
 

 

 
1. Introduction 
 

Studies on the different structures, including 
piezoelectric layers, have increased in the recent decade. 
Electro-mechanical coupling, large power generation, high-
frequency response and vacuum capability of piezoelectric 
materials made them widely employed in engineering 
purposes, like automobile industries, construction, 
computers and even orthopaedic usages (Kulkarni et al. 
2018; Taherifar et al. 2020; Liu et al. 2022; Panda et al. 
2022). Functionally graded (FG) structures have many 
outstanding properties compared to traditional materials, 
such as excellent heat resistance, high wear resistance, high 
stiffness, and long fatigue life (Koizumi 1993). Although 
combining FG plates with piezoelectric layers increases 
their applications, it also leads to more complex behaviour 
and the structure’s response due to electro-mechanical 
coupling (Martínez-Ayuso et al. 2019). A significant 
number of numerical and analytical methods have been 
presented for analyzing the smart FG structures in different 
conditions (Ebrahimi and Barati 2016; Ebrahimi and Barati 
2018; Ahmed et al. 2021; Tran et al. 2023). Lv et al. (2019) 
presented the Piezoelectric Element Differential Method, a 
new numerical method for simulating the electro-
mechanical behaviour of piezoelectric structures with FGM 
properties. Through solving various examples, they 
demonstrated the accuracy of the presented method. Fenjan, 
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Ahmed et al. (2020) presented the static stability buckling 
characteristics of quasi-3D piezo-magnetic functional 
grading nanoplates. Also, Fenjan, Ahmed et al. (2021) 
investigated the nonlinear thermal buckling behaviour of a 
nano-sized beam with piezo-magnetic properties, including 
geometrical imperfection. They studied the effect of 
electrical voltage, piezoelectric constituent volume and 
magnetic potential on buckling temperatures. Jiang et al. 
(2021) proposed the Zonal Free Element Method (ZFREM) 
handle piezoelectric structures with intricate shapes. They 
put the method to the test by solving multiple two-
dimensional (2D) and three-dimensional (3D) problems and 
were able to overcome challenges posed by corners by 
incorporating a mapping technique. Liu et al. (2021) 
investigated wave propagation analysis of small-scaled 
functionally graded piezoelectric (FGP) plates based on 
modified couple stress theory and proved that their 
presented formulation has high computational efficiency 
and good convergence. Fazeli et al. (2021) studied the 
vibration response of stepped cross-ply laminated 
composite beams with piezoelectric layers in different 
configurations and validated their results using finite 
element modelling and experiments. Abbaspour and Arvin 
(2021) applied the Ritz method based on FSDT for buckling 
analysis of nanocomposite microplates resting on an elastic 
foundation. They studied the effects of temperature, 
voltage, power-law index, and angular velocity of the 
structure under different loading conditions. Al-Osta (2022) 
presented the wave propagation analysis in porous FG 
plates subjected to hygrothermal environments using first-
order shear deformation theory (FSDT). They also studied 
the effect of temperatures and moisture on the power law 
parameter of the FG plate. Mirjavadi, Forsat et al. (2022) 
studied the nonlinear free vibrations of stiffened porous FG 
annular spherical shell segments. They considered two 
types of porosity distributions, including the effect of 
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stiffeners and the surrounding medium, and proposed an 
analytical method to solve the nonlinear governing 
equations. 

The spectral element method (SEM) is an almost new 
family of numerical methods whose basic concepts are 
introduced by Narayanan and Beskos (1978). The SEM is a 
frequency domain method; therefore, the first step in this 
method is transforming the differential equations of motion 
into the frequency domain using the Discrete Fourier 
Transform (DFT). The second step is determining the shape 
functions of the structure by solving the dispersion equation, 
and then the structure's dynamic stiffness matrix (DSM) is 
formulated. Attaining the exact results by using the least 
number of elements, performing the time and frequency 
domain analysis, and independence of the results to the 
number of elements (Lee 2009; Khalili et al. 2017) are 
some unique advantages of the SEM which make it an 
attractive method for wave propagation and dynamic 
analysis of various structures (Nanda and Kapuria 2015; 
Azandariani et al. 2022; Kulkarni et al. 2022). Liu 2016; 
Liu et al. (2016) have developed the SEM for modal and 
dynamic response analysis of a composite plate with 
different boundary conditions, non-uniform support, mass 
attachments, and elastic coupling constraints. They also 
solved a wide range of examples to manifest the 
applicability of the SEM for composite structures. Joglekar 
and Mitra (2016) have conducted the SEM for the wave 
propagation analysis of a cracked beam. They solved 
several examples and compared the SEM results with the 
finite element simulations to prove the method's capability. 
Furthermore, they presented a parametric study to 
investigate the effect of different kinds of cracks on the 
results. Mokhtari et al. (2017) have applied SEM for 
vibration analysis of a moving pre-tensioned beam. They 
presented a new technique to solve the partial differential 
equations and compared the SEM results with the finite 
element analyses. Abad and Rouzegar (2017) have 
developed the SEM for free vibration analysis of Levy-type 
smart FG plates with piezoelectric layers. They studied the 
effect of various parameters on the structure's natural 
frequencies, such as piezoelectric layers, FG plate 
thicknesses, and boundary conditions. Also, they developed 
the SEM for the dynamic response of smart isotropic plates 
under impact loading and introduced a new efficient and 
accurate algorithm to calculate the structure's natural 
frequencies (Abad and Rouzegar 2019). 

Though there are several studies on the dynamic 
analysis of smart plates by different analytical and 
numerical methods and the SEM has been employed for 
various analyses of plate structures, to the authors' 
knowledge, there is no study on the application of the SEM 
on dynamic analysis and wave propagation of smart FG 
plates. This research attempts to develop a spectral element 
formulation for wave propagation analysis of a Levy-type 
FG plate with two piezoelectric layers bonded to its 
surfaces under the action of moving and impact loadings. 
Additionally, various critical examples are solved to prove 
the application of the SEM method, such as plates with 
tapered thickness and the structure on elastic foundations. 
The results are compared with those obtained from Abaqus 

simulations and other existing solutions. Also, the effect of 
type of boundary conditions, piezoelectric layers thickness, 
power-law index and kind and amount of loading on the 
dynamic response of the smart FG plate is studied. 

 
 

2. Theoretical Formulation 
 
Figure 1 illustrates a rectangular FG plate with a thickness of 

2h and length a, width b (in x and y directions), which is 
integrated with two thin piezoelectric layers (with the thickness 
of hp). x and y are the in-plane coordinates, and z is in the normal 
direction of the Cartesian system, which is in the corner of the 
mid-plane of the structure. In this paper, the Levy-type boundary 
condition is considered for the structure; accordingly, edges 
located along x=0 and x=a are simply supported. 

 
 

 
Fig. 1 A schematic view of the FG plate integrated with two 

piezoelectric layers at the top and bottom surfaces. 
 
2.1 Governing equations 

 
Considering the Mindlin plate theory assumptions, the 

displacement field of the smart FG plate is written as: 

{

𝑢(𝑥, 𝑦, 𝑧)

𝑣(𝑥, 𝑦, 𝑧)

𝑤(𝑥, 𝑦, 𝑧)
} = {

𝑢0(𝑥, 𝑦, 𝑡)
𝜈0(𝑥, 𝑦, 𝑡)

𝑤0(𝑥, 𝑦, 𝑡)
} + 𝑧 {

𝜓𝑥(𝑥, 𝑦, 𝑡)

𝜓𝑦(𝑥, 𝑦, 𝑡)

0

} (1) 

where u0, v0, w0, 𝜓𝑥  and 𝜓𝑦  are five displacement 
components placed on the mid-plane of the base plate. The 
strain-displacement relationships are given by: 

{

휀𝑥𝑥
휀𝑦𝑦
𝛾𝑥𝑦

} = 휀0 + 𝑧𝜅0, {
𝛾𝑥𝑧
𝛾𝑦𝑧
} = 𝛾0 (2) 

where 

휀0 =

{
  
 

  
 

𝜕𝑢0
𝜕𝑥
𝜕𝑣0
𝜕𝑦

𝜕𝑢0
𝜕𝑦

+
𝜕𝑣0
𝜕𝑥 }
  
 

  
 

, 𝜅0 =

{
  
 

  
 

𝜕𝜓𝑥
𝜕𝑥
𝜕𝜓𝑦

𝜕𝑦

𝜕𝜓𝑥
𝜕𝑦

+
𝜕𝜓𝑦

𝜕𝑥 }
  
 

  
 

, 𝛾0 =

{
 

 𝜓𝑥 +
𝜕𝑤0
𝜕𝑥

𝜓𝑦 +
𝜕𝑤0
𝜕𝑦 }

 

 
 (3) 

