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Abstract

A new double sampling-based precedence and weighted precedence tests are introduced

and analyzed. The joint distributions of two precedence and weighted precedence statistics

are obtained under double sampling framework. Subsequently,the closed-form expressions

for the rejection probabilities are derived under the null hypothesis and the Lehmann alter-

native. The corresponding power comparison is carried out against the Lehmann alternative

and the location-scale alternative through Monte-Carlo simulations. Finally, a couple of

detailed illustrative example is presented.

Key-words: Precedence test; Weighted precedence test; Life-testing; Lehmann alternative;

Level of significance.

1. Introduction

The precedence test is a well-known nonparametric, two-sample life-test that is used to

test the equality of two distributions. Suppose, there are two different lifetime distributions

F(x) and G(x) and we are interested to test

H0 : F(x) = G(x) ag. H1 : F(x) > G(x). (1)

A precedence test based on few early failures from two samples X and Y is a common

choice for this hypothesis testing problem. Precedence test is particularly useful as (i) it

provides a reliable decision based on a few early failures from the two samples of a life-test,

and (ii) it is beneficial when expensive items are involved so that unused items could be used

for other testing purposes.

This test was first introduced by Nelson (1963). Then several authors have considered

the precedence-type statistics in online monitoring and retrospective testing problems; e.g.,

Ilbott and Nadler (1965), Shorack (1967), Nelson (1993), Chakraborti and Van der Laan

(1996), van der Laan and Chakraborti (2001), Balakrishnan and Frattina (2000), Ng and

Balakrishnan (2004, 2005), Balakrishnan et al. (2008), Balakrishnan et al. (2010), Ng et al.
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(2013), Balakrishnan et al. (2015b), Balakrishnan et al. (2015a),Stoimenova and Balakr-

ishnan (2017), Chakraborty et al. (2018), Chakraborty et al. (2022), to name a few. For

instance, Ng and Balakrishnan (2005) have proposed the weighted precedence test and the

weighted maximal precedence test as extensions to the precedence test (Nelson (1963)) and

maximal precedence test (Balakrishnan and Frattina (2000)). They showed that, in many

cases the weighted precedence test attains more power than its competitors.

It would be interesting to see if the power properties of precedence-type tests could be

retained with a smaller sample size. A double sampling procedure is useful in reducing the

sample size. Literature on the double sampling procedures date back to the early works by

Cox (1952), Tenenbein (1970), Espeland and Odoroff (1985), among others. Several au-

thors have considered double sampling framework in the online monitoring problems; e.g.,

Daudin (1992), Carot et al. (2002), Malela-Majika et al. (2021), among others. However, to

the best of our knowledge, the power properties of the precedence and weighted precedence

tests under a retrospective double sampling testing framework have not been studied so far.

Therefore, in this paper, we introduce and investigate the power properties of the prece-

dence and the weighted precedence tests within the double sampling framework. This is

a two-stage testing procedure. On the first stage, a decision is made based on an initial Y

sample. If the test statistic from the initial sample falls outside a suitably defined ‘warning

region’, we conclude about H0. If the test statistic for the initial sample falls within the

‘warning region’, a decision is made after ’taking’ an additional Y sample. Note that the

final version of this article will be published in the journal Statistics.

The rest of this article is organized as follows: In Section 2, we discuss the precedence

and weighted precedence tests. In Section 3, we introduce the precedence and weighted

precedence test under double sampling framework. In Section 4, we study the power prop-

erties of the test. An illustrative example is presented in Section 5. Finally, some concluding

remarks are made in Section 6.
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2. Precedence test and weighted precedence test

Suppose we have a random sample of m units from F(x) and n units from G(x) that

are put on a life-testing experiment simultaneously. To test the hypotheses in Eq. (1), we

define the precedence statistic as the number of X failures, Wr, preceding the rth Y failure.

