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ABSTRACT
Trypanosomiasis is a protozoan disease transmitted via Trypanosoma brucei. This study aimed to examine
the metabolic profile and anti-trypanosomal effect of methanol extract of Thunbergia grandifolia leaves.
The liquid chromatography-high resolution electrospray ionisation mass spectrometry (LC-HRESIMS)
revealed the identification of fifteen compounds of iridoid, flavonoid, lignan, phenolic acid, and alkaloid
classes. The extract displayed a promising inhibitory activity against T. brucei TC 221 with MIC value of
1.90lg/mL within 72 h. A subsequent in silico analysis of the dereplicated compounds (i.e. inverse dock-
ing, molecular dynamic simulation, and absolute binding free energy) suggested both rhodesain and far-
nesyl diphosphate synthase as probable targets for two compounds among those dereplicated ones in
the plant extract (i.e. diphyllin and avacennone B). The absorption, distribution, metabolism, excretion,
and toxicity (ADMET) profiling of diphyllin and avacennone were calculated accordingly, where both com-
pounds showed acceptable drug-like properties. This study highlighted the antiparasitic potential of
T. grandifolia leaves.
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Introduction

Trypanosomiasis or sleeping sickness is a protozoan disease that
infects animals and humans transmitted by the bite of Glossina

(tsetse) fly carrying Trypanosoma brucei1. Currently, trypanosomia-
sis affects more than 50 million cattle and 70 million people in
sub-Saharan Africa2. The available current medicines record lack of
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efficiency, resistance, and toxicity, so there is an urgent need for
the development of novel, safe, efficacious, cost-effective drugs
with new mechanism of action3,4. In African countries where tryp-
anosomiasis is prevalent, natural products (herbal extracts) have
traditionally been utilised for centuries and are still extensively
used to cure infections and other parasitic diseases5,6.
Interestingly, about 30% of the world population has confidence
in traditional therapies due to their wide availability and afford-
ability7. Moreover, various drugs like quinine and artemisinin were
established as plant-derived potential antiprotozoal agents8.

Thunbergia is a dicotyledonous flowering genus, belonging to
the family Acanthaceae consisting of more than 100 species9. The
plants of this species are climbers, shrubs, perennials, and annuals
distributed in tropical regions10. Some of the plants in the
Thunbergia genus are well-known for their medicinal properties
and ornamental value, such as Thunbergia laurifolia, Thunbergia
alata, Thunbergia erecta, Thunbergia coccinea, Thunbergia colpifera,
and Thunbergia fragrans11. Among these plants, T. laurifolia was
the first to be consumed widely for human consumption in both
traditional and local preparations12. The literature survey revealed
that Thunbergia plants are rich in phytoconstituents, like iridoids,
tannins, phenolic acids, flavonoids, and their glucosides9,13.
Besides, these constituents are reported to exert several biological
potentials such as antioxidant, anti-inflammatory, hepatoprotec-
tive, antinociceptive, antipyretic, antitumor, antimicrobial, antidia-
betic, and anthelmintic activities14–17. Among Thunbergia species,
Thunbergia grandiflora Roxb, known as Nallata is a large perennial,
hard, climbing or twining plant (up to 15m) with blue flowers9,18.
It is widely distributed in India, China, Myanmar, and several trop-
ical countries of Africa especially Egypt and Bangladesh19.

In traditional medicine, T. grandiflora was reported to manage
several ailments like blood dysentery, cataract, diabetes, gout,
hydrocele, hysteria, malaria, marasmus, post-eclampsia, pre-
eclampsia, rheumatism, spermatorrhoea, stomach ache, ophthal-
mia, conjunctivitis, elephantiasis, and urinary bladder stone20.
Pharmacologically, it exerted valuable biological properties includ-
ing antimicrobial21, anti-inflammatory and anti-arthritic effects22.
From the phytochemical view, T. grandiflora contains important
phytochemicals as iridoid glycosides, including isounedoside and
grandifloric acid, in addition to flavonoids as malvidin-3,5-digluco-
side, 5-hydroxy-40,6,7-trimethoxyflavone, luteolin-7-glucoside, api-
genin-7-glucuronide, stilbericoside, proanthocyanidin, and the
aglycone luteolin23,24.