The constitutive relations for the piezoelectric layers, which 
couple the electric and elastic fields, are expressed by: 
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where �̄�11  to �̄�55  and �̄�31  to �̄�51  are the stiffness 
coefficients and piezoelectric constants, respectively, as 
introduced in Appendix A. E and D are the electric field 
intensity and electric displacement vector, Ξ is the dielectric 
constant matrix and 휀, and 𝜎 are the strain and stress tensors. 
The constitutive relation for the FG plate is defined as: 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧}

 
 

 
 

=

[
 
 
 
 
𝑄11 𝑄12 0 0 0
𝑄12 𝑄11 0 0 0
0 0 𝑄44 0 0
0 0 0 𝑄55 0
0 0 0 0 𝑄66]

 
 
 
 

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

 (6) 

in which the coefficients Qij can be written as 

𝑄11 = 𝑄22 =
𝐸(𝑧)

1 − 𝜈2
 

𝑄12 =
𝑣𝐸(𝑧)

1 − 𝜈2
 

𝑄44 = 𝑄55 = 𝑄66 =
𝐸(𝑧)

2(1 + 𝜈)
 

(7) 

Material properties of the FG plate are considered to vary 
smoothly over the thickness based on the following power-law 
equation: 

𝐸(𝑧) = 𝐸𝑚 + (𝐸𝑐 − 𝐸𝑚) (
1

2
−
𝑧

2ℎ
)
𝑛

, 

𝜌(𝑧) = 𝜌𝑚 + (𝜌𝑐 − 𝜌𝑚) (
1

2
−
𝑧

2ℎ
)
𝑛

 
(8) 

In which n is the power-law index and subscripts c and m 
denote the characteristic of ceramic and metal parts, respectively. 
In Eq. (8), n=0 and n=∞ represents a fully ceramic and metal 
structure. According to the following relation, the electric field E 
is obtained from the electrostatic potential 𝜙: 

𝐸𝑖 = −𝜙,𝑖     𝑖 = 1, 2, 3 (9) 

In this paper, zero voltage condition is considered for the 
surfaces of piezoelectric layers; accordingly, the electrostatic 

potential is defined as (Rouzegar and Abad 2015): 
Hamilton's principle is employed for extracting the equations 

of motion of the smart FG plate. 

∫ (𝛿𝑈 + 𝛿𝑉 − 𝛿𝑇)
𝑡

0

𝑑𝑡 = 0 (11) 

where δ indicates the variation of parameters and V, T, and U 
are the work done by the applied loading, kinetic and strain 
energy, respectively. 

𝛿𝑉 = −∫∫(𝑓(𝑥, 𝑦, 𝑡)𝛿𝑤)𝑑𝑦𝑑𝑥
𝑦𝑥

 (12) 

𝛿𝑇 = 𝜌∫ ∫ ∫(�̇�𝛿�̇� + �̇�𝛿�̇� + �̇�𝛿�̇�)
𝑧𝑦𝑥

𝑑𝑧𝑑𝑦𝑑𝑥 (13) 

𝛿𝑈 = ∫∫ ∫(𝜎𝑥𝑥𝛿휀𝑥𝑥 + 𝜎𝑦𝑦𝛿휀𝑦𝑦 + 𝜏𝑥𝑦𝛿𝛾𝑥𝑦
𝑧𝑦𝑥

+ 𝜅𝜏𝑥𝑧𝛿𝛾𝑥𝑧 + 𝜅𝜏𝑦𝑧𝛿𝛾𝑦𝑧) 𝑑𝑧𝑑𝑦𝑑𝑥 
(14) 

where κ is the shear correction factor, and f (x,y,t) is the 
applied force in the z-direction. Regarding five independent 
variations (u0, v0, w0, 𝜓𝑥 and 𝜓𝑦 ), equations of motion are 
derived: 

𝛿𝑢0: 𝑁𝑥𝑥,𝑥 + 𝑁𝑥𝑦,𝑦 = 𝐼0�̈�0 + 𝐼1�̈�𝑥 

𝛿𝜈0: 𝑁𝑥𝑦,𝑥 + 𝑁𝑦𝑦,𝑦 = 𝐼0�̈�0 + 𝐼1�̈�𝑦 

𝛿𝜓𝑥: 𝑀𝑥𝑥,𝑥 +𝑀𝑥𝑦,𝑦 − 𝑄𝑥 = 𝐼1�̈�0 + 𝐼2�̈�𝑥 + 𝑐0�̇�𝑥  

𝛿𝜓𝑦: 𝑀𝑦𝑦,𝑦 +𝑀𝑥𝑦,𝑦 − 𝑄𝑦 = 𝐼1�̈�0 + 𝐼2�̈�𝑦 + 𝑐0�̇�𝑦 

𝛿𝑤: 𝑄𝑥,𝑥 + 𝑄𝑦,𝑦 = 𝐼0�̈� + 𝑐0�̇� 

(15) 

The following damping coefficient, which is related to the 
mean value of mass density, damping ratio (𝜉), and fundamental 
natural frequency, is added to Eq. (15) to modify the inertia 
terms (Lee 2009; Shirmohammadi, Bahrami et al. 2015): 

𝑐0 = 2𝜌𝜔1𝜉 (16) 

In which stress resultants and inertias of the structure are 
defined in Eq. (17). 

{
 
 

 
 
𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦
𝜎𝑥𝑧
𝜎𝑦𝑧}

 
 

 
 

=

[
 
 
 
 
 
�̄�11 �̄�12 0 0 0

�̄�12 �̄�11 0 0 0

0 0
1

2
(�̄�11 − �̄�12) 0 0

0 0 0 𝐶55 0
0 0 0 0 𝐶55]

 
 
 
 
 

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

−

[
 
 
 
 
0 0 �̄�31
0 0 �̄�31
0 0 0

−𝑒51 0 0
0 −𝑒51 0 ]

 
 
 
 

{

𝐸𝑥
𝐸𝑦
𝐸𝑧

} (4) 

{

𝐷𝑥
𝐷𝑦
𝐷𝑧

} = [

0 0 0 𝑒51 0
0 0 0 0 𝑒51
�̄�31 �̄�31 0 0 0

]

{
 
 

 
 
휀𝑥𝑥
휀𝑦𝑦
𝛾𝑥𝑦
𝛾𝑥𝑧
𝛾𝑦𝑧}
 
 

 
 

+ [

𝛯11 0 0
0 𝛯11 0

0 0 �̄�33

] {

𝐸𝑥
𝐸𝑦
𝐸𝑧

} (5) 

𝜙(𝑥, 𝑦, 𝑧, 𝑡) =

{
 
 
 

 
 
 

𝜑(𝑥, 𝑦, 𝑡)

[
 
 
 

1 − (
𝑧 − ℎ −

ℎ𝑝
2

ℎ𝑝
2

)

2

]
 
 
 

, ℎ ≤ 𝑧 ≤ ℎ + ℎ𝑝

𝜑(𝑥, 𝑦, 𝑡)

[
 
 
 

1 − (
−𝑧 − ℎ −

ℎ𝑝
2

ℎ𝑝
2

)

2

]
 
 
 

, −ℎ − ℎ𝑝 ≤ 𝑧 ≤ −ℎ

 (10) 
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(𝑁𝑥𝑥 , 𝛮𝑦𝑦 , 𝛮𝑥𝑦) = ∫ (𝜎𝑥, 𝜎𝑦 , 𝜎𝑥𝑦)𝑑𝑧
ℎ+ℎ𝑝

−ℎ−ℎ𝑝

, 

(𝐼𝑖) = ∫ 𝜌𝑧𝑖𝑑𝑧
ℎ+ℎ𝑝

−ℎ−ℎ𝑝

, 

(𝛭𝑥𝑥 , 𝛭𝑦𝑦 , 𝛭𝑥𝑦) = ∫ (𝜎𝑥 , 𝜎𝑦 , 𝜎𝑥𝑦)𝑧𝑑𝑧
ℎ+ℎ𝑝

−ℎ−ℎ𝑝

, 

(𝑄𝑦𝑧 , 𝑄𝑥𝑧) = ∫ (𝜎𝑦𝑧, 𝜎𝑥𝑧)𝑑𝑧
ℎ+ℎ𝑝

−ℎ−ℎ𝑝

 

(17) 

By substituting Eqs. (1-4) and (17) into Eq. (15), the 
differential equations are obtained in terms of displacements 
components: 

𝐴11(𝑢0,𝑥𝑥 + 𝜈0,𝑥𝑦) + 𝐴66(𝑢0,𝑦𝑦 − 𝜈0,𝑥𝑦) + 𝐵11(𝜓𝑥,𝑥𝑥
+ 𝜓𝑦,𝑥𝑦) + 𝐵66(𝜓𝑥,𝑦𝑦 − 𝜓𝑦,𝑥𝑦)

= 𝐼0�̈�0 + 𝐼1�̈�𝑥 
(18a) 