Therefore, the precedence statistic of order r can be written as

Wr =

m∑
i=1

I(Xi ≤ Yr:n), (2)

where I(A) is the indicator function taking value 1 if the condition A is true, else 0. If Wr is

large, it is reasonable to conclude that the units from Y sample last longer than X sample.

Therefore, we can conclude in favour of the alternative hypothesis H1 : F(x) > G(x).

The weighted precedence statistic (Ng and Balakrishnan (2005)) is obtained as a

weighted sum of X failures between every consecutive Y failures. Let mi be the number

of X failures between the ith and the (i − 1)th Y failures. Then the rth order weighted prece-

dence statistic (Ng and Balakrishnan (2005)) is obtained by

W∗
r =

r∑
i=1

(n − i + 1)mi (3)

Ng and Balakrishnan (2005) showed that the weighted precedence test can achieve more

power than the precedence test and a number of its variations.

Example: Let us consider a life-testing experiment from Example 5.4.3 in Lawless

(2011). Two types of electrical cable insulation were subjected to the increasing voltage

stress in a laboratory test. Consider X and Y to be the Type I and the Type II insulation,

respectively. The voltage levels (in kilovolts per millimeter) at which failures occurred were

recorded. We consider m = n =10 specimens from groups X and Y that were placed in a

life-testing experiment. Voltages at failures are presented below in Table 1.

For r = 3, and m = n = 10, the critical value would be c = 7 for the precedence test and

c∗ = 56 for the weighted precedence test at 5% level of significance (Ng and Balakrishnan,
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Table 1: Voltages at failures for two types of electrical cable insulation.

Type I 32.0 35.4 36.2 39.8 41.2 43.3 45.5 46.0 46.2 46.4
Type II 39.4 45.3 49.2 49.4 51.3 52.0 53.2 53.2 54.9 55.5

2004, 2005). It means that we reject H0 at 5% level of significance if Wr ≥ 7 or W∗
r ≥ 56,

respectively. From Table 1, we find that W3 = 10 and W∗
3 = 10 × 3 + 9 × 3 + 8 × 4 = 89.

Therefore, H0 is rejected by both the precedence test and the weighted precedence test.

It would be of interest to see the performance of these test procedures under a variable

sampling plan.

3. Precedence test and weighted precedence test under double sampling scheme

In this section, we discuss the precedence test and the weighted precedence test under

a double sampling framework. Double sampling from a population is carried out in two

ways; i. Nested; ii. Non-nested. In this paper, we consider the non-nested double sampling

framework without replacement for the proposed test procedures.

Our general logic to be elaborated in the remaining part of the paper is as follows. Let

X(c:d) and Y(c:d) be the cth order statistic from the X and Y-sample of size d, respectively. We

take a smaller initial Y sample without replacement, and based on the initial decision, we

combine the remaining Y sample with the first sample to take the final decision about H0.

Since the precedence-type tests are based on the relative order of the X and Y sample, in the

above mentioned procedure, a nested double sampling plan or sampling with replacement

result in loss of information. We discuss the precedence and weighted precedence tests under

double sampling framework. To obtain the critical limits, we derive the joint distribution of

two precedence and weighted precedence statistics obtained from the same sampling frame.

3.1. Double sampling precedence (DPT) test

Let us define ‘decision sub-intervals’ in [0,m] as A0= [0, a), A1= [b,m], B = [a, b), C0 =

[0, c), C1 = [c,m]. B is the warning region to decide if a second sample should be drawn.
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The steps to carry out the proposed precedence test based on double sampling scheme are

as follows:

i. We take n1(< n) random Y-sample from the n sample and calculate the corresponding

precedence statistic Wr1 =
∑m

i=1 I(Xi ≤ Yr:n1), where I(A) is an indicator function as defined

before;

ii. If Wr1∈A0, accept H0, and if Wr1∈A1, we reject H0;

iii. If Wr1 ∈ B, we fuse the remaining n2 = n−n1 random Y-samples with the first n1 samples

and obtain Wr =
∑m

i=1 I(Xi ≤ Yr:n) from the pooled sample;

iv. If Wr ∈ C0, we accept H0. If Wr ∈ C1, we reject H0.