Due to its valuable secondary metabolites content and plentiful
pharmacological and ethnobotanical survey of T. grandiflora, the
current study was undertaken to examine the metabolic profile
and anti-trypanosomal effects of the methanolic leaf extract of T.
grandifolia. Furthermore, in-silico docking studies were carried out
to illustrate the mechanism of action of identified secondary
metabolites.

Materials and methods

Plant material

The fresh leaves of T. grandifolia were collected from Zoo Garden,
Giza, Egypt (30�1028.3200N 31�12050.0300E) in February 2021. The
plant was taxonomically identified by Mrs. Tereize Labib, the tax-
onomy specialist at El-Orman Botanical Garden, Giza, Egypt. A
voucher specimen (PHG-P-TG-365) has been kept in the
Herbarium of the Pharmacognosy Department, Faculty of
Pharmacy, Ain Shams University, Cairo, Egypt.

Preparation of plant extract

The fresh aerial parts of T. grandifolia (1 kg) were exhaustively
extracted with absolute methanol (9.5 L) by percolation at room
temperature until depletion. Then, the extract was filtrated and
concentrated under reduced pressure using rotavapor at 45 �C to
yield 30 g of completely dry extract.

Metabolic profile analysis conditions

The crude extract (1mg/mL) in methanol (MeOH) was subjected
to metabolic analysis using LC-HR-ESI-MS according to the previ-
ously reported method25. Acquity Ultra Performance Liquid
Chromatography (UPLC) system coupled to a Synapt G2 HDMS
quadrupole time-of-flight hybrid mass spectrometer (Waters,
Milford, USA) was used. Chromatographic separation was carried
out on a BEH C18 column (2.1� 100mm, 1.7lm particle size;
Waters, Milford, USA) with a guard column (2.1� 5mm, 1.7 lm
particle size) and a linear binary solvent gradient of 0–100% elu-
ent B over 6min at a flow rate of 0.3ml/min, using 0.1% formic
acid in water (v/v) as solvent A and acetonitrile as solvent B. The
injection volume was 2 lL and the column temperature was 40 �C.
The total analysis time for each sample was 20min. High-reso-
lution mass spectrometry was carried out in both positive and
negative ESI ionisation modes coupled with a spray voltage at
4.5 kV, capillary temperature at 320 �C, and mass range from m/z
150–1500. The MS dataset was processed, and data were
extracted using MZmine 2.20 based on the established parame-
ters26,27. Mass ion peaks were detected and accompanied by chro-
matogram builder and chromatogram deconvolution. The local
minimum search algorithm was addressed, and isotopes were also
distinguished via the isotopic peak grouper. Missing peaks were
displayed using the gap-filling peak finder. An adduct search
along with complex search were done. The processed data set
was next subjected to molecular formula prediction and peak
identification. The positive and negative ionisation mode data sets
from the respective extract were dereplicated against the DNP
(Dictionary of Natural products).

Investigation of anti-trypanosomal activity

The anti-trypanosomal activity was tested following the protocol
of28. Briefly, 104 trypanosomes per ml of T. brucei brucei strain TC
221 were cultivated in Complete Baltz Medium. Trypanosomes
were tested in 96-well plate chambers against different concentra-
tions of test extracts at 10–200 lg/mL in 1% DMSO to a final vol-
ume of 200 lL. For controls, 1% DMSO as well as parasites
without any test extract was used simultaneously in each plate to
show no effect of 1% DMSO. The plates were then incubated at
37 �C in an atmosphere of 5% CO2 for 24 h using a CO2 incubator
(CelMateVR , ESCOTM, Singapore). After the addition of 20lL of
Alamar Blue, the activity was measured after 48 and 72 h by light
absorption using an MR 700 Microplate Reader at a wavelength of
550 nm with a reference wavelength of 650 nm. The minimum
inhibitory concentration (MIC) values of the test extracts were
quantified in by linear interpolation of three independent meas-
urements. Suramin was used as a positive control (MIC ¼
0.23 lg/mL).

In silico study

Both inverse docking, molecular dynamics simulation, and abso-
lute binding free energy calculation were carried out according to
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the previously reported methods29,30. The detailed methodology
can be found in the Supplementary File.

