspond to
10 



S.M. Raimundo, H.M. Yang, F.A. Rubio et al. Applied Mathematics and Computation 453 (2023) 128073 

Fig. 4. Plot of the Routh-Hurwitz stability conditions for the 3rd degree polynomial (B.2) for (a) φ1 = 12.311 and (b) φ1 = 61 . 411 as R 1 0 increases. The solid 

curve represents where the Routh-Hurwitz stability criterion holds, while the dashed curve represents where the criterion does not hold. Parameter values 

used are as given in Table 3 . 

Fig. 5. Qualitative illustration of special backward bifurcation for model (6) where β1 is chosen as a bifurcation parameter. For φ1 = 9 . 9 , R ∗0 = 1 . 19 and 

R thr 0 = 0 . 997572 . For φ1 = 10 . 311 , R ∗0 = 1 . 17 and R thr 0 = 0 . 993615 . For φ1 = 12 . 311 , R ∗0 = 1 . 11 and R thr 0 = 0 . 962917 . For φ1 = 15 . 311 , R ∗0 = 1 . 00195 and R thr 0 = 

0 . 9096323 . For φ1 = 16 . 311 , R ∗0 = 0 . 976363 and R thr 0 = 0 . 8928309 . The dashed curve represents the instability and the solid curve represents the stability of 

P + 
1 

(greater, thin line), P −
1 

(smaller, thick line) and P 0 . Table 3 lists the numerical evaluations used for the model parameters. 

 

 

 

 

 

 

 

the smaller and higher positive criminality equilibria of system (6) P −
1 

and P + 
1 
, respectively, coexist with the criminality-free

equilibrium P 0 . 

Nevertheless, despite system (6) satisfying one of the classical requirements of the occurrence of backward bifurcation, 

it is important to note from Figure 5 that in addition to the bifurcation threshold, R thr 
0 

, there is another critical value,

namely R 1 0 = R ∗
0 
, where the system (6) changes its behavior, that is, its stability. Thus, R thr 

0 
< R 1 0 < 1 is no longer sufficient to

guarantee the phenomenon of backward bifurcation with a stable and an unstable steady state at each of these R 1 
0 
values. 

For example, for φ1 ≥ 9 . 9 , it can be observed from Fig. 5 that the system of differential equations (6) demonstrates back-

wards bifurcation. To see this, first note that P + 
1 

is stable for R 1 0 > R ∗
0 

> 1 . Note again that only for φ1 > 15 . 311 , is P + 
1 

stable

for R ∗
0 

< 1 . However, if R thr 
0 

< R 1 
0 

< R ∗
0 
, then P + 

1 
is unstable, and these characteristics are not indicative of usual backward

bifurcation (in other words one stable and one unstable equilibrium for R 1 0 < 1 when two endemic equilibria exist). We

conjecture therefore that in such a case system (6) requires another critical value to have a backward bifurcation, namely 

φ1 = φback . 

1 

11
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Fig. 6. For 2 . 0 < φ1 ≤ 9 . 0 , model (6) undergoes special forward bifurcation. P + 
1 

is locally asymptotically stable for R 1 0 > R ∗0 and R 
1 
0 < R ∗∗

0 and unstable 

for R ∗∗
0 < R 1 0 < R ∗0 . For φ1 = 2 . 0 model (6) undergoes usual forward bifurcation and P 0 is locally asymptotically stable if R 1 0 < 1 . For R 1 0 > 1 , P 0 loses its 

stability and P + 
1 

becomes locally asymptotically stable. The dashed curve represents the instability and the solid curve represents the stability of P + 
1 

and P 0 . 

Parameter values used are as given in Table 3 . 

Table 4 

Usual backward bifurcation, φ1 = 61 . 411 ( φ1 > φback 
1 ). 

β1 (per year) R 1 0 C −
1 

C + 
1 

stable 

0 . 155221 0.582 0 0 P 0 
0 . 199221 0.747 0.0067 0.122 P + 

1 
or P 0 

0 . 259221 0.972 0.0003 0.156 P + 
1 

or P 0 
0 . 2667 1 0 0.159 P + 

1 

0 . 32692 1.226 0 0.178 P + 
1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Another crucial question is to investigate if system (6) also undergoes foward bifurcation. In such a case, we will see that

the classical requirement R 1 
0 

> 1 , where P 0 loses stability and P 
+ 
1 

becomes stable, is necessary but it is not sufficient. 

For example, referring to Fig. 6 , it is also apparent that system (6) undergoes the phenomenon of forward bifurcation. As

particular examples we illustrate forward bifurcation for various values of φ1 between φ1 
∼= 2 . 0 and φ1 

∼= 9 . 33 . However, also

note that in addition there are other critical values, namely R 1 
0 

= R ∗
0 
and R 1 

0 
= R ∗∗

0 
where the system (6) changes its stability.

Hence, R 1 0 > 1 is no longer sufficient to guarantee either the phenomenon of usual forward bifurcation or the stability of

P + 
1 
. As before, we also conjecture therefore that in such a case system (6) requires another critical value to have a foward

bifurcation, namely φ1 = φ f orw 
1 

. 

Finally, it is important to stress that when the aforementioned classical requirements are satisfied, usual backward and 

forward bifurcations are expected to occur, but only for some values of parameter φ1 . Therefore, we now state the following.

Lemma 3. The model (6) exhibits, 

(i) Usual backward bifurcation whenever φ1 > φback 
1 

. 

(ii) Usual forward bifurcation whenever φ1 < φ f orw 
1 

. 

(iii) Otherwise, system (6) does not exhibit the usual stability bifurcation pattern. 