𝐴11(𝑢0,𝑥𝑦 + 𝜈0,𝑦𝑦) − 𝐴66(𝑢0,𝑥𝑦 − 𝜈0,𝑥𝑥) + 𝐵11(𝜓𝑥,𝑥𝑦
+ 𝜓𝑦,𝑦𝑦) − 𝐵66(𝜓𝑥,𝑥𝑦 −𝜓𝑦,𝑥𝑥)

= 𝐼0�̈�0 + 𝐼1�̈�𝑦 
(18b) 

𝐵11(𝑢0,𝑥𝑥 + 𝜈0,𝑥𝑦) + 𝐵66(𝑢0,𝑦𝑦 − 𝜈0,𝑥𝑦)

− 𝐴55(𝑤,𝑥 +𝜓𝑥) + 𝐹11(𝜓𝑥,𝑥𝑥
+𝜓𝑦,𝑥𝑦) + 𝐹66(𝜓𝑥,𝑦𝑦 − 𝜓𝑦,𝑥𝑦)

+ (𝜆2 − 𝜆1)𝜑,𝑥
= 𝐼1�̈�0 + 𝐼2�̈�𝑥 + 𝑐0�̇�𝑥 

(18c) 

𝐵11(𝑢0,𝑥𝑦 + 𝜈0,𝑦𝑦) − 𝐵66(𝑢0,𝑥𝑦 − 𝜈0,𝑥𝑥)

− 𝐴55(𝑤,𝑦 + 𝜓𝑦) + 𝐹11(𝜓𝑥,𝑥𝑦
+𝜓𝑦,𝑦𝑦) − 𝐹66(𝜓𝑥,𝑥𝑦 − 𝜓𝑦,𝑥𝑥)

+ (𝜆2 − 𝜆1)𝜑,𝑥
= 𝐼1�̈�0 + 𝐼2�̈�𝑦 + 𝑐0�̇�𝑦 

(18d) 

𝐴55(𝑤,𝑥𝑥 +𝑤,𝑦𝑦 + 𝜓𝑥,𝑥 + 𝜓𝑦,𝑦) − 𝜆2(𝜑,𝑥𝑥 + 𝜑,𝑦𝑦)

+ 𝑓(𝑥, 𝑦, 𝑡) = 𝐼0�̈� + 𝑐0�̇� (18e) 

In which the coefficients Aij, Bij, Fij are the structure stiffness, 
and λi are introduced in Appendix A. The potential electric field 
of the piezoelectric layer can be achieved by considering the 
integral form of Maxwell's equation: 

∫ �⃗� ⋅ �⃗⃗� 
ℎ+ℎ𝑝

ℎ

𝑑𝑧 + ∫ �⃗� ⋅ �⃗⃗� 
−ℎ

−ℎ−ℎ𝑝

𝑑𝑧 = 0 (19) 

Substituting Eqs. (1-5) and (9-10), into Eq. (19) yields: 

𝜆3𝛻
2𝑤 + 𝜆2𝛻

2𝜑 + 𝜆4(𝜓𝑥,𝑥 + 𝜓𝑦,𝑦) + 𝜆5𝜑 = 0 (20) 

By applying the Discrete Fourier Transform (DFT) theory, 

equations (18) and (20), which are the time domain illustration 
of differential equations, can be transformed into the frequency 
domain. The spectral form of the displacement and electrostatic 
potential components are: 

{
  
 

  
 
𝑢0(𝑥, 𝑦, 𝑡)

𝜈0(𝑥, 𝑦, 𝑡)

𝜓𝑥(𝑥, 𝑦, 𝑡)

𝜓𝑦(𝑥, 𝑦, 𝑡)

𝑤(𝑥, 𝑦, 𝑡)

𝜑(𝑥, 𝑦, 𝑡) }
  
 

  
 

=∑

{
  
 

  
 
�̄�0,𝑛(𝑥, 𝑦; 𝜔𝑛)

�̄�0,𝑛(𝑥, 𝑦; 𝜔𝑛)

�̄�𝑥,𝑛(𝑥, 𝑦; 𝜔𝑛)

�̄�𝑦,𝑛(𝑥, 𝑦;𝜔𝑛)

�̄�𝑛(𝑥, 𝑦; 𝜔𝑛)

�̄�𝑛(𝑥, 𝑦; 𝜔𝑛) }
  
 

  
 

𝑒𝑥𝑝( 𝑖𝜔𝑛𝑡)

𝑁

𝑛=1

 (21) 

Also, the spectral form of the external force is: 

𝑓(𝑥, 𝑦, 𝑡) = ∑ �̄�(𝑥, 𝑦; 𝜔𝑛) 𝑒𝑥𝑝( 𝑖𝜔𝑛𝑡)

𝑁

𝑛=1

 (22) 

In which N is the number of time samples. Accurate results 
in the Fourier transform depend on the sample time; accordingly, 
several parameters should be considered for choosing a proper 
value for N (Newland 2012). For briefness, the indexes n will be 
neglected in the subsequent relations. Substituting Eq. (21) into 
Eqs. (18) and (20) lead to the frequency domain representation 
of differential equations: 

𝐴11(�̄�0,𝑥𝑥 + �̄�0,𝑥𝑦) + 𝐴66(�̄�0,𝑦𝑦 − �̄�0,𝑥𝑦) + 𝐵11(�̄�𝑥,𝑥𝑥
+ �̄�𝑦,𝑥𝑦) + 𝐵66(�̄�𝑥,𝑦𝑦 − �̄�𝑦,𝑥𝑦)

+ 𝐼0𝜔
2�̄�0 + 𝐼1𝜔

2�̄�𝑥 = 0 
(23a) 

𝐴11(�̄�0,𝑥𝑦 + �̄�0,𝑦𝑦) − 𝐴66(�̄�0,𝑥𝑦 − �̄�0,𝑥𝑥) + 𝐵11(�̄�𝑥,𝑥𝑦
+ �̄�𝑦,𝑦𝑦) − 𝐵66(�̄�𝑥,𝑥𝑦 − �̄�𝑦,𝑥𝑥)

+ 𝐼0𝜔
2�̄�0 + 𝐼1𝜔

2�̄�𝑦 = 0 
(23b) 

𝐵11(�̄�0,𝑥𝑥 + �̄�0,𝑥𝑦) + 𝐵66(�̄�0,𝑦𝑦 − �̄�0,𝑥𝑦)

− 𝐴55(�̄�,𝑥 + �̄�𝑥) + 𝐹11(�̄�𝑥,𝑥𝑥
+ �̄�𝑦,𝑥𝑦) + 𝐹66(�̄�𝑥,𝑦𝑦 − �̄�𝑦,𝑥𝑦)

+ (𝜆2 − 𝜆1)�̄�,𝑥 + 𝐼1𝜔
2�̄�0

+ (𝐼2𝜔
2 − 𝑖𝑐0𝜔)�̄�𝑥 = 0 

(23c) 

𝐵11(�̄�0,𝑥𝑦 + �̄�0,𝑦𝑦) − 𝐵66(�̄�0,𝑥𝑦 − �̄�0,𝑥𝑥) + 𝐹11(�̄�𝑥,𝑥𝑦
+ �̄�𝑦,𝑦𝑦) − 𝐹66(�̄�𝑥,𝑥𝑦 − �̄�𝑦,𝑥𝑥)

− 𝐴55(�̄�,𝑦 + �̄�𝑦) + (𝜆2 − 𝜆1)�̄�,𝑥
+ 𝐼1𝜔

2�̄�0 + (𝐼2𝜔
2 − 𝑖𝑐0𝜔)�̄�𝑦 = 0 

(23d) 

𝐴55(�̄�,𝑥𝑥 + �̄�,𝑦𝑦 + �̄�𝑥,𝑥 + �̄�𝑦,𝑦) − 𝜆2(�̄�,𝑥𝑥 + �̄�,𝑦𝑦)

+ �̄�(𝑥, 𝑦) + (𝐼0𝜔
2 − 𝑖𝑐0𝜔)�̄� = 0 (23e) 

𝜆2(𝛻
2�̄� − 𝛻2�̄�) + 𝜆3(�̄�𝑥,𝑥 + �̄�𝑦,𝑦) + 𝜆4�̄� = 0 (23f) 

 
2.2 Exact Dynamic Shape Functions 
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Application of the exact spectral element method in the analysis of the smart functionally graded plate 

 

In order to form the exact dynamic shape functions of 
the differential equation, it is required to build and solve the 
dispersion equation. The series presented in Eq. (24) are 
defined for displacement and electrostatic potential 
components, where m and k represent wave and mode numbers. 
By substituting Eq. (24) into the homogenous form (setting 
�̄�(𝑥, 𝑦) = 0) of Eq. (23), the following eigenvalue problem is 
obtained for the rectangular Levy-type smart FG plate: 

[
 
 
 
 
 