Results and discussion

Analysis of metabolic profile

As shown in Figure S1, LC-HRESIMS metabolic profiling of T. gran-
difolia resulted in the identification of fifteen compounds of vari-
ous classes of plant metabolites. The identified compounds are
listed in Table 1. These compounds are identified as five iridoid
glucosides (stilbericoside, alatoside, 5-deoxythunbergioside, thuna-
loside, and isounedoside), three napthoquinones (avicennone B, 4-
deoxyavicennone B and 3a-deoxyavicennone G) and two flavo-
noids (3,5,7-trihydroxy-30,40-dimethoxyflavone and 5,7-dihydroxy-
40-methoxyflavone). In addition, lignan (diphyllin), one alkaloid
(aphelandrine) and one fatty acid (6-hexadecenoic acid) were also
characterised.

The iridoid glucosides represent the major components of the
extract. The mass ion peak at m/z 349.09262 [MþH]� for the pre-
dicted molecular formula C14H20O10 was dereplicated as stilberico-
side which was formerly characterised from T. alata31, whereas
that at m/z 333.10983 [M�H]� for the suggested molecular for-
mula C14H22O9 was dereplicated as alatoside. This compound was
also isolated previously from T. alata and Thunbergia coccinea32.
Moreover, the mass ion peak at m/z 369.09494 [MþH]�, corre-
sponding to the predicted molecular formula C14H21ClO9, was
identified as 5-deoxythunbergioside, earlier obtained from
Odontonema cuspidatum (Acanthaceae)33. Another mass ion peak
at m/z 349.19842 [MþH]� in agreement with the molecular for-
mula C15H24O9 was characterised as thunaloside that was previ-
ously identified from T. alata31. Likewise, the mass ion peak at m/z
331.1905 [M�H]� for the predicted molecular formula C14H20O9

was dereplicated as isounedoside. The latter is a metabolite for-
merly reported from T. alata34.

Regarding identified flavonoids, the mass ion peak at m/z
331.08196 [MþH]�, in accordance with the molecular formula
C17H14O7, was dereplicated as 3,5,7-trihydroxy-30,40-dimethoxyfla-
vone previously isolated from Andrographis viscuosula
(Acanthaceae)35, while that at m/z 285.07621 [M–H]�, correspond-
ing to the molecular formula C16H12O5, was identified as 5,7-dihy-
droxy-40-methoxyflavone that was also reported from T.
laurifolia36.

Furthermore, the mass ion peak at m/z 379.08225 [M�H]�, fol-
lowing the molecular formula C21H16O7, was dereplicated as
diphyllin previously isolated from Justicia gendarussa
(Acanthaceae)37. The alkaloid at m/z 491.26569 [M�H]�,

corresponding to the molecular formula C28H36N4O4, was identi-
fied as (þ)-aphelandrine that was also reported from Aphelandra
tetragona that belongs to the family Acanthaceae38. The mass ion
peak at m/z 254.224580 [MþH]�, for the suggested molecular for-
mula C16H30O2 was dereplicated as 6-hexadecenoic acid39, a fatty
acid previously obtained from T. alata seeds40. Finally, rosemarinic
acid was reported in the aqueous methanolic extract of T. erecta
and T. laurifolia10,41. The chemical structures of characterised
metabolites (1–15) are illustrated in Figure 1.

Anti-trypanosomal activity

The effective chemotherapeutic agents in the treatment of tryp-
anosomiasis are still in great demand42. The available drugs such
as uramin and pentamidine, are only effective against the early
blood stage infection of T. brucei rhodesiense43. Furthermore, the
drugs that maybe effective against the West African sleeping sick-
ness caused by T. brucei gambiense may not be efficient against T.
brucei rhodesiense44. Thus, our study underlines the necessity to
peek into medicinal plants for drug discovery. In our study, the
extract showed a promising inhibitory activity against T. brucei TC
221 with MIC value of 1.90 lg/mL within 72 h, thereby confirming
presence of anti-trypanosomal compounds in the plant. The HPLC-
MS analysis reported presence of iridoid glycosides, napthoqui-
nones, lignans and flavonoids as shown in Table 1. It may be pos-
sible that the extract exerted the anti-trypanosomal action with
iridoid glycosides as has been previously declared against
Trypanosoma45–47. Furthermore, flavonoids and lignans of Virola
surinamensis twigs were reported for activity against trypomasti-
gote form of Trypanosoma cruzi48.