Table 4 indicates the existence of two positive real solutions for equation (A.2) , namely C + 
1 

and C −
1 
, when R 1 0 < 1 . Trans-

lating it into the equilibrium values of system (6) this corresponds to two equilibria, confirming that system (6) undergoes

usual backward bifurcation with one criminality equilibrium P + 
1 

(which corresponds to the higher equilibrium C + 
1 
), another 

criminality equilibrium P −
1 

(which corresponds to the smaller equilibrium C −
1 
) and the criminality-free equilibrium P 0 . In 

such a case, whenever φ1 > φback 
1 

, P −
1 

is unstable while the stability either of P + 
1 

or P 0 will depend on the initial condition of

system (6) . We chose φ1 = 61 . 411 because this phenomenon occurs for very large values of the parameter φ1 . In particular,

in a neighborhood of φ1 = 61 . 411 is where the phenomenon of usual backward bifurcation starts to take place. Unfortunately,

the critical value φback 
1 

cannot be determined analytically, so we carried out this task using numerical simulations. 

Similarly, the phenomenon of forward bifurcation is shown in Table 5 . In such a case the criminality-free equilibrium P 0 
is locally asymptotically stable for R 1 

0 
≤ 1 . If R 1 

0 
increases a little the equilibrium value of C + 

1 
will also increase. If the initial

value of C 1 sits close to the region of attraction of the positive endemic equilibrium P + 
1 

and R 1 
0 
passes through the critical
12 
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Table 5 

Usual forward bifurcation, φ1 = 1 . 5 ( φ1 < φ f orw 
1 

). 

β1 (per year) R 1 0 C −
1 

C + 
1 

stable 

0 . 266698 0.9999925 0 0 P 0 
0 . 266699 0.9999963 0 0 P 0 
0 . 2667 1.0 0 0 P 0 
0 . 266701 1.0000037 0 0.00000028 P + 

1 

0 . 266702 1.0000075 0 0.00000056 P + 
1 

Table 6 

Special backward bifurcation, φ1 = 9 . 4 ( φ1 < φback 
1 ). 

β1 (per year) R 1 0 C −
1 

C + 
1 

stable 

0.266685 0.999944 0 0 P 0 
0.266687 0.999951 0.00052 0.001097 P + 

1 
or P 0 

0.266696 0.999985 0.00012 0.001508 P + 
1 

or P 0 
0.2667 1.0 0 0.001627 P + 

1 

0.266725 1.000094 0 0.002157 P + 
1 

0.28 1.049869 0 0.030648 limit cycle 

0.33 1.237345 0 0.073818 P + 
1 

(stable focus) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

point R 1 0 = 1 the limiting value of the trajectory will suddenly jump from being close to C 1 = 0 to being close to C + 
1 

(which

corresponds to P 0 being unstable). Hence for R 
1 
0 

> 1 the criminality-free equilibrium P 0 loses its stability and the criminality

endemic equilibrium P + 
1 

becomes stable. In particular, as we mentioned earlier the phenomenon of usual forward bifurcation 

starts to take place at φ1 = 2 . 0 (see Fig. 6 ). 

Finally it is interesting to compare these critical values specified above. If φ1 < φ f orw 
1 

( usual forward bifurcation) and R 1 0 <

1 we expect C 1 , the level of criminality in the population, to ultimately die out. For φ1 > φback 
1 

( usual backward bifurcation)

and R thr 
0 

< R 1 0 < 1 the limiting value of the amount of criminality C 1 can either be zero or a higher value according to the

initial conditions of the system (6) . Moreover, it should be noticed that R thr 
0 

decreases as φ1 increases. Also for R 
1 
0 
fixed

smaller levels of endemic criminality are observed for smaller values of φ1 and conversely a greater crime prevention effort 

would be needed for larger values of φ1 . 

We are interested in the points where φ1 > φ f orw 
1 

and φ1 < φback 
1 

, which lead to the appearance of an unusual phe-

nomenon of stability patterns in the bifurcation. Moreover, keeping in mind the existence of R ∗
0 
and R ∗∗

0 
, throughout this

paper we will refer to this phenomenon as the special forward and special backward bifurcations. As seen in Fig. 5 , when

R 1 0 < 1 , the model (6) has two positive criminality endemic equilibria and only one when R 1 0 > 1 which is the signature

of a backward bifurcation. In addition, after extensive numerical simulations it can be seen that model (6) undergoes spe- 

cial backwards bifurcation for values of φ1 in the region φ
0 
1 

≤ φ1 ≤ φback 
1 

where φ0 
1 

≈ 9 . 33 and φback 
1 

≈ 61 . 411 (see Table 6

and Table 4 ). Similarly, as seen in Fig. 6 , it can also be seen that model (6) undergoes special forward bifurcation for

φ f orw 
1 

≤ φ1 ≤ φ0 
1 
where φ f orw 

1 
≈ 2 . 0 (see Table 7 and Table 5 ). These restrictions are needed so that we can show that the

behaviour of the differential equations (6) , including whether or not the steady states are stable, depend not only on the

starting values of the differential equations but also on R 1 
0 
and φ1 . Moreover, we conjecture therefore that R ∗

0 
, R ∗∗

0 
, φ f orw 

1 
and

φback 
1 

play an important role because it would appear that they are also responsible for the presence of the special backward 

and forward bifurcations. 

Fig. 7 exhibits the special backward phenomenon for φ1 = 16 . 311 as β1 increases. As an example, for β1 = 0 . 2602 (per

year), where R thr 
0 

< R 1 
0 

< R ∗
0 
, both positive criminality endemic equilibria P −

1 
and P + 

1 
are unstable. The Jacobian matrix (B.1) at

P + 
1 

has one real negative eigenvalue plus two complex conjugate eigenvalues with positive real part while at P −
1 

the eigen-

values are real and one of them is positive. In contrast, for β1 = 0 . 2609 (per year), where R ∗
0 

< R 1 0 < 1 , the Jacobian matrix

(B.1) at P + 
1 

has one negative real eigenvalue plus two complex conjugate eigenvalues with negative real part and system 

(6) converges to a stable limit cycle. In such a case the positive criminality endemic equilibrium P −
1 

is always unstable (see

Fig. 5 ). 