We follow the two-stage procedure to decide if H0 in Eq. (1) should be rejected or

not. Let p10|H = PH[Wr1 ∈ A0] = PH[Yr:n1 < Xa:m], p11|H = PH[Wr1 ∈ A1] = PH[Yr:n1 ≥

Xb:m], p1w|H = PH[Wr1 ∈ B] = PH[Xa:m ≤ Yr:n1 < Xb:m] be the probabilities that Wr1 would

fall in the acceptance region, rejection region, or the warning region, respectively, for H =

H0 or H1. Similarly, p20|H = PH[Wr ∈ C0] = PH[Yr:n < Xc:m] and p21|H = PH[Wr ∈ C1] =

1− p20|H are the probabilities for Wr to fall in the acceptance or rejection region, for H = H0

or H1, respectively.

3.1.1. Null distribution

When H0 is true, for a given α, the probability (1 − α) that H0 will not be rejected is

1 − α = PH0[Wr1 ∈ B,Wr ∈ C0] + PH0[Wr1 ∈ A0]

= PH0[Yr:n1 < Xa:m] + PH0[Yr:n1 ≤ Xb:m,Yr:n < Xc:m] − PH0[Yr:n1 ≤ Xa:m,Yr:n < Xc:m]
(4)

To obtain the probability in Eq. (4), it is necessary to obtain the joint distribution of

(Yr:n1 ,Yr:n). We follow a mixture approach to derive the joint distribution. Let us divide

the Y-sample into two mutually exclusive parts: (Y1,Y2, ...,Yn1), and (Y∗1 ,Y
∗
2 , ...,Y

∗
n2

), where

n1 + n2 = n. Then the joint distribution of (Yr:n1 ,Yr:n) can be obtained following Result 1 and

2.
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Result 1. Let D be the number of Y∗ observations that are ≤ Yr:n1 . Then the probability

mass function (p.m.f.) of D is

P[D = d] =

(
r+d−1

d

)(
n−r−d

n−n1−d

)(
n
n1

) , d = 0, 1, 2, ..., n − n1. (5)

The proof of Result 1 is deferred to Appendix A.

Result 2. For y, y1 ∈ R+, R+ being the positive real line, and n1 < n, the joint distribution

function of (Yr:n1 ,Yr:n) is given by

Case I: for y1 ≤ y,

P[Yr:n ≤ y,Yr:n1 ≤ y1] = P[Yr:n1 ≤ y1] =
n1∑
i=r

(
n1

i

)
Gi(y1)[1 −G(y1)](n1−i) (6)

Case II: for y1 > y,

P[Yr:n ≤ y,Yr:n1 ≤ y1] =
n−n1∑
d=0

P[D = d]P[Yr:n ≤ y,Yr+d:n ≤ y1],

where,

P[Yr:n ≤ y,Yr+d:n ≤ y1] =
n∑

k=r

n∑
k1=r+d

n!
k!(k1 − k)!(n − k1)!

Gk(y)[G(y1)−G(y)](k1−k)[1−G(y1)](n−k1).

(7)

Proof. Since n1 ≤ n, we have Yr:n ≤ Yr:n1 . Therefore, for Case I, the proof is trivial. For Case

II, note that, given D = d, (Yr:n,Yr:n1)
d
= (Yr:n,Yr+d:n) with P[D = d] as in Result 1, where d

=

implies equality in distribution. Hence, the rest of the proof for Case II is straightforward

using Result 1 and the known result on the joint distribution of two order statistics (Arnold

et al. (2008)).

Remark: Note that the bivariate vector in (7) (Yr:n,Yr+d:n) has a singular part, which is

captured by the case d = 0.