In silico investigation

Inverse docking
In silico analysis of the studied extract was achieved by subjecting
the structures of all dereplicated compounds to inverse docking-
based virtual screening against almost all protein structures
hosted in the Protein Data Bank (PDB)49,50.

This preliminary virtual screening step was accomplished using
idTarget online platform51. The recovered scores were obtained as
a list, beginning with the largest negative value, and ending with
the smallest. To identify the best targets for each isolated com-
pound, we used a conclusive affinity score of �9 kcal/mol as a
cut-off value.

Intriguingly, between all mentioned molecular targets, rhode-
sain protease, and farnesyl diphosphate synthase targets were

Table 1. LC-HRESIMS-dereplicated phytochemicals in the methanol extract of Thunbergia grandifolia.

No. Rt (min) m/z Ionisation mode Calculated mass Accurate mass Molecular formula Putative identification Chemical class

1. 0.63 379.08225 Negative 380.08953 380.089605 C21H16O7 Diphyllin Lignans
2. 3.40 254.22458 Positive 253.22458 254.224580 C16H30O2 6-Hexadecenoic acid Fatty acid
3. 4.44 331.08196 Positive 330.07468 330.073955 C17H14O7 3,5,7-Trihydroxy-30 ,40-dimethoxyflavone Flavonoids
4. 4.45 719.15891 Positive 718.15163 718.153390 C36H30O16 Rosmarinic acid dimer Phenolic acids
5. 4.51 337.12848 Positive 336.1212 336.120905 C17H20O7 Avicennone B Napthoquinones
6. 4.57 349.09262 Positive 348.10565 348.105649 C14H20O10 Stilbericoside Iridoid glucosides
7. 5.34 333.10983 Negative 334.11711 334.126385 C14H22O9 Alatoside Iridoid glucosides
8. 6.03 319.11782 Negative 320.1251 320.125990 C17H20O6 4-Deoxyavicennone B Napthoquinones
9. 6.77 369.09494 Positive 368.08766 368.087412 C14H21ClO9 5-Deoxythunbergioside Iridoid glucosides
10. 6.80 229.08642 Positive 228.07914 228.078645 C14H12O3 Naphtho[2,3-b]furan-4,9-diol; di-Me ether Napthoquinones
11. 7.78 491.26569 Negative 492.27297 492.273656 C28H36N4O4 (þ)-Aphelandrine Alkaloids
12. 8.15 349.19842 Positive 348.14204 348.142035 C15H24O9 Thunaloside Iridoid glucosides
13. 9.48 263.12852 Positive 262.12124 262.120509 C15H18O4 3a-Deoxyavicennone G Napthoquinones
14. 9.51 285.07621 Positive 284.06894 284.068475 C16H12O5 5,7-Dihydroxy-40-methoxyflavone Flavonoids
15. 10.43 331.1905 Negative 332.11764 332.110735 C14H20O9 Isounedoside Iridoid glucosides

Note: Rt: retention time; m/z: mass-to-charge ratio.
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detected between these target compounds. These enzymes are
responsible for trypanosome survival activity52,53, so the prelimin-
ary virtual screening step putatively identified these compounds
as probable anti-trypanosomal agents.

Figure 2 shows remarkable binding mode network of diphyllin
with its molecular target rhodesain. Binding mode similarity of
diphyllin with co-crystallized ligand of rhodesain rationalised its
potent anti-trypanosomal activity. Where co-crystallized rhodesain
ligand (6exq) and diphyllin showed H-bond framework with differ-
ent amino acids such as GLY-163, ASP-161, GLY-64, CYS25,
ASP161, GLY66, and ASP60.

Regarding farnesyl diphosphate synthase target, compound
avicennone B showed significant binding inside its active site
through H-bond network that it established with THR272, ASP259,
ASP255, GLN252, TYR216, and LYS269 through different functional
groups as hydroxyl and carbonyl groups (Figure 3). Moreover,

farnesyl diphosphate synthase co-crystallized ligand showed char-
acteristic binding mode with different hydrogen and hydrophobic
bonds.