It should be mentioned that we considered the same initial condition to the system (6) for both cases (a) and (b) of

Fig. 7 to show that R ∗
0 
and φ1 are also responsible for the presence of the special backward bifurcation. Moreover, inde-

pendently of the initial condition of system (6) , P 0 is always locally asymptotically stable if R thr 
0 

< R 1 
0 

< R ∗
0 
and P + 

1 
is always

locally asymptotically stable if R 1 0 > R ∗
0 

> 1 . On the other hand, if R ∗
0 

< R 1 0 < 1 , then P 0 and P 
+ 
1 

will both be locally asymptot-

ically stable and the limiting behaviour of the system (6) will depend on its initial condition. 

However, the phenomenon of special backward bifurcation changes when φ1 decreases and gets closer to φ
0 
1 

≈ 9 . 33 

where the system (6) changes from special backward to special forward bifurcation. 

Up to now we have looked at finding the equilibrium points and examining how the paths of (6) behave in the locality

of the equilibrium points. This yields clues as to the potential behaviour of the other paths, particularly if they approach the

equilibrium points sufficiently closely. An additional factor which may effect how the paths behave is if one of them traces
13 
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Fig. 7. Special backward bifurcation for φ1 = 16 . 311 ( φ1 < φback 
1 ), R ∗0 = 0 . 976363 and R thr 0 = 0 . 8928309 . In both cases, (a) and (b), the initial conditions are 

the same. (a) β1 = 0 . 2602 (per year), R 1 0 = 0 . 975628 , C 1 = 0 , P 0 is asymptotically stable. (b) β1 = 0 . 2609 (per year), R 1 0 = 0 . 978253 , system (6) converges to 

a stable limit cycle. Parameter values used are as given in Table 3 . 

Fig. 8. Special backward bifurcation when φ1 = 10 . 311 and R 1 0 = 1 . 176 . (a) Inner limit cycle with two complex eigenvalues with positive real part (the 

trajectory starting nearest the centre, the magenta color in the online version); outer limit cycle with two complex eigenvalues with negative real part 

(the trajectory starting on the outside, the blue color in the online version); stable limit cycle (the trajectory dividing these two cases, the black color in 

the online version). (b) Both inner and outer spirals approach the closed orbit. Parameter values used are as given in Table 3 . (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

out a closed path, let K denote such a path. If such a closed path exists, the nearby paths should exhibit similar behaviour

to K. The paths close to K can either spiral in towards K, or spiral further out from K, alternatively they could be closed

curves with a certain period. In the event that K is an isolated closed path it is called a limit cycle. The most significant

type of limit cycle is the stable limit cycle where all paths close to K approach K. 

In this way, for illustrative purposes only, Fig. 8 shows these periodic solutions of system (6) which correspond to a closed

orbit in the phase plane for φ1 = 10 . 311 , β1 = 0 . 313599578 (per year) and R 1 
0 

= 1 . 1758514 . The value of β1 was chosen in

the neighborhood of the critical value where the real part of the eigenvalues changes sign when it passes through zero, that

is, where the pairs of complex conjugate eigenvalues of the Jacobian matrix associated to system (6) change from positive

to negative real part. In this case, the criminality-free equililibrium is always unstable. Fig. 8 a shows the stable limit cycle

(the trajectory dividing the other two cases, the black color in the online version), the nearby inner (the trajectory starting

nearest the centre, the magenta color in the online version), and outer (the trajectory starting on the outside, the blue color

in the online version) curves spiral towards this cycle on both sides. Fig. 8 b shows how the inner and outer spirals approach

the closed orbit. In such a case, both equilibria P + 
1 

and P 0 are unstable. Along the same lines, and to gain more insights

for the underlying dynamics of the phenomenon of special forward bifurcation, a qualitative illustration is given by Fig. 9

according Table 7 . 

We are interested in the points where the stability of the equilibria change. Although it was shown numerically that 

subcritical endemic equilibria can appear at R 1 
0 

= R thr 
0 

and forward or backward bifurcation at R 1 
0 

= 1 , this phenomenon has

a different interpretation because there are other critical values for R 1 
0 
, namely R ∗∗

0 
and R ∗

0 
, and φ1 , namely φ f orw 

1 
and φback 

1 
. 

Although, numerous researchers have attempted to include the recidivism in the spread of criminality, none of these 

has explored its role in the formation of special forward and backward bifurcations as we do. Backward bifurcation still has

major implications for infectious diseases, since control programs based on reducing R 1 
0 
below unity may be ineffective given 

the disease might be able to persist indefinitely under such conditions, as a result of reinfection (this is still a controversy).
14 
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Fig. 9. Special forward bifurcation when φ1 = 9 . 3 . (a) β1 = 0 . 28 (per year), system (6) has two complex eigenvalues with positive real part and converges 

to a stable limit cycle; (b) β1 = 0 . 33 (per year), system (6) has two complex eigenvalues with negative real part and converges to a stable focus. In both 

cases, (a) and (b), the initial conditions are the same. Parameter values used are as given in Table 3 and Table 7 . 

Table 7 

Special forward bifurcation φ1 = 9 . 3 ( φ1 > φ f orw 
1 

). 

β1 (per year) R 1 0 C −
1 

C + 
1 

stable 

0.266685 0.999944 0 0 P 0 
0.266687 0.999951 0 0 P 0 
0.266696 0.999985 0 0 P 0 
0.2667 1.0 0 0 P 0 
0.266725 1.000094 0 0.000889 P + 

1 

0.28 1.049869 0 0.029564 limit cycle 

0.33 1.237345 0 0.07281 P + 
1 

(stable focus) 

Fig. 10. Special backward bifurcation for system (6) when φ1 = 15 . 311 , β1 = 0 . 2649942 (per year), R thr 0 = 0 . 909633 and R 1 0 = 0 . 993604 . (a) The initial con- 

dition is close to P 0 . (b) The initial condition is close to P 
+ 
1 
. System (6) has a unique locally asymptotically stable criminality-free equilibrium P 0 . Parameter 

values used are as given in Table 3 . 