𝑧11 𝑧12 𝑧13 𝑧14 𝑧15 𝑧16
𝑧21 𝑧22 𝑧23 𝑧24 𝑧25 𝑧26
𝑧31 𝑧32 𝑧33 𝑧34 𝑧35 𝑧36
𝑧41 𝑧42 𝑧43 𝑧44 𝑧45 𝑧46
𝑧51 𝑧52 𝑧53 𝑧54 𝑧55 𝑧56
𝑧61 𝑧62 𝑧63 𝑧64 𝑧65 𝑧66]

 
 
 
 
 

{
 
 

 
 
1
𝑟1
𝑟2
𝑟3
𝑟4
𝑟5}
 
 

 
 

𝑐 = 0 (25) 

In which the components of matrix z are defined in 
Appendix B. Setting the determinant of the coefficient matrix 
equal to zero, a 12th-order dispersion equation is achieved: 

𝑘12 + 𝑑1𝑘
10 + 𝑑2𝑘

8 + 𝑑3𝑘
6 + 𝑑4𝑘

4 + 𝑑5𝑘
2 + 𝑑6 = 0 (26) 

 

where 

By solving the dispersion equation, twelve wave numbers kq 
(q=1, 2, 3, …, 12) and five eigenvectors rpq (p=1, 2, …, 5; q=1, 2, 
3, …, 12) will be obtained. By applying these results in Eq. (24), 
the exact dynamic shape function of the structure can be 
rewritten (Eq. 27). By applying twelve boundary conditions on 

edges y=0 and y=b, constant vectors (cq) will be determined. It 
worth noting that on these edges, piezoelectric layers are 
electrically insulated (Farsangi et al. 2013): 

 
2.3 Dynamic stiffness matrix 

 
There are several methods to formulate the Dynamic 

Stiffness Matrix (DSM). The force-displacement method is the 
most convenient one, which obtains the DSM by relating nodal 
displacements and force vectors (Szilard 2004). The values of 
the spectral form of displacement, electrostatic potential, and 
stress resultants on two edges of the element are as below (Eqs. 
30 and 31): 

�̄�01 = �̄�0(𝑥, 0; 𝜔), �̄�02 = �̄�0(𝑥, 𝑏; 𝜔),

�̄�01 = �̄�0(𝑥, 0; 𝜔), �̄�02 = �̄�0(𝑥, 𝑏; 𝜔),

�̄�𝑥1 = �̄�𝑥(𝑥, 0; 𝜔), �̄�𝑥2 = �̄�𝑥(𝑥, 𝑏; 𝜔),

�̄�𝑦1 = �̄�𝑦(𝑥, 0; 𝜔), �̄�𝑦2 = �̄�𝑦(𝑥, 𝑏; 𝜔),

�̄�1 = �̄�(𝑥, 0; 𝜔), �̄�2 = �̄�(𝑥, 𝑏; 𝜔),

�̄�1 = �̄�(𝑥, 0; 𝜔), �̄�2 = �̄�(𝑥, 𝑏; 𝜔)

 (30) 

 

The following connection is employed for nodal 
displacements and electrostatic potential on two edges of the 
element: 

 
 

�̄�0𝑛(𝑥, 𝑦; 𝜔𝑛) = ∑ 𝑐 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑒𝑥𝑝( − 𝑖𝑘𝑦)

∞

𝑚=1

, �̄�0𝑛(𝑥, 𝑦; 𝜔𝑛) = ∑ 𝑟1
𝑚𝑐 𝑠𝑖𝑛 (

𝑚𝜋

𝑎
𝑥) 𝑒𝑥𝑝( − 𝑖𝑘𝑦)

∞

𝑚=1

 

�̄�𝑥𝑛(𝑥, 𝑦; 𝜔𝑛) = ∑ 𝑟2
𝑚𝑐 𝑐𝑜𝑠 (

𝑚𝜋

𝑎
𝑥) 𝑒𝑥𝑝( − 𝑖𝑘𝑦)

∞

𝑚=1

, �̄�𝑦𝑛(𝑥, 𝑦; 𝜔𝑛) = ∑ 𝑟3
𝑚𝑐 𝑠𝑖𝑛 (

𝑚𝜋

𝑎
𝑥) 𝑒𝑥𝑝( − 𝑖𝑘𝑦)

∞

𝑚=1

 

�̄�𝑛(𝑥, 𝑦; 𝜔𝑛) = ∑ 𝑟4
𝑚𝑐 𝑠𝑖𝑛 (

𝑚𝜋

𝑎
𝑥) 𝑒𝑥𝑝( − 𝑖𝑘𝑦), �̄�𝑛(𝑥, 𝑦; 𝜔𝑛) = ∑ 𝑟5

𝑚𝑐 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) 𝑒𝑥𝑝( − 𝑖𝑘𝑦)

∞

𝑚=1

∞

𝑚=1

 

(24) 

�̄�0𝑛(𝑥, 𝑦; 𝜔𝑛) = ∑∑𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑐𝑞 𝑒𝑥𝑝( − 𝑖𝑘𝑞𝑦)

12

𝑞=1

∞

𝑚=1

= ∑ 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥)

∞

𝑚=1

�̂�(𝑦, 𝜔)𝑐𝑇 

�̄�0𝑛(𝑥, 𝑦; 𝜔𝑛) = ∑∑𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) 𝑟1𝑞

𝑚𝑐𝑞 𝑒𝑥𝑝( − 𝑖𝑘𝑞𝑦)

12

𝑞=1

∞

𝑚=1

= ∑ 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥)

∞

𝑚=1

𝑅1�̂�(𝑦, 𝜔)𝑐
𝑇 

�̄�𝑥𝑛(𝑥, 𝑦; 𝜔𝑛) = ∑∑𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥) 𝑟2𝑞

𝑚𝑐𝑞 𝑒𝑥𝑝( − 𝑖𝑘𝑞𝑦)

12

𝑞=1

∞

𝑚=1

= ∑ 𝑐𝑜𝑠 (
𝑚𝜋

𝑎
𝑥)

∞

𝑚=1

𝑅2�̂�(𝑦, 𝜔)𝑐
𝑇  

�̄�𝑦𝑛(𝑥, 𝑦; 𝜔𝑛) = ∑∑𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) 𝑟3𝑞

𝑚𝑐𝑞 𝑒𝑥𝑝( − 𝑖𝑘𝑞𝑦)

12

𝑞=1

∞

𝑚=1

= ∑ 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥)

∞

𝑚=1

𝑅3�̂�(𝑦, 𝜔)𝑐
𝑇  

�̄�𝑛(𝑥, 𝑦; 𝜔𝑛) = ∑∑𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) 𝑟4𝑞

𝑚𝑐𝑞 𝑒𝑥𝑝( − 𝑖𝑘𝑞𝑦)

12

𝑞=1

∞

𝑚=1

= ∑ 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥)𝑅4�̂�(𝑦, 𝜔)𝑐

𝑇

∞

𝑚=1

 

�̄�𝑛(𝑥, 𝑦; 𝜔𝑛) = ∑∑𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥) 𝑟5𝑞

𝑚𝑐𝑞 𝑒𝑥𝑝( − 𝑖𝑘𝑞𝑦)

12

𝑞=1

∞

𝑚=1

= ∑ 𝑠𝑖𝑛 (
𝑚𝜋

𝑎
𝑥)

∞

𝑚=1

𝑅5�̂�(𝑦, 𝜔)𝑐
𝑇  

(27) 

�̂�(𝑦, 𝜔) = {𝑒𝑥𝑝( − 𝑖𝑘1𝑦) 𝑒𝑥𝑝( − 𝑖𝑘2𝑦) 𝑒𝑥𝑝( − 𝑖𝑘3𝑦). . . 𝑒𝑥𝑝( − 𝑖𝑘12𝑦)} 
𝑐 = {𝑐1 𝑐2 𝑐3. . . 𝑐12} 

𝑅𝑝(𝜔) = 𝑑𝑖𝑎𝑔[𝑟𝑝𝑞
𝑚], (𝑝 = 1,2,3,4,5; 𝑞 = 1,2,3, . . . ,12) 

(28) 

𝑎𝑡 𝑦 = 0, 𝑏 → {

𝑒𝑖𝑡ℎ𝑒𝑟𝜑(𝑥, 𝑦, 𝑡)|𝑦=0,𝑏 = 0

𝑜𝑟∫ 𝐷𝑧(𝑥, 𝑦, 𝑧, 𝑡)|𝑦=0,𝑏
ℎ+ℎ𝑝

ℎ
𝑑𝑧 +∫ 𝐷𝑧(𝑥, 𝑦, 𝑧, 𝑡)|𝑦=0,𝑏

−ℎ

−ℎ−ℎ𝑝

𝑑𝑧 = 0
 (29) 

Application of the exact spectral element method in the analysis of the smart functionally graded plate

5



Farhad Abad, Jafar Rouzegar and Saeid Lotfian 

 