Molecular dynamic simulation
The binding free energy calculation (DGbinding) and molecular
dynamic simulation were carried out to further validate the
inverse docking results. As shown in Figure 4, both diphyllin and
avacennone B remained stable inside the binding pocket of rho-
desain farnesyl diphosphate synthase over 50 ns of MDS, where
their average deviations (average RMSD) from the initial binding
pose were within acceptable values (average RMSD ¼ 2.23 and
2.85 Å, respectively). Accordingly, the estimated absolute binding
free energy of both compounds with rhodesain and farnesyl
diphosphate synthase was comparable with that of the co-
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Figure 1. Chemical structures of identified compounds in the methanol extract of T. grandifolia.
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Figure 2. Binding modes of diphyllin (left side) inside the active site of rhodesain target. Binding mode of co-crystalized ligand (right side) inside the active site of
rhodesain.

Figure 3. Binding modes of avicennone B (left side) inside the active site of farnesyl diphosphate synthase target. Binding mode of co-crystalized ligand (right side)
inside the active site of farnesyl diphosphate synthase.

Figure 4. RMSDs of diphyllin and avacennone B inside the active sites of rhodesain and farnesyl diphosphate synthase, respectively, over 50 ns of MDS.
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crystalized inhibitor (DGbinding ¼ �8.23, �7.65 kcal/mol, DGbinding

of the co-crystalized inhibitors¼�8.34 and 8.45 kcal/mol,
respectively).

Regarding protein–ligand interactions during the simulation,
diphyllin was able to establish H-bonds and water bridges with
GLY-23, GLY-64, GLY-66, LEU-160, ASP-161, and HIS-162, together
with hydrophobic interactions with PHE-61 and LEU-67 inside rho-
desain’s active site (Figure 5). Similarly, avacennone B established
multiple H-bonds and water bridges with ASP-175, GLN-252, LYS-
269, THR-272, ASP-273, and LYS-278 inside farnesyl diphosphate
synthase’s active site (Figure 5).

Pharmacokinetic and toxicity profiling
It is well established that drug candidate should have both
acceptable pharmacological, pharmacokinetic and safety meas-
ures54,55. Accordingly, the ADMET profiles of diphyllin and avacen-
none B were calculated using SWISS ADME and PRO-ToX-II. In
general, both compounds showed high degree of absorption from
the gastrointestinal tract (GIT). This is attributed to the ability of
both compounds to fulfil the required physicochemical properties
for optimum absorption. As demonstrated by the properties radar
chart, both the compounds had the desired values of all the prop-
erties (size, polarity, lipophilicity, flexibility, solubility, and
saturation) with only exception for the saturation of diphyllin
(Figure 6). This make both the compounds an excellent choice for
oral use. Moreover, it is very important to get insights in the

metabolic behaviour of both the compounds. Diphyllin was found
to inhibit various isoforms of cytochrome enzymes such as
CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4. On the other
hand, avacennone B had no effect on any the previously men-
tioned cytochrome isoforms and thus it could be used safely with
other drugs with no need for dose adjustment. A worthy note, is
that both compounds had no violation any of the Druglikeness
rules (Lipinski, viber, Muegee, ghose, veber, and egan) making
them excellent drug candidates for future optimisation. Finally,
both compounds have no records in pan interference assays
(PAINS) giving rise to their potential high safety margin. We could
not get any information about the toxicity profile of both com-
pounds, however they have been reported in a number of previ-
ous in vivo studies56,57. Hence, to argument our safety claims, the
toxicity of both the compounds were predicted by calculating the
LD50 using PRO-ToX-II. Interestingly, diphyllin, and avacennone B
had LD50 of 2100mg/kg and 1130mg/kg ensuring their safety
margins.

Conclusion

The present study spotted the effectiveness of metabolites
identified by LC-HRESIMS for the chemical analysis of medi-
cinal plants. Concurrently, the methanol extract of T. grandifo-
lia showed potent anti-trypanosomal activity. Two of the
dereplicated molecules in the plant extract (i.e. diphyllin and

Figure 5. Protein-ligand contacts inside the rhodesain’ and farnesyl diphosphate synthase’s binding sites over 50 ns of MDS: (A–D) diphyllin and avacennone B along-
side the corresponding co-crystalized ligands, respectively.
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avacennone B) were identified as potential targets for rhode-
sain and farnesyl diphosphate synthase according to an in sil-
ico analysis that included inverse docking, molecular dynamic
simulation, and absolute binding free energy. This work
evoked the potential of T. grandifolia as a new prospective
source of bioactive compounds for the management of
trypanosomiasis.
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