 

 

 

C  

 

 

 

However, in our model we also have the parameter φ1 which can work as a recidivism prevention. Certainly this non-

intuitive possibility will have to be taken into account if programs are designed to prevent vulnerable individuals from 

relapsing into crime. In the cases that we have just considered the crime prevention programs will be a function of the

starting values of the various subpopulations (including C 1 ), φ1 > φ f orw 
1 

and φ1 < φback 
1 

to indicate the possibility of both 

special forward and special backward bifurcations. 

Thus, we can use our analysis to evaluate the relative effectiveness of various intervention strategies with respect to 

parameter φ1 , and determine the necessary level of incitement to reduce or eradicate the criminal offences. 

For example if β1 and φ1 are fixed such that R 
thr 
0 

< R 1 0 < 1 and φ1 > φ∗∗2 
1 it is still possible to eradicate the recidivism of

 1 if the initial condition sits close to the attraction region of the positive equilibrium P + 
1 

or the criminality-free equilibrium

P 0 . 

Fig. 10 shows the effort to avoid the recidivism prevalence and provides an example of this attraction region for an

arbitrary choice of the parameters β1 and φ1 , namely β1 = 0 . 2649942 (per year) and φ1 = 15 . 311 . In Fig. 10 a. the initial

condition y = (S , C , S , D ) = (0 . 999 , 0 . 001 , 0 , 0) is close to P , while in Fig. 10 b. the initial condition y = (S , C , S , D ) =
0 0 1 1 0 0 0 1 1 

15 
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Fig. 11. Special backward bifurcation for system (6) when φ1 = 19 . 311 , β1 = 0 . 2649942 (per year), R thr 0 = 0 . 84717 and R 1 0 = 0 . 993604 . The initial condition 

of system (6) is close to P 0 . (a) y 0 = (S 0 , C 1 , S 1 , D ) = (0 . 9 , 0 . 001 , 0 , 0) (b) y 0 = (S 0 , C 1 , S 1 , D ) = (0 . 9 , 0 . 01 , 0 , 0) . Parameter values used are as given in Table 3 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(0 . 467786 , 0 . 07 , 0 . 035181 , 0 . 210 6 63) is close to P + 
1 
. At P 0 , all eigenvalues of the Jacobian matrix associated to system (6) are

real negative, at P −
1 

we have one real positive eigenvalue, at P + 
1 

we have pairs of complex conjugate eigenvalues with positive

real part. Hence, system (6) undergoes a special backward bifurcation where two unstable positive criminality endemic 

equilibria annihilate each other leaving the criminality-free equilibrium as the only locally asymptotically stable equilibrium 

independently of the initial conditions of system (6) . 

In summary we report the following implications that arise from previous analysis: 

(i) For φ1 = 15 . 311 and β1 ≤ 0 . 24259791 (per year), i.e., R 1 
0 

< 0 . 90963 . In this case φ1 < φ∗∗2 
1 

, b 1 < 0 , b 2 
1 

− 4 b 2 b 0 < 0 and

b 0 > 0 , such that the equation (A.2) has pairs of positive complex conjugate solutions, that is, C 1 = 0 is a unique

solution for system (6) . Hence, model (6) has a unique locally asymptotically stable criminality-free equilibrium P 0 . 

(ii) For φ1 = 15 . 311 and 0 . 24259791 < β1 < 0 . 2667 (per year), i.e., 0 . 90963 < R 1 
0 

< 1 . In this case, φ1 > φ∗∗2 
1 

, b 1 < 0 and

b 2 1 − 4 b 2 b 0 > 0 and b 0 > 0 , such that the equation (A.2) has two positive real solutions C −
1 

and C + 
1 
. Thus, system

(6) has two positive criminality equilibria, namely P −
1 

(smaller) and P + 
1 

(higher). Since at P + 
1 
, two eigenvalues are

complex conjugate eigenvalues with positive real part, while at P −
1 

one eigenvalue has a positive real part, both equi-

libria are unstable. Hence, model (6) has a unique locally asymptotically stable criminality-free equilibrium P 0 . 

Hence, for φ1 = 15 . 311 and 0.24259791 (per year) < β1 < 0 . 2667 (per year) system (6) undergoes a special backward bifur-

cation where the criminality-free equilibrium is a unique locally asymptotically stable independently of the initial conditions 

of system (6) . As an example, see Fig. 10 . 

In contrast, with increasing values of φ1 such that φ1 >> φ∗∗2 
1 

system (6) still has two positive criminality equilibria, 

namely P −
1 

(smaller) and P + 
1 

(higher), but the eigenvalues of the Jacobian matrix associated to system (6) change from real

to complex conjugate. Moreover, the real part of the complex conjugate eigenvalues changes from positive to negative values. 

An example, for φ1 = 19 . 311 , as shown in Fig. 11 : 

(i) At P −
1 
, when 0.226003 (per year) < β1 < 0 . 2667 (per year) one eigenvalue is always real and positive, so P −

1 
is unsta-

ble. 

(ii) At P + 
1 
, when 0.226003 (per year) < β1 < 0 . 226191 (per year) we have two real positive eigenvalues and when 

0.226192 (per year) < β1 < 0 . 243046 (per year) we have complex conjugate eigenvalues with positive real part. In

both cases, P 0 is always stable, independently of the initial condition of system (6) (such as the situation shown in

Fig. 10 ). 

(iii) Finally, for 0.243047 (per year) < β1 < 0 . 2667 (per year) the complex eigenvalues have negative real part. In such a

case, either P + 
1 

or P 0 is stable (see Fig. 11 ). 

Fig. 11 shows not only that the stability of P + 
1 

depends on the initial condition, as predicted by special backward bifurca-

tion, but also how small changes in the initial condition of C 1 will impact the behavior of system (6) determining whether

society converges to a low crime level or a high crime level. 

In Fig. 11 b. P + 
1 

is a stable focus (pairs of complex conjugate eigenvalues with negative real part). Although, R thr 
0 

< R 1 0 < 1 ,

the situation is more dramatic if the value of parameter φ1 increases because the effort to avoid the recidivism prevalence

cannot be efficient, unless the initial condition causes system (6) to converge to P 0 , as shown in Fig. 11 a. 