�̄�𝑥𝑦1 = �̄�𝑥𝑦(𝑥, 0; 𝜔), �̄�𝑥𝑦2 = �̄�𝑥𝑦(𝑥, 𝑏; 𝜔),

�̄�𝑦1 = �̄�𝑦(𝑥, 0; 𝜔), �̄�𝑦2 = �̄�𝑦(𝑥, 𝑏; 𝜔),

�̄�𝑥𝑦1 = �̄�𝑥𝑦(𝑥, 0; 𝜔), �̄�𝑥𝑦2 = �̄�𝑥𝑦(𝑥, 𝑏; 𝜔),

�̄�𝑦1 = �̄�𝑦(𝑥, 0; 𝜔), �̄�𝑦2 = �̄�𝑦(𝑥, 𝑏; 𝜔),

�̄�𝑦1 = �̄�𝑦(𝑥, 0;𝜔), �̄�𝑦2 = �̄�𝑦(𝑥, 𝑏;𝜔),

�̄�𝑦1 = �̄�𝑦(𝑥, 0; 𝜔), �̄�𝑦2 = �̄�𝑦(𝑥, 𝑏; 𝜔),

 

𝑋𝑦 = ∫ 𝐷𝑧(𝑥, 𝑦, 𝑧, 𝑡)
ℎ+ℎ𝑝

ℎ

𝑑𝑧 + ∫ 𝐷𝑧(𝑥, 𝑦, 𝑧, 𝑡)
−ℎ

−ℎ−ℎ𝑝

𝑑𝑧 

(31) 

where 

𝐻(𝜔) =

[
 
 
 
 
 
 
 
 
 
 
 
1 1 1 . . . 1
𝑟11 𝑟12 𝑟13 . . . 𝑟112
𝑟21 𝑟22 𝑟23 . . . 𝑟212
𝑟31 𝑟32 𝑟33 . . . 𝑟312
𝑟41 𝑟42 𝑟43 . . . 𝑟412
𝑟51 𝑟52 𝑟53 . . . 𝑟512
𝑒1 𝑒2 𝑒3 . . . 𝑒12
𝑟11𝑒1 𝑟12𝑒2 𝑟13𝑒3 . . . 𝑟112𝑒12
𝑟21𝑒1 𝑟22𝑒2 𝑟23𝑒3 . . . 𝑟212𝑒12
𝑟31𝑒1 𝑟32𝑒2 𝑟33𝑒3 . . . 𝑟312𝑒12
𝑟41𝑒1 𝑟42𝑒2 𝑟43𝑒3 . . . 𝑟412𝑒12
𝑟51𝑒1 𝑟52𝑒2 𝑟53𝑒3 . . . 𝑟512𝑒12]

 
 
 
 
 
 
 
 
 
 
 

 (33) 

In which �̂�1, �̂�2, �̂�3, . . . , �̂�12  are the components of the 
vector �̂�(𝑦, 𝜔) . Furthermore, the following relation can be 
applied to the nodal force vector: 

The matrix D(ω) components are defined in Appendix B. By 
eliminating the constant vector c from Eqs. (32) and (34) and 
connecting nodal force and nodal displacement vectors, the 
dynamic stiffness matrix can be expressed as: 

[�̄�(𝜔)] = [𝐷(𝜔)]. [𝐻(𝜔)]−1 (35) 

In which �̄�(𝜔) is the elemental DSM. The Global DSM for 
the smart FG plate, which is called �̄�𝑔(𝜔), can be obtained by 
assembling the elemental DSM. It should be noted that, in the 
SEM, the assemblage process of the global system of equations 
is similar to the procedure of conventional FEM. In the 
frequency domain, the global displacement vector, dg, and global 
force vector, fg, are related by the global dynamic stiffness matrix: 

�̄�𝑔(𝜔)𝑑𝑔 = 𝑓𝑔 (36) 

The spectral nodal displacement can be determined as: 

𝑑𝑔 = 𝑆𝑔(𝜔𝑛)
−1𝑓𝑔 (37) 

In Eq. (37), the nodal displacements are in the frequency 
domain, and by using the Inverse Fast Fourier Transform (IFFT), 
the time-domain nodal displacements can be generated. Finally, 
the fundamental natural frequency of the structure can be 
calculated by setting the determinant of the DSM equal to zero: 

𝑑𝑒𝑡 �̄�𝑔(𝜔𝑁𝐴𝑇) = 0 (38) 

 

3. Numerical results 
 
Several examples are solved in this section to prove the 

exactness and efficiency of the presented method in free 
vibration and dynamic analysis of smart FG plates. In free 
vibration examples, only one or, in some cases, two spectral 
elements are utilized, and the results are confirmed by those 
obtained by other exact analytical methods. For dynamic 
analysis of smart isotropic and FG plates under different impact 
and moving loads, in order to apply the load in the middle of the 
plate and extract the transverse displacement of the middle point, 

two elements (for all kinds of boundary conditions) are 
employed and Abaqus software outputs validate the results. The 
mechanical and electrical properties of materials used in the 
following examples are tabulated in Table 1 (Farsangi et al. 
2013). The material of the FG plate gradually varies through the 
thickness from the metal component (Ti-6Al-4V or Al) to the 
ceramic component (Aluminium Oxid or Al2O3). 

 
Example 1 
In this example, the accuracy and precision of the SEM in 

free and forced vibration analysis of square FG plates are 
investigated. In Table 2, the first three natural frequency 

parameters ( �̑� =
𝜔𝜋2𝑎2

ℎ
√
𝜌𝑚

𝐸𝑚
) of the FG plate (made of 

Al/Al2O3) with different power-law indices and various 
boundary conditions (which are a combination of Free (F), 
Simply supported (S), and Clamped (C) edges) are presented. 

Only one or two (for the SCSC boundary condition) elements 
are used in this example, and it can be observed from Table 2 
that the results obtained by the SEM are in remarkable 
agreement with the Abaqus and analytical solutions. Also, the 
dynamic response of the SSSS FG plate under the action of an 
impact load, shown in Fig. 2, is depicted in Fig. 3, and obtained 
results are validated by those of the Abaqus simulation. For 
simulating the FG plate by Abaqus software, it is necessary to 
develop several partitions with different material properties 
through the plate thickness. Consequently, the plate is discretized 
by the solid element C3D8R. In order to achieve accurate results, 
at least 3 or 4 elements should be considered through the 
thickness of each partition, and accordingly, more elements are 
needed in the side directions to have a suitable element aspect 
ratio. As seen in Fig. 3, the Abaqus outputs (with 820000 
elements and more than 14 hours run time with an i7 32GB Ram 
Desktop PC) are not exactly matched with those of the SEM. 
According to Fig. 3, the FE result's frequency and amplitude are 
higher and lower than the SEM results. According to Fig. 3, the 
FE result's frequency and amplitude are higher and lower than 
the SEM results. The FE result will be improved by increasing 
the number of elements in the thickness direction and 
consequently decreasing the structural stiffness, but this issue 
significantly increases the run time. Thus, in these examples, the 
results of the FG plate with Abaqus software are validated for 
perfect ceramic (n = 0) and metal (n = ∞) plates, which can be 
handled using shell element S4R. It should be noted that the 

{�̄�01 �̄�01 �̄�𝑥1 �̄�𝑦1 �̄�1 �̄�1 �̄�02 �̄�02 �̄�𝑥2 �̄�𝑦2 �̄�2 �̄�2}
𝑇
= 𝐻(𝜔)𝑐𝑇  (32) 

{�̄�𝑥𝑦1 �̄�𝑦1 �̄�𝑥𝑦1 �̄�𝑦1 �̄�𝑦1 �̄�𝑦1 �̄�𝑥𝑦2 �̄�𝑦2 �̄�𝑥𝑦2 �̄�𝑦2 �̄�𝑦2 �̄�𝑦2}
𝑇
= 𝐷(𝜔)𝑐𝑇 (34) 
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SEM accurate results, using only one or two elements, prove the 
proposed approach's efficiency in free and forced vibration 
analysis of FG plates. 

 

 

 
 
 
 

 

Table 1 Material properties of plates and piezoelectric. 

Property Core plate  Piezoelectric layer 
Ti-6Al-4V Aluminium oxide Al Al2O3 G-1195 N PZT-4 

(GPa)E  105.7 320.24 70 380  63.0 - 
υ 0.2981 0.2600 0.3 0.3  0.3 - 
C11 (GPa) - - - -  - 132 
C12 (GPa) - - - -  - 71 
C33 (GPa) - - - -  - 115 
C13 (GPa) - - - -  - 73 
C55 (GPa) - - - -  - 26 
e31 (cm-2) - - - -  44.37 -4.1 
e33 (cm-2) - - - -  50.18 14.1 
e15 (cm-2) - - - -  14.13 10.5 
Ξ11 (nFm-1) - - - -  15.30 7.124 
Ξ33 (nFm-1) - - - -  15.00 5.841 
ρ (kgm-3) 4429 3750 2707 3800  7600 7500 

 

Table 2 Three frequency parameters of square FG plate with different power law indices and boundary conditions 
(2h/a=0.01).  