Note that, for Xa:m, Xb:m, Xc:m, there are three possibilities, (i) Xc:m ≥ Xb:m; (ii) Xa:m ≤

7
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Xc:m ≤ Xb:m; (iii) Xc:m ≤ Xa:m. Under H0, let us consider the probabilities

PH0[Wr1 ∈ A0] = 1 − α0, PH0[Wr1 ∈ A1] = α1, PH0[Wr ∈ C1] = α2. (8)

Since 1−PH0[Wr1 ∈ B,Wr ∈ C0]−PH0[Wr1 ∈ A0] ≥ 1−PH0[Wr1 ∈ B]−PH0[Wr1 ∈ A0],

we can write from Eq. (4) and (8),

α ≥ α1. (9)

Note that, Eq. (9) implies that there is the enhanced protection against the Type-I error

in the precedence test under the double sampling framework.

Result 3. If PH0[Wr1 ∈ B] > 0, then

PH0[Yr:n1 < Xa:m] > α2 − α > PH0[Yr:n1 ≤ Xa:m] − PH0[Yr:n ≤ Xc:m].

The proof is deferred to Appendix B.

We consider α2 = α. Then, from Result 3, we get

PH0[Yr:n ≤ Xc:m] > PH0[Yr:n1 ≤ Xa:m]⇒ α0 > α, (10)

when PH0[Wr1 ∈ B] > 0.

Let us consider the two possible cases, (i) y = xc:m > y1 = xa:m; and (ii) y = xc:m < y1 =

xa:m for Xa:m = xa:m, Xc:m = xc:m. For these two cases, we state the probability PH0[Yr:n1 ≤

Xa:m,Yr:n ≤ Xc:m] readily in Results 4 and 5 as they can be easily obtained using Result 2 and

known results on order statistics (Arnold et al. (2008)).

Result 4. Under H0, for n1 + n2 = n, and Xc:m > Xa:m, the probability

I1,0
r,a,m,n,n1 = PH0[Yr:n1 ≤ Xa:m,Yr:n ≤ Xc:n] = PH0[Yr:n1 ≤ Xa:m] is given by

I1,0
r,a,m,n,n1

=

n1∑
k=r

(
a+k−1

k

)(
n1−k+m−a

n1−k

)(
m+n1

n1

) (11)
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Result 5. Under H0, for n1 + n2 = n, and Xc:m < Xa:m, the probability

I2,0
r,a,c,m,n,n1 = PH0[Yr:n1 ≤ Xa:m,Yr:n ≤ Xc:n] is given by

I2,0
r,a,c,m,n,n1

=

n∑
z=r

min(n1,z)∑
z1=max(r,z−n2)

min(z,z1)∑
k=max(0,z−n2)

n2−z+k∑
i=0

(−1)i

(
m+n

n2−z+k−i

)(
n1−z1+m−a

n1−z1

)(
z+i+c−1

c−1

)(
z+i

i

)(
z
k

)(
z1−k+a−c−1

a−c−1

)(
m+n

n

) .

(12)

Let us consider n1 = [0.25n] + 1, [0.5n] + 1, [0.75n] + 1, and from Eq. (10), α0 =

2α, 3α, 4α. Then the probabilities in Eq. (4) can be obtained by suitably replacing a with b

and c. For α2 = α = 0.05, we obtain the values of a and c for different m, n, n1, and r from

Eq. (8). For example, when m = n = 20, r = 3, α0 = 3α, for α2 = α = 0.05, we have (a = 7,

c = 8), for n1 = [0.75n]+ 1, and (a = 10, c = 8) for n1 = [0.5n]+ 1. [x] is the largest integer

less than or equals to x.

Once we have the values of a and c, we can obtain the values of b from Eq. (4), using

Results 4 and 5 for Xc:m > Xa:m and Xc:m < Xa:m. The critical limits (a, b, c) for the proposed

method and the critical limit ap for the precedence test are provided in Table 2 along with

the corresponding exact level of significance (l.o.s.) αe.