Finally it is useful to examine some general points for R 1 
0 

= 1 and R 1 
0 

> 1 . If R 1 
0 

= 1 , then if b 0 = 0 , (A.2) either has exactly

one solution greater than zero (if b 1 < 0 ) or no positive root (if b 1 > 0 ). So for R 1 0 = 1 and b 1 < 0 the model (6) has exactly

one non-zero steady state with illegal activity present, given by P + 
1 

(case ii). For b 1 > 0 the model (6) has a criminality-free

equilibrium P . 
0 

16
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Fig. 12. For model (6) : φ1 = 15 . 311 , β1 = 0 . 2667 (per year) where R 1 0 = 1 . 0 . (a) The initial condition is close to P 0 : y 0 = (S 0 , C 1 , S 1 , D ) = (0 . 9 , 0 . 001 , 0 , 0) . 

(b) The initial condition is close to P + 
1 
: y 0 = (S 0 , C 1 , S 1 , D ) = (0 . 4 , 0 . 09 , 0 . 03 , 0 . 1) . Parameter values used are as given in Table 3 . 
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For example, Fig. 12 shows this scenario by setting φ1 = 15 . 311 , when β1 = 0 . 2667 (per year), that is, when R 1 
0 

= 1 the

system (6) has the positive equilibrium P + 
1 

and the criminality-free equilibrium P 0 . At P 
+ 
1 

the Jacobian matrix associated to

system (6) has a pair of positive complex conjugate eigenvalues, and the attractor becomes a limit cycle. At the crime-free

equilibrium, the eigenvalues of the Jacobian matrix associated to system (6) are real and negative, but one of them is zero.

In this case, from equation (A.5) , one gets φ∗∗1 
1 

= φ∗∗2 
1 

. 

As mentioned earlier, because of a complex scenario found in system (1) , the implementation of an analytic strategy 

was a visualization to guide us towards a more thorough understanding of the Serious Crime Model. Hence, by using either

 2 = 0 or C 1 = 0 in system (1) , the simplified crime models become symmetric, so the analysis of the Mild Crime Model can

be extended to the Serious Crime Model. 

Although the analytical strategy has been implemented as a tool to facilitate the analysis of the Serious Crime Model, 

and the simplified form of the Mild Crime Model has presented a very complex dynamic behaviour, such a strategy was

still very beneficial, corroborating the need of a future work to understand in depth the dynamics of the full Serious Crime

Model. The challenges that we will have in the analysis of the Serious Crime Model will be complex. We could exemplify

by mentioning what happens to the changes in the dynamic behaviour of the system (1) with respect to thresholds R 1 
0 
, R 2 

0 

and R thr 
0 

. 

For example, considering the system (1) with the initial conditions in the attraction region of each equilibrium point by 

numerical simulations we have: 

(a) If R 1 
0 

< 1 , R 2 
0 

< 1 then the crime-free equilibrium point P ∗
0 
is stable, 

(b) If R 1 
0 

> 1 , R 2 
0 

< 1 then point P ∗
1 
is stable if φ1 and β1 are in the region of stability of P 

∗
1 
, 

(c) If R 1 0 < 1 , R 2 0 > 1 then the point P ∗
2 
is stable if φ2 and β2 are in the region of stability of P 

∗
2 
, 

(d) If R 1 
0 

> 1 , R 2 
0 

> 1 then the point P ∗
3 
is stable if φ1 , φ2 , β1 and β2 are in the region of stability of P 

∗
3 
. 

Note that even if conditions (b), (c) and (d) are satisfied this does not necessarily imply that the equilibrium points P ∗
1 

or P ∗
2 
will be stable because depending on the initial conditions we may be in their region of instability. The case will be a

little more difficult for P ∗
3 

because in this case, in addition to the adequate initial conditions for system (1) , we must also

have the values φ1 , φ2 , β1 and β2 within the stability region of P ∗
3 
. 

To understand cases (a), (b), (c) and (d), look at Figs. 5 concerning the Mild Crime Model. Note that if the usual bifurcation

occurs then P ∗
1 
would be stable for R thr 

0 
< R 1 0 < 1 (backward bifurcation) and for R 1 0 > 1 (forward bifurcation). But as detailed

earlier this does not happen because the convergence of system (6) to P ∗
1 
depends on many factors, mainly on the values of

φ1 . However for case (d) we would have to study the stability of the point P ∗
3 
which is a very complex analysis. Analogous

to cases (b) and (c) even if the conditions R 1 0 > 1 , R 2 0 > 1 were satisfied this would not imply the stability of P ∗
3 
. 

Bifurcation phenomena also occur in the Serious Crime Model but with a much greater complexity because the dynamic 

behaviour of the system (1) also depends on the values of φ1 , φ2 , β1 and β2 and the initial conditions which must be in

the attraction regions of each of the points P ∗
1 
, P ∗

2 
and P ∗

3 
. 

Note for example that R 1 0 > 1 and R 2 0 < 1 should be a necessary and sufficient condition for the point P ∗
1 
to be stable, but

due to the occurrence of the special bifurcation a deeper analysis concerning the thresholds of the parameter φ1 and the

initial condition of the system (6) is needed. Therefore due to the complexity of system (1) , we will present the simplest

numerical case where the parameter values are the same for the Mild and Serious components of the full combined Mild-

Serious Crime Model. Thus we will make β1 = β2 where R 1 
0 

= R 2 
0 

> 1 , β3 is small, α1 = α2 , τ1 = τ2 , γ1 = γ2 , φ1 = φ2 and the

initial conditions vary according to the regions of attraction of each of the equilibrium points. 
17 
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Fig. 13. For φ1 = φ2 , β1 = β2 where R 1 0 = R 2 0 > 1 . (a) Initial condition y 0 = (0 . 6 , 0 . 05 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 05) : system (1) converges to P ∗2 = 