BCs. n
 

Method Mode numbers 
1st 2nd 3rd  

SCSC 0.5 Present 143.86 (1,1) 271.92 (1,2) 469.37 (2,2) 
  Exact* 143.82 272.11 470.08 
 2 Present 117.86 (1,1) 222.78 (1,2) 384.53 (2,2) 
  Exact 117.81 222.81 385.07 

SSSS 0.5 Present 98.13 (1,1) 245.21 (1,2) 392.14 (2,2) 
  Exact 98.01 245.33 392.44 
 2 Present 80.40 (1,1) 200.89 (1,2) 321.26 (2,2) 
  Exact 80.35 200.88 321.41 

SCSS 0.5 Present 117.53 (1,1) 256.74 (1,2) 427.63 (2,2) 
  Exact 117.42 256.78 428.15 
 2 Present 96.29 (1,1) 210.33 (1,2) 350.34 (2,2) 
  Exact 96.27 210.39 350.71 

SSSF 0.5 Present 58.06 (1,1) 137.79 (2,1) 293.16 (2,2) 
  Exact 58.03 137.40 293.65 
 2 Present 47.57 (1,1) 112.88 (2,1) 251.53 (2,2) 
  Exact 47.55 112.96 251.92 

SFSF 0.5 Present 47.88 (1,1) 80.06 (2,1) 182.09 (3,1) 
  Exact 47.75 80.16 182.44 
 2 Present 39.22 (1,1) 65.59 (2,1) 149.18 (3,1) 
  Exact 39.17 65.64 149.06 

SFSC 0.5 Present 63.03 (1,1) 164.09 (2,1) 312.64 (2,2) 
  Exact 63.08 164.39 313.26 
 2 Present 51.64 (1,1) 134.44 (2,1) 256.14 (2,2) 
  Exact 51.63 134.70 256.58 

*(Baferani et al. 2011) 

  
(a) Time domain (b) Frequency domain 

Fig. 2 Triangular impact load in time and frequency domain 
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Fig. 3 Dynamic response of FG plate (n=1) under impact 

loading (a=2 m, 2h=0.02 m) 
 

 
Fig. 4 Dynamic response of FG plate under impact loading 

(a=2 m, 2h=0.02 m) 
 
Figure 4 shows the dynamic response of the SSSS FG plate 

with different power-law indices. As observed for two ceramic 
and metal plate limits, the SEM results are perfectly matched 
with the FE simulations. By changing the power-law index, the 
results vary between the margins of those of metal and ceramic. 

 
Example 2 
In this example, the exactness of the SEM in estimating the 

natural frequencies of the thin and thick FG plates (Al/Al2O3) 
integrated with two PZT-4 layers at the top and bottom faces is 
examined in Tables 3 and 4, respectively. It can be concluded 
from both tables that the smart FG plate with the higher 
thickness or more constraint has a higher natural frequency. 
According to the material properties listed in Table 1, by 
increasing n, the density and module of elasticity decrease and 
increase, respectively; consequently, increasing n decreases the 
natural frequency of the smart FG plates. Also, the Tables show 
that the percentage of errors in the SEM results compared with 
the analytical solution is less than 0.02%, proving the presented 
formulation's excellent accuracy. 

The effect of the power-law index (n) on the dynamic 
response of the fully simply supported smart FG plate under 
impact loading is plotted in Fig. 5. It can be seen, by increasing n, 
the central deflection decreases, and in the case of n=0 (metal 
plate, Ti-6Al-4V), the dynamic response has the highest 
amplitude and lowest frequency. It should be mentioned that 
seven harmonic series (m=7) are used to reach a converged 
result. In Fig. 6, the transverse displacement of the above-

mentioned smart FG plate (a=2 m, 2h=0.02 m, n=0.5) subjected 
to a triangular-shape impulsive load in the frequency domain is 
plotted, and the natural frequency of 73.2 Hz is distinguished in 
the figure. 

 

 
Fig. 5 Dynamic response of smart FG plate with different 

power law index under impact load 
 

 
Fig. 6 The transverse displacement of the smart FG plate in 

the frequency domain 
 
Example 3 
This example shows the SE method's performance in 

calculating the natural frequencies of the different structures. 
Initially, the natural frequencies of the linearly varying (tapered) 
thickness smart plate are calculated. The plate is modelled as a 
stepped structure and divided into some rectangular strip 
elements with a constant thickness (as depicted in Fig. 7). 

 

 
(a) Tapered thickness structure 

 
(b) Elements with a constant thickness 

Fig. 7 A schematic view of linearly variable thickness smart 
plate 

 
The tapered ratio parameter is defined as follows (Mlzusawa 

1993): 
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𝜆 = (ℎ1 − ℎ0)/ℎ0 (39) 

In Table 5, the first eight frequency parameters ( �̄� =

𝜔𝑎2√
𝜌ℎ0

𝐷0
) of an isotropic tapered square plate (ℎ0 = 0.1, 𝜆 =

0.5) are tabulated, and excellent agreement between the SEM 
results (with four strip elements) and other analytical solutions is 
evident. 

Table 6 shows the convergence of both Abaqus and SEM 
results for the natural frequency of an Al2O3 plate (a=1 m, 
h0=0.1 m, h1=0.125 m, hp=0.01 m) with two PZT-4 layers. 

Increasing the number of strip elements to more than four will 
not change the results, and the Abaqus results are converged 
with 14 elements in the thickness direction. Due to choosing just 
one element in the piezoelectric thickness direction, a 4.6% error 
is created; however, choosing more than one element in the 
piezoelectric thickness direction and considering an appropriate 
aspect ratio for elements lead to more than a million elements 
and a significant increase in the run time. Also, the first ten 
fundamental frequencies (Hz) of the above-mentioned smart 
plate are presented in Table 7. Since the structure is modelled 
differently in the SE method compared with Abaqus, some 
frequencies are missed. 

 

Table 3 Three natural frequencies (Hz) of square smart FG plate with different power law indices and boundary conditions 
(2h/a=0.05, hp/2h=0.1). 

BCs. n
 

Method Mode numbers 
1st 2nd 3rd 

SCSC 0.5 Present 533.535 (1,1) 
[0.01] 

997.945 (1,2) 
[0.01] 

1244.255 (2,2) 
[0.01] 

  FSDT1 533.568 998.005 1244.321 
 2 Present 458.109 (1,1) 

[0.01] 
856.114 (1,2) 

[0.01] 
1066.420 (2,2) 

[0.01] 
  FSDT 458.149 856.189 1066.500 

SSSS 0.5 Present 368.990 (1,1) 
[0.01] 

907.861 (1,2) 
[0.01] 

1430.553 (2,2) 
[0.01] 

  RPT2 369.195 (1,1) 
[0.05] 

908.939 (1,2) 
[0.11] 

1433.121 (2,2) 
[0.17] 

  FSDT 369.015 907.918 1430.642 
 2 Present 317.104 (1,1) 

[0.01] 
779.552 (1,2) 

[0.01] 
1226.502 (2,2) 

[0.01] 
  RPT 317.232 (1,1) 

[0.03] 
779.552 (1,2) 

[0.03] 
1227.01 (2,2) 

[0.03] 
  FSDT 317.135 779.313 1226.615 

SSSC 0.5 Present 439.418 (1,1)  
[0.01] 

947.150(2,1)   
[0.01] 

1066.675 (1,2)  
[0.01] 

  FSDT 439.446 947.209 1066.737 
 2 Present 377.488 (1,1) 

[0.01] 
812.788 (2,1) 

[0.01] 
914.927 (1,2) 

[0.01] 
  FSDT 377.523 812.863 915.005 

SSSF 0.5 Present 218.788 (1,1) 
[0.01] 

513.018 (1,2) 
[0.01] 

759.557 (2,1) 
[0.01] 

  FSDT  218.802 513.044 759.598 
 2 Present 188.128 (1,1) 

[0.01] 
440.681 (1,2) 

[0.01] 
652.209 (2,1) 

[0.01] 
  FSDT 188.142 440.713 652.260 

SFSF 0.5 Present 180.865 (1,1) 
[0.01] 

299.306 (1,2) 
[0.00] 

671.657 (1,3) 
[0.00] 

  FSDT 180.881 299.312 671.687 
 2 Present 155.532 (1,1) 

[0.01] 
257.305 (1,2) 

 [0.00] 
576.598 (1,3) 

[0.01] 
  FSDT 155.547 257.314 576.634 

SFSC 0.5 Present 236.884 (1,1) 
[0.00] 

606.440 (1,2) 
 [0.00] 

767.960 (2,1) 
[0.00] 

  FSDT 236.898 606.470 767.999 
 2 Present 203.667 (1,1) 

[0.01] 
520.657 (1,2) 

[0.01] 
659.394 (2,1) 

[0.01] 
  FSDT  203.681 520.694 659.443 

[percentage error] = (Present result – FSDT result) / (FSDT result) ×100    
1 (Askari Farsangi and Saidi 2012) 
2 (Rouzegar and Abad 2015) 
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Furthermore, the natural frequencies of the FG plate 

(Al/Al2O3) with and without PZT-4 layers on an elastic 
foundation are calculated. Firstly, the frequency parameter (�̄�) 
of the FG plate rested on the elastic foundation ( �̄�𝑤 =
100, �̄�𝑆 = 10) for different boundary conditions, aspect ratio 
and power-law indices are presented in Table 8. 