3.2. Double sampling weighted precedence (DWPT) test

For the double sampling weighted precedence test, let us define the ‘decision sub-

intervals’ as A∗0= [0, a∗), A∗1= [b∗, n1m], B∗ = [a∗, b∗), C∗0 = [0, c∗), C∗1 = [c∗, nm]. As

in the double-sampling precedence test, we define B∗ as the warning region. The steps to

carry out the proposed double-sampling weighted precedence test are as follows:

i. We take n1 random Y-sample from the n sample and calculate the corresponding weighted

precedence statistic W∗
r1 =

∑r
i=1(n1 − i + 1)m1

i , where M1
i = m1

i is the number of X-sample

between the ith and (i − 1)th Y-sample of size n1;

ii. If W∗
r1∈A

∗
0, accept H0, and if W∗

r1∈A
∗
1, we reject H0;

iii. If W∗
r1 ∈ B

∗, we merge the remaining n2 = n − n1 random Y-sample with the first

n1 sample and obtain W∗
r =

∑r
i=1(n − i + 1)mi, where Mi = mi is the number of X-sample

9
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between the ith and (i − 1)th pooled Y-sample;

iv. If W∗
r ∈ C

∗
0, we accept H0. If W∗

r ∈ C
∗
1, we reject H0.

Note that M1
i ≥ Mi as n1 ≤ n. Let p∗10|H = PH[W∗

r1 ∈ A
∗
0], p∗11|H = PH[W∗

r1 ∈ A
∗
1], p∗1w|H =

PH[W∗
r1 ∈ B

∗] be the probabilities that W∗
r1 would fall in the acceptance region, rejection

region, or the warning region, respectively, when H = H0 or H1. Similarly, p∗20|H = PH[W∗
r ∈

C∗0] and p∗21|H = PH[W∗
r ∈ C

∗
1] are the probabilities for W∗

r to fall in the acceptance or

rejection region, when H = H0 or H1, respectively.

3.2.1. Null distribution

Under H0, for a given α, the probability (1 − α) that H0 will not be rejected is

1 − α = PH0[W
∗
r1 ∈ B

∗,W∗
r ∈ C

∗
0] + PH0[W

∗
r1 ∈ A

∗
0]

= PH0[W
∗
r1 < a∗] + PH0[W

∗
r1 < b∗,W∗

r < c∗] − PH0[W
∗
r1 ≤ a∗,W∗

r < c∗]. (13)

The probability PH0[W
∗
r1 < a∗] in Eq.(13) can be obtained from the results of Balakrish-

nan and Ng (2001) as,

PH0[W
∗
r1 ≤ a∗] =

m∑
m1

i (i=1,2,...,r)=0,
0≤

∑r
i=1(n1−i+1)m1

i ≤a∗

PH0[M1
1 = m1

1,M
1
2 = m1

2, . . . ,M
1
r = m1

r ]. (14)

where,

PH0[M1
1 = m1

1,M
1
2 = m1

2, . . . ,M
1
r = m1

r ] =

(
m+n1−

∑s
i=1 m1

i −s
n1−s

)(
m+n1

n1

) ,

To obtain the probability in Eq. (13), it is necessary to obtain the joint distribution of

(W∗
r1,W

∗
r ). This is given in Result 6.
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Result 6. For 0 ≤ a∗ ≤ mn1, and 0 ≤ c∗ ≤ mn, under H0,

PH0[W
∗
r1 ≤ a∗,W∗

r ≤ c∗]

=

[ m∑
mi(i=1,2,...,r)=0,

0≤
∑r

i=1(n−i+1)mi≤c∗

n∑
li(i=1,2,...,r)=1,

0≤n1
∑l1

i=1 mi+
∑r

j=2(n1− j+1)
∑∑ j

k=1 lk

i=
∑ j−1

k=1 lk+1
mi≤a∗

r≤
∑r

k=1 lk≤n

PH0[M1 = m1,M2 = m2, . . . ,M∑r
k=1 lk = m∑r

k=1 lk]
]