(0 . 23 , 0 , 0 . 034 , 0 , 0 . 11 , 0 . 52) which is a stable focus. (b) Initial condition y 0 = (0 . 6 , 0 . 1 , 0 . 05 , 0 . 1 , 0 . 1 , 0 . 05) : P ∗1 = (0 . 28 , 0 . 022 , 0 , 0 . 08 , 0 , 0 . 54) is un- 

stable and system (1) converges to a limit cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 13 shows that for φ1 = φ2 and β1 = β2 , with the initial conditions (a) y 0 = (0 . 6 , 0 . 05 , 0 . 05 , 0 . 1 , 0 . 1 , 0 . 1) and y 0 =
(0 . 6 , 0 . 05 , 0 . 1 , 0 . 1 , 0 . 1 , 0 . 05) we have the convergence of the system (1) to the equilibrium point P ∗

2 
which is a stable fo-

cus; (b) if the initial condition is y 0 = (0 . 6 , 0 . 1 , 0 . 05 , 0 . 1 , 0 . 1 , 0 . 05) we have the convergence of the system (1) to a limit

cycle. 

8. Conclusion 

In this manuscript we have discussed differential equation models which describe how criminal behaviour potentially 

spreads amongst groups of individuals. The mathematical techniques used in this paper are similar to those used in mathe- 

matical models of how diseases spread. 

We were interested in analysing a model that divided potential criminal individuals into mild offenders and serious 

offenders. Here we introduced the Serious Crime Model (1) . We introduced terms φ1 and φ2 corresponding to the relative 

increase in the likelihood of an individual being induced to perform a mild (or serious) offence due to the person who

was contacted having a record of mild (or serious) offending. We then performed a brief analysis of the Serious Crime

Model and identified four equilibria, the crime-free equilibrium point P ∗
0 
, the mild criminality-only equilibrium point P ∗

1 
, the

serious criminality-only equilibrium point P ∗
2 
and the mild and serious criminality equilibrium point P ∗

3 
. We identified two 

key parameters R 1 0 and R 
2 
0 which uniquely identify the qualitative behaviour of the system. These correspond to the basic 

reproductive number in mathematical epidemiology. However the Serious Crime Model was too complicated to analyse in 

this paper. 

We therefore turned our attention to a simplified version of the Serious Crime Model, the Mild Crime Model (6) with

only mild offenders. We examined analytically conditions for this model to have zero, one or two non-trivial equilibria. Here 

there is one parameter R 1 
0 
which describes the behaviour of the system. We find that subcritical bifurcation can occur with

two non-trivial equilibria possible for R 1 
0 

< 1 . We examined these conditions in terms of the co-option parameter φ1 . For

R 1 0 > 1 the Mild Crime Model has a unique non-trivial equilibrium. This is also true for R 1 0 = 1 if φ1 > k 1 φ
c 
1 
/τ1 . For R 0 < 1 , 

if φ∗∗2 
1 

denotes the largest real root of (A.5) then system (6) will have two non-trivial equilibria P + 
1 

and P −
1 

for φ1 > φ∗∗2 
1 

.

In the case where φ1 = φ∗∗2 
1 

there is just one non-trivial equilibrium of model (6) . For φ1 < φ∗∗2 
1 

there are no non-trivial

equilibria of model (6) . 

We then looked at the local stability behaviour of the steady states, both analytically and numerically. Both forward and 

backward bifurcation were possible but some unusual and interesting stability patterns could occur. For backward bifurcation 

it was possible to have both non-trivial equilibria unstable for R 1 0 < 1 . There is a critical value of R 1 0 , R 
∗
0 
such that the non-

trivial equilibrium P + 
1 

with the larger C 1 value is unstable for R 
1 
0 < R ∗

0 
and stable for R 1 0 > R ∗

0 
. R ∗

0 
may be less than or greater

than one. The non-trivial equilibrium P −
1 

with the smaller C 1 values appears always to be unstable when it exists. 

For forwards bifurcation there is a second critical value R ∗∗
0 

so that the unique non-trivial equilibrium P + 
1 

is locally asymp-

totically stable for R 1 0 < R ∗∗
0 
, unstable for R ∗∗

0 
< R 1 0 < R ∗

0 
and locally asymptotically stable again for R 1 0 > R ∗

0 
. 

In terms of φ1 there were critical values φ f orw 
1 

and φback 
1 

with φ f orw 
1 

< φback 
1 

and the system undergoes usual forwards 

bifurcation with the normal local stability behaviour of the non-trivial steady states for φ1 < φ f orw 
1 

, and usual backwards 

bifurcation with the normal local stability behaviour of the non-trivial steady states if φ1 > φback 
1 

. There is a critical value

φ0 
1 
between φ f orw 

1 
and φback 

1 
such that model (6) undergoes the special backwards bifurcation with unusual stability pattern 

described above if φ0 
1 

< φ1 ≤ φback 
1 

and the special forwards bifurcation with unusual stability pattern described above if 

φ f orw 
1 

≤ φ1 < φ0 
1 
. 
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We then returned to the full Serious Crime Model but the potential behaviour was much more complex. We did some

limited simulations for this model with β1 = β2 , α1 = α2 , τ1 = τ2 , γ1 = γ2 and φ1 = φ2 . But the behaviour of this full model

is very complex and further analysis and numerical simulation of this model is needed. 

So we have developed a novel mathematical model for how individuals are induced into crime. There are a variety of

mathematical models for how criminality of various types spreads through a population using various techniques. However 

in most models of which we are aware (in mathematical criminology or epidemiology) when there is forward bifurcation 

the unique persistence equilibrium is always locally asymptotically stable when it exists and when there is backwards bifur- 

cation the lower persistence equilibrium is unstable for R 0 < 1 and the upper persistence equilibrium is always stable. Our

results are novel in both cases because for forward bifurcation the persistence equilibrium switches from instability along 

the bifurcation curve to stability as does the upper persistence equilibrium in the case of backwards bifurcation. This type of

switching along the bifurcation curve is interesting and unusual and we are not are aware of it having been shown before. 
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Appendix A 

Proof of Theorem 1. 