 

Elastic foundation parameters are defined in Eq. (40), In 
which the �̄�𝑆 and �̄�𝑊 are Pasternak and Winkler parameters. 

In Table 9, frequency parameters (𝜛) of the smart FG plate 
on the elastic foundation for different piezoelectric thicknesses 
and power-law indices are presented; and the SEM results are in 
excellent agreement with the analytical method based on refined 
plate theory (Rouzegar et al. 2015). For this part, elastic 

foundation parameters are defined as follows: 

Table 4 Three natural frequencies (Hz) of square smart FG plate with different power law indices and boundary 
conditions (2h/a=0.1, hp/2h=0.1). 

BCs. n
 

Method Mode numbers 
1st  2nd  3rd 

SCSC 0.5 Present 998.152 (1,1) 
[0.00] 

1825.164 (1,2) 
[0.00] 

2196.834 (2,2) 
[0.00] 

  FSDT1 998.185 1825.231 2196.822 
 2 Present 853.518 (1,1) 

[0.00] 
1557.200 (1,2) 

[0.00] 
1869.802 (2,2) 

[0.00] 
  FSDT 853.554 1557.277 1869.767 

SSSS 0.5 Present 715.276 (1,1) 
[0.01] 

1691.876 (1,2) 
[0.01] 

2579.954 (2,2) 
[0.01] 

  RPT2 716.563 (1,1) 
[0.17] 

1697.781 (1,2) 
[0.34] 

2592.067 (2,2) 
[0.46] 

  FSDT 715.319 1691.992 2580.078 
 2 Present 613.249 (1,1) 

[0.01] 
1445.016 (1,2) 

[0.02] 
2197.674 (2,2) 

[0.01] 
  RPT 613.982 (1,1) 

[0.11] 
1446.529 (1,2) 

[0.08] 
2199.028 (2,2) 

[0.05] 
  FSDT 613.305 1445.353 2197.887 

SSSC 0.5 Present 838.998 (1,1) 
[0.00] 

1751.432 (2,1) 
[0.00] 

1937.255 (1,2) 
[0.00] 

  FSDT 839.040 1751.518 1937.295 
 2 Present 718.485 (1,1) 

[0.01] 
1495.324 (2,1) 

[0.01] 
1651.902 (1,2) 

[0.00] 
  FSDT 718.539 1495.435 1651.948 

SSSF 0.5 Present 427.948 (1,1) 
[0.00] 

976.397 (1,2) 
[0.00] 

1426.794 (2,1) 
[0.00] 

  FSDT 427.966 976.439 1426.860 
 2 Present 367.386 (1,1) 

[0.01] 
835.701 (1,2) 

[0.01] 
1219.861 (2,1) 

[0.01] 
  FSDT 367.407 835.753 1219.942 

SFSF 0.5 Present 355.572 (1,1) 
[0.00] 

577.402 (1,2) 
[0.00] 

1255.975 (1,3) 
[0.00] 

  FSDT 355.590 577.414 1256.026 
 2 Present 305.373 (1,1) 

[0.01] 
495.154 (1,2) 

 [0.00] 
1072.915 (1,3) 

[0.01] 
  FSDT 305.394 495.169 1072.979 

SFSC 0.5 Present 460.682 (1,1) 
[0.00] 

1132.950 (1,2) 
 [0.00] 

1439.528 (2,1) 
[0.00] 

  FSDT 460.698 1132.986 1439.591 
 2 Present 395.327 (1,1) 

[0.00] 
968.211 (1,2) 

[0.00] 
1230.584 (2,1) 

[0.01] 
  FSDT 395.346 968.255 1230.661 

[percentage error] = (Present result – FSDT result) / (FSDT result) ×100 
1 (Farsangi and Saidi 2012) 
2 (Rouzegar and Abad 2015) 

 

�̄�𝑆 =
𝐾𝑆𝑎

2

𝐴
, �̄�𝑊 =

𝐾𝑊𝑎
4

𝐴
, 𝐴 =

(2ℎ)3

12(1 − 𝜐2)
[
𝑛(8 + 3𝑛 + 𝑛2)𝐸𝑚 + 3(2 + 𝑛 + 𝑛

2)𝐸𝑐
(1 + 𝑛)(2 + 𝑛)(3 + 𝑛)

] 

�̂� = 𝜔ℎ√
𝜌𝑐
𝐸𝑐
⁄  

(40) 
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Table 5 First eight frequency parameters (�̄�) of the tapered 
square plate. 

Method 
Mode number 

1st 2nd 3rd 4th 
SEM 31.70 57.77 68.24 90.52 
Mizusawa 
(Mlzusawa 1993) 31.775 57.955 68.504 90.782 

Manna 
(Manna 2006) 31.777 57.960 68.513 90.795 

 
Mode number 

5th 6th 7th 8th 
SEM 99.78 113.57 127.66 133.32 
Mizusawa 
(Mlzusawa 1993) 100.25 114.37 127.80 133.80 

Manna 
(Manna 2006) 100.27 114.40 - - 

 
Table 6 The natural frequency of the linearly tapered square 
smart plate. 

Method  ω1 (Hz) Number of 
Elements 

Abaqus 6* 864.05 112896 
Abaqus 10 871.21 219024 
Abaqus 14 872.61 352800 
Abaqus 14 872.80 531380 
SEM 2 864.2 2 
SEM 3** 911.1 3 
SEM 4 912.4 4 
SEM 5 912.7 5 
*Abaqus 6: 6 elements in the thickness direction 
**SEM 3: 3 sections 

 
Table 7 The first ten fundamental frequencies (Hz) of the 
smart plate 

Method 
Mode number 

1st 2nd 3rd 4th 5th 
SEM 912.7 2118.3 2175.3 - - 
Abaqus 872.80 2050.2 2113.0 2479.2 2479.8 

 
Mode number 

6th 7th 8th 9th 10th 
SEM 3189.2 3839.7 - - 4754.8 
Abaqus 3105.8 3808.3 3898.5 4114.2 4677.3 

 
Example 4 
As mentioned, performing the dynamic analysis of structures 

under moving loads with the least number of elements is another 
capability of the SEM. Figure 8 shows a smart plate subjected to 
a concentrated force (P) with constant speed (v) passing through 
the middle of the plate in the x-direction. 

 
Table 8 Frequency parameter (�̂�) of the FG plate for 
different boundary conditions 

a/b n Method 
Boundary conditions 

SSSF SFSF SCSF SSSS SSSC 
0.5 0.25 SEM 0.1058 0.1037 0.1061 0.1184 0.12059 

  FSDT1 0.1098 0.1060 0.1104 0.1184 0.1204 

 1 SEM 0.0931 0.0914 0.0933 0.1038 0.1056 
  FSDT 0.0978 0.0947 0.0982 0.1052 0.1066 

 5 SEM 0.0820 0.0808 0.0822 0.0912 0.0927 
  FSDT 0.0859 0.0834 0.0862 0.0922 0.0932 

1 0.25 SEM 0.1097 0.1022 0.1125 0.1564 0.1713 
  FSDT 0.1098 0.1061 0.1243 0.1559 0.1698 

 1 SEM 0.0961 0.0901 0.9831 0.1358 0.1484 
  FSDT 0.0978 0.0947 0.1095 0.1365 0.1448 

 5 SEM 0.0841 0.0797 0.0861 0.1183 0.1286 
  FSDT 0.0859 0.0834 0.0948 0.1179 0.1229 

2 0.25 SEM 0.1226 0.1007 0.1482 0.301 0.3599 
  FSDT 0.1545 0.1065 0.1803 0.2961 0.3426 

 1 SEM 0.1059 0.0887 0.1271 0.2429 0.2926 
  FSDT 0.1354 0.0948 0.1525 0.2467 0.2699 

 5 SEM 0.0906 0.0784 0.1097 0.2206 0.2301 
  FSDT 0.1160 0.0834 0.1271 0.2036 0.2150 

1 (Hosseini-Hashemi et al. 2010) 
 

Table 9 The frequency parameter (𝜛) of the FG plate with 
PZT-4 layers rested on the elastic foundation (𝐾′𝑊 =
100, 𝐾′𝑆 = 100). 

hp/h Theory 
Power law index 

0 0.5 1 2 5 
10-1 SEM 0.0360 0.0341 0.334 0.0329 0.0329 
 RPT1 0.0360 0.0341 0.0333 0.0329 0.0328 

10-2 SEM 0.0404 0.0386 0.0377 0.0374 0.0376 
 RPT 0.0404 0.0385 0.0377 0.0373 0.0376 

10-4 SEM 0.0410 0.0393 0.0384 0.0381 0.0384 
 RPT 0.0411 0.0392 0.0384 0.0381 0.0383 
1 (Rouzegar et al. 2015) 

 

 
Fig. 8 The smart plate subjected to the moving load. 
 

𝐾′𝑤 =
𝐾𝑤𝑏

4

𝐷𝑚
, 𝐾′𝑠 =

𝐾𝑠𝑏
2

𝐷𝑚
, 𝐷𝑚 = 𝐸𝑚

ℎ3

12(1 − 𝜈2)
, 𝜛 = 𝜔ℎ√

𝜌𝑚
𝐸𝑚

 (41) 
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Equation (42) describes the applied moving load: 

𝑓𝑚(𝑦, 𝑡) =
2𝑃

𝑎
𝑠𝑖𝑛(

𝑚𝜋

𝑎
𝑣𝑡) 

𝑎 = 𝑣𝑡𝑒 
(42) 

In which te is the effective time (the time that the applied 
load needs to pass over the plate length). It can be observed in 
Fig. 9 that five harmonic series are sufficient to have converged 
results for the smart isotropic plate subjected to a moving load 
with P=10 kN and v=25 m/s. Also, this figure verifies the 
exactness of SEM results by finite element analysis (with ten 
elements through the plate thickness). 

 

 
Fig. 9 The effect of the number of harmonic series on the 

dynamic response of the smart isotropic plate with 
SSSS boundary condition. 

 

 
Fig. 10 Dynamic response of smart FG plate with SSSS 

boundary condition under moving load. 
 

 
Fig. 11 Dynamic response of smart FG plate with SFSF 

boundary condition under moving load. 

The dynamic response of the smart FG plate (n=1) subjected 
to moving loads (P=10 kN) with different velocities and 
boundary conditions of SSSS and SFSF are plotted in Figs. 10 
and 11. These figures indicate that, although a loading with 
higher speed has less effective time (te), it leads to higher central 
deflection, an exciting conclusion, especially for energy 
harvesting studies. Also, the fully supported smart FG plate has 
less central deflection compared with the structure with SFSF 
boundary conditions due to more constraints. 

In Fig. 12, the effect of different boundary conditions on the 
dynamic response of the smart FG plate (n=1) subjected to 
moving load (P=10 kN, v=12.5 m/s) is studied. As expected, the 
plates with more constraints have higher stiffness, and 
consequently, the plate with SCSC and SFSF boundary 
conditions has the lowest and highest central deflection, 
respectively. 

 

 
Fig. 12 The effect of boundary conditions on the dynamic 

response of the smart FG plate. 
 
Also, the effect of the power-law index on the dynamic 

response of the fully simply supported smart FG plate under a 
moving load (P=10 kN, v=25 m/s) is shown in Fig. 13. As 
discussed before, by increasing n, the density and module of 
elasticity of the smart FG plate are decreased and increased, 
respectively, and in the case of fully metal substrate (Ti-6Al-4V), 
the dynamic response has the highest amplitude and lowest 
frequency. Furthermore, the dynamic response of fully simply 
supported smart FG and isotropic plate under the action of the 
moving load for different piezoelectric thicknesses are plotted in 
Figs. 14(a)-(b). It can be observed that because of the higher 
stiffness of the structure, the response amplitude is decreased by 
increasing piezoelectric thickness. 

 

 
Fig. 13 Dynamic response of the smart FG plate with 

different power law indices subjected to moving load. 
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(a) Smart FG plate (n=1) 

 
(b) Smart isotropic plate 

Fig. 14 The effect of piezoelectric thickness on the dynamic 
response of the smart FG and isotropic plate under 

moving load (P=10 kN, v=25 m/s). 
 
 

4. Conclusion 
 
This study extends the exact spectral element method 

(SEM) for wave propagation analysis of FG and isotropic 
plates integrated with two piezoelectric layers on their 
surfaces. Differential equations of motion are derived using 
the Mindlin plate theory assumption, Hamilton's principle, 
and Maxwell's equation. The structure's dynamic stiffness 
matrix (DSM) is formed by applying a closed-form solution 
for a Levy-type smart FG plate and some algebraic 
manipulation. Several free and forced vibration and 
dynamic problems are solved, and existing solutions and 
finite element analyses validate the accuracy and precision 
of the results. The main conclusions are as follows: 

• Free and forced vibration analyses of isotropic 
and FG plates are performed, and the obtained 
results are in excellent agreement with the exact 
method and Abaqus software. 

• Natural frequencies of thick and thin FG plates 
with two PZT-4 layers are calculated and the 
maximum percentage error compared with 
existing exact solutions is less than 0.02%, which 
proves the accuracy of the presented method. 

• The wave propagation in smart isotropic and FG 
plates under the action of impact and moving 
loads is examined, and the effects of various 
parameters on the results are studied, too. 

• The effect of moving load with different speeds 
on the dynamic response of smart FG plates is 
investigated, and it is deduced that less effective 
time leads to higher central deflection. 

• The effects of boundary condition, power-law 

index, and piezoelectric thickness on the dynamic 
response of the smart isotropic and FG plates 
under impact and moving loads are studied, and 
logical results are observed. 

 
 

Declaration of Competing Interest 
 
The authors declare that they have no known competing 

financial interests or personal relationships that could have 
appeared to influence the work reported in this paper. 

 
Availability of data and material 

 
The data presented in this study are available on request from 

the corresponding author. The data are not publicly available 
because it forms part of an ongoing study. 

 
Appendix A 

 
Coefficients in Eq. (4) are introduced as: 

�̄�11 = 𝐶11 −
𝐶13

2

𝐶33
, �̄�12 = 𝐶12 −

𝐶13
2

𝐶33
, 

�̄�31 = 𝑒31 −
𝐶13
𝐶33

𝑒33, �̄�33 = 𝛯33 +
𝑒33

2

𝐶33
 

(A1) 

Also, coefficients in Eq. (18) are presented as: 

(𝐴11, 𝐴12) = ∫ (𝑄11, 𝑄12)𝑑𝑧
ℎ

−ℎ

+ 2∫ (𝐶11, 𝐶12)𝑑𝑧
ℎ+ℎ𝑝

ℎ

, 

𝐴66 = ∫ 𝑄66𝑑𝑧
ℎ

−ℎ

+∫ (𝐶11 − 𝐶12)𝑑𝑧
ℎ+ℎ𝑝

ℎ

, 

𝐴55 = ∫ 𝜅2𝑄66𝑑𝑧
ℎ

−ℎ

+ 2∫ 𝜅2𝐶55𝑑𝑧
ℎ+ℎ𝑝

ℎ

, 

(𝐵11, 𝐵12) = ∫ (𝑄11, 𝑄12)𝑧𝑑𝑧
ℎ

−ℎ

+ 2∫ (𝐶11, 𝐶12)𝑧𝑑𝑧
ℎ+ℎ𝑝

ℎ

, 

𝐵66 = ∫ 𝑄66𝑧𝑑𝑧
ℎ

−ℎ

+∫ (𝐶11 − 𝐶12)𝑧𝑑𝑧
ℎ+ℎ𝑝

ℎ

, 

(𝐹11, 𝐹12) = ∫ (𝑄11, 𝑄12)𝑧
2𝑑𝑧

ℎ

−ℎ

+ 2∫ (𝐶11, 𝐶12)𝑧
2𝑑𝑧

ℎ+ℎ𝑝

ℎ

, 

𝐹66 = ∫ 𝑄66𝑧
2𝑑𝑧

ℎ

−ℎ

+∫ (𝐶11 − 𝐶12)𝑧
2𝑑𝑧

ℎ+ℎ𝑝

ℎ

 

(A2) 

and 

𝜆1 = −
4

3
�̄�31ℎ𝑝, 𝜆2 = −

8

9
𝛯11ℎ𝑝, 𝜆3 =

4

3
𝑒15ℎ𝑝, 

𝜆4 =
4

3
ℎ𝑝(�̄�31 + 𝑒15), 𝜆5 =

32�̄�33
3ℎ𝑝

, 

𝜆0 =
4

3
ℎ𝑝 

(A3) 
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Appendix B 
 
The zij coefficients in Eq. (25) are as below: 

Also, the components of matrix 𝐷(𝜔) in Eq. (33) are 
defined as below: 
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