We have seen that the equilibrium solutions of system (6) imply that either C = 0 or β1 S 0 + φ1 β1 S 1 − (μ + α1 + τ1 ) = 0

and that C = 0 corresponds to the criminality equilibrium P 0 . In contrast, for β1 S 0 + φ1 β1 S 1 − (μ + α1 + τ1 ) = 0 , system

(6) has a mild criminality equilibrium P 1 = (S 0 , C 1 , S 1 , D ) , with ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎪ ⎪ ⎩ 

S 0 = 
�

μR 1 
0 

− φ1 S 1 

S 1 = 
1 
η1 

[ 
�
μ

(
1 − 1 

R 1 
0 

)
− (μ+ α1 ) C 1 

μ

] 
D = 

γ1 

μ S 1 , 

(A.1) 

where η1 = φc 
1 

− φ1 , with φc 
1 

= 1 + 

γ1 
μ . 

First note that S 0 > 0 if and only if S 1 < 
�

φ1 μR 1 
0 

and D > 0 if and only if S 1 > 0 . Moreover, assuming η1 > 0 (or φ1 < φc 
1 
)

then S 1 > 0 if and only if C 1 > 
�

μ+ α1 

(
1 − 1 

R 1 
0 

)
, when R 1 0 > 1 . In contrast for η1 < 0 (or φ1 > φc 

1 
) then S 1 > 0 if and only if

 1 > 
�

μ+ α1 

(
1 − 1 

R 1 
0 

)
, if φ1 = φc 

1 
then C 1 = 

�
μ+ α1 

(
1 − 1 

R 1 
0 

)
. 

By replacing the expression for S 1 given by (A.1) , into the third equation of system (6) an equation for C 1 > 0 is obtained

as 

b 2 (C 1 ) 
2 + b 1 C 1 + b 0 = 0 , (A.2) 

where 

b 2 = φ1 β1 (1 + 

α1 

μ
) , 

b 1 = φc 
1 (μ + α1 ) + τ1 (φ

c 
1 − φ1 ) + φ1 k 1 (1 − R 1 0 ) , (A.3) 

b 0 = 

�(μ + γ1 ) 

μR 1 
0 

(1 − R 1 0 ) , 

and k 1 = (μ + α1 + τ1 ) . 
The quadratic equation (A.2) can be analyzed for the possibility of multiple endemic equilibria when R 1 0 < 1 . Note that

the endemic equilibria of system (6) can be obtained by solving for C 1 from (A.2) , and substituting the positive values of C 1 
into the expressions in (A.1) . 
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In this scenario, let us now analyze the signs of coefficients (A.3) to determine when the quadratic (A.2) has a unique

solution greater than zero or two such solutions and translate our findings in terms of sociologically meaningful (i.e. greater 

than zero) endemic equilibria of (6) . 

We are searching for whether two or more steady states of (6) are possible in order to investigate the possibilities of

bifurcation. Moreover, it is especially interesting to emphasize that the strategy of our analyses is to understand the criminal 

career and the role of both the co-optation rate ( β1 ) and the factor φ1 corresponding to the multiplicative increase in the

co-optation rate if the individual who is contacted has a history of offending. Hence, to check the possibilities of bifurcation

we carry out this approach by determining two other critical values, namely φ1 = φ∗
1 
and φ1 = φ∗∗

1 
which are calculated by

the analysis of the coefficients (A.3) and and when (A.2) has real roots which are greater than zero. This idea is explored

more deeply below. 

Because all the constants of the system of equations (6) are taken to be non-negative it is a consequence of (A.3) that

b 2 is always greater than zero; b 0 < 0 for R 1 
0 

> 1 and b 0 > 0 for R 1 
0 

< 1 . If R 1 
0 

> 1 and we substitute C = C ∗ = 
�

μ+ α1 

(
1 − 1 

R 1 
0 

)
into equation (A.2) then we get 

b 2 (C 
∗) 2 + b 1 C 

∗ + b 0 = τ1 (φ
c 
1 − φ1 ) 

R 1 0 − 1 

R 1 
0 

�

μ + α1 

, 

so if φ1 < φc 
1 
then C ∗ > C 1 , if φ1 = φc 

1 
then C 1 = C ∗ and if φ1 > φc 

1 
then C ∗ < C 1 . So, by the comments after Lemma 2 S 1 > 0 ,

thus P 1 is biologically feasible. Thus, system (6) has a unique positive equilibrium, P 1 , for b 0 < 0 , i.e, when R 1 0 > 1 . Moreover,

system (6) also has one and only one steady state which is greater than zero, P 1 , if b 0 = 0 , i.e., when R 1 
0 

= 1 and b 1 < 0 , i.e.,

when φ1 > 

k 1 
τ1 

φc 
1 

> 1 . 

Let us now examine where (A.2) has two real roots strictly greater than zero when b 0 > 0 , (i.e., R 1 
0 

< 1 ), b 1 < 0 and b 2 
1 

−
4 b 2 b 0 > 0 . Therefore, supposing that (A.2) has two real roots strictly greater than zero, write C −

1 
and C + 

1 
to be respectively

the lower and the bigger value of C 1 , which in turn correspond to the smaller and higher positive criminality equilibria of

system (6) , namely P −
1 

and P + 
1 
, respectively. 

From (A.3) , we know b 0 > 0 for R 1 0 < 1 . Also, if φ1 < φc 
1 
, then b 1 > 0 . Therefore, b 1 < 0 only makes sense when φ1 > φc 

1 
which implies that if R 1 

0 
< 1 then S 1 > 0 . In what follows, b 1 < 0 if and only if φ1 > φ∗

1 
, where 

φ∗
1 = 

φc 
1 

(R 1 
0 
−k 3 ) 

, (A.4) 

with R 1 0 > k 3 = 

μ+ α1 
k 1 

(i.e., 
β1 �
μ > μ + α1 ) and 

μ+ α1 
k 1 

< 1 . 

Although, the other critical value, namely φ1 = φ∗∗
1 
, does not have an explicit form due to the high complexity of co-

efficients (A.3) , the inequality b 2 
1 

− 4 b 2 b 0 > 0 can be expressed as b 2 
1 

− 4 b 2 b 0 = d 2 (φ1 ) 
2 + d 1 φ1 + d 0 > 0 . Hence φ∗∗

1 
can be

found numerically by solving the following quadratic equation 

d 2 (φ1 ) 
2 + d 1 φ1 + d 0 = 0 , (A.5) 

where 

d 2 = 

[
(μ + α1 ) − β1 �

μ

]2 

, 

d 1 = 2 φc 
1 

[
(μ + α1 ) k 1 (R 

1 
0 − 1) − τ1 

β1 �

μ

]
, (A.6) 

d 0 = (φc 
1 k 1 ) 

2 . 

Since all model parameters are assumed non negative, 
β1 �
μ > (μ + α1 ) and R 

1 
0 < 1 , it follows from (A.6) that d 2 > 0 and

d 0 > 0 . Moreover 

d 2 1 − 4 d 0 d 2 = 4 φc2 
1 

{ [
(μ + α1 ) k 1 (R 

1 
0 − 1) − τ1 β1 

�

μ

]2 

− k 2 1 

[
μ + α1 − β1 

�

μ

]2 
} 

, 

= 4 φc2 
1 

{ [
τ1 β1 

�

μ
− (μ + α1 ) k 1 (R 

1 
0 − 1) 

]2 

− k 2 1 

[
β1 

�

μ
− (μ + α1 ) 

]2 
} 

. 

It is straightforward to show that 

τ1 β1 
�

μ
− (μ + α1 ) k 1 (R 

1 
0 − 1) > k 1 

[
β1 

�

μ
− (μ + α1 ) 

]
> 0 . 

Hence d 2 1 − 4 d 0 d 2 > 0 and as also d 1 < 0 then the quadratic equation (A.5) always has two strictly positive real roots. To

simplify our notation, let φ∗∗1 
1 

and φ∗∗2 
1 

be the positive real roots of equation (A.5) , with φ∗∗1 
1 

< φ∗∗2 
1 

. Hence b 2 
1 

− 4 b 2 b 0 > 0

and thus (A.2) has two real solutions strictly greater than zero when either φ1 < φ∗∗1 or φ1 > φ∗∗2 . 

1 1 
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However, due to complexity of the coefficients (A.6) , the positive roots φ∗∗1 
1 and φ∗∗2 

1 can only be calculated numerically. 

Note that when φ1 = φ∗
1 

d 2 (φ
∗
1 ) 

2 + d 1 φ
∗
1 + d 0 = 

4(φc 
1 ) 

2 

(R 1 
0 

− k 3 ) 2 

[
β1 

�

μ
− (μ + α1 ) 

]
(μ + α1 )(R 

1 
0 − 1) < 0 . 

Hence d 2 (φ
∗
1 
) 2 + d 1 φ

∗
1 

+ d 0 < 0 so φ∗∗1 
1 < φ∗

1 
< φ∗∗2 

1 . Moreover our numerical simulations confirmed this result. From now

on, therefore, we assume that φ∗∗1 
1 

< φ∗
1 

< φ∗∗2 
1 

. Furthermore, since to provide two positive roots C 1 for the quadratic

equation (A.2) we need φ1 > φ∗
1 
, the solution of equation (A.5) is then given by φ1 > φ∗∗2 

1 
. 

Next we turn to the implications of this result for equation (A.5) . Firstly, note that if b 0 > 0 , i.e., R 1 0 < 1 , the

equation (A.2) has pairs of complex conjugate values for C 1 with positive real parts whenever φ∗
1 

< φ1 < φ∗∗2 
1 

. In this

case, b 1 > 0 and b 2 
1 

− 4 b 2 b 0 < 0 . Hence, model (6) has only the criminality-free equilibrium P 0 which is locally asymptot-

ically stable. In contrast if φ1 > φ∗∗2 
1 , then the equation (A.2) has two strictly positive real roots. In this case b 1 < 0 and

b 2 
1 

− 4 b 2 b 0 > 0 . Hence for φ1 > φ∗∗2 
1 

model (6) has two positive equilibria, namely P + 
1 

and P −
1 
. If φ1 = φ∗∗2 

1 
then these two

positive equilibria co-incide, b 2 
1 

= 4 b 2 b 0 and there is a unique positive equilibrium. This completes the proof of Theorem 1. 

Appendix B 

Proof of Theorem 2. 

The stability of P 1 is governed by the following Jacobian matrix 

J(P 1 ) = 

⎡ 

⎢ ⎢ ⎣ 

J 11 −β1 S 0 0 0 

β1 C 1 J 22 φ1 β1 C 1 0 

0 τ1 − φ1 β1 S 1 J 33 0 

0 0 γ1 −μ

⎤ 

⎥ ⎥ ⎦ 

(B.1) 

where J 11 = −β1 C 1 − μ; J 22 = β1 S 0 + φ1 β1 S 1 − k 1 ; J 33 = −φ1 β1 C 1 − (μ + γ1 ) . 

The Jacobian matrix (B.1) gives explicitly one eigenvalue, namely λ1 = −μ < 0 , and the remaining eigenvalues are found

by the corresponding third degree characteristic equation F 3 (λ) = 0 , where 

F 3 (λ) = (J 33 − λ) (J 11 − λ)(J 22 − λ) + β2 
1 S 0 C 1 (J 33 − λ) 

− (φ1 β1 C 1 )(τ1 − φ1 β1 S 1 )(J 11 − λ) . (B.2) 

To consider the characteristic polynomial (B.2) in terms of the Criminality Reproduction Number, R 1 
0 
, we rewrite the 

expression (B.2) as a third degree polynomial, in its following closed-form F 3 (λ) as defined in the statement of Theorem 2 . 

This completes the proof of Theorem 2 . 
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