[ m∑
m1

i (i=1,2,...,r)=0,
0≤

∑r
i=1(n1−i+1)m1

i ≤a∗

PH0[M1
1 = m1

1,M
1
2 = m1

2, . . . ,M
1
r = m1

r ]
]
, (15)

where

PH0[V1 = v1,V2 = v2, . . . ,Vs = vs] =

(
m+n

′
−
∑s

i=1 vi−s
n1−s

)
(

m+n′

n′
) ,

from Balakrishnan and Ng (2001), for Vi = M1
i ,Mi, n

′

= n1, n, and s =
∑r

k=1 lk, r, for the

first sample and the pooled sample, respectively.

The proof of Result 6 is deferred to Appendix C. Let us consider now the probabilities

PH0[W
∗
r1 ∈ A

∗
0] = 1 − α∗0, PH0[W

∗
r1 ∈ A

∗
1] = α∗1, PH0[W

∗
r ∈ C

∗
1] = α∗2. (16)

Using similar arguments as in Eq.(10), we get

α ≥ α∗1. (17)

This implies that, as in the double sampling precedence test, the enhanced protection against

the Type-I error is obtained for the double sampling weighted precedence test as well.

Result 7. If PH0[W
∗
r1 ∈ B

∗] > 0, then

PH0[W
∗
r1 ∈ A

∗
0] > α∗2 − α > PH0[W

∗
r1 ∈ A

∗
0] − PH0[W

∗
r ∈ C

∗
0]. (18)

The proof of this result is similar to that of Result 3. Taking α∗2 = α, from Result 7, we get

12
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PH0[W
∗
r ∈ C

∗
0] > PH0[W

∗
r1 ∈ A

∗
0]⇒ α∗0 > α, (19)

when PH0[W
∗
r1 ∈ B

∗] > 0.

In case of the double sampling precedence test, no significant differences in the critical

limits are observed for α0 = 2α, 3α, 4α. Therefore, to obtain the critical limits for the

double sampling weighted precedence test, we consider n1 = [0.5n] + 1, [0.75n] + 1, and

α∗0 = 2α. For α = 0.05, taking α∗2 = α and α∗0 = 2α, we obtain the values of a∗ and c∗

for different m, n, n1, and r from Eq.(16). Then from Eq. (13), we can obtain the values

of b∗. The critical limits (a∗, b∗, c∗) for the proposed method and the critical limit ap for the

standard precedence test are provided in Table 3 along with the corresponding exact levels

of significance (l.o.s.) α∗e.

Table 3: Near 5% critical values (top) and exact l.o.s. α∗e (bottom) for the double sampling
weighted precedence test (DWPT) and the standard precedence test(PT).

r = 2 r = 3 r = 4 r = 5
m n n1 DWPT PT DWPT PT DWPT PT DWPT PT

10 10 [0.5n] 29,39,47 6 34,40,56 7 35,41,62 8 36,41,66 9
0.048 0.029 0.046 0.035 0.048 0.035 0.049 0.029

[0.75n] 37,80,47 43,80,56 48,80,62 52,62,66
0.057 0.053 0.051 0.049

15 15 [0.5n] 52,68,74 6 62,76,95 8 70,83,107 9 75,86,118 10
0.049 0.040 0.048 0.025 0.047 0.030 0.051 0.033

[0.75n] 58,180,74 74,180,92 85,179,106 94,169,117
0.053 0.051 0.051 0.048

20 20 [0.5n] 70,94,100 6 88,110,132 8 101,121,152 9 111,130,170 10
0.049 0.046 0.053 0.032 0.049 0.041 0.050 0.048

[0.75n] 75,300,100 101,190,133 119,168,152 134,174,170
0.053 0.046 0.049 0.048

30 30 [0.5n] 115,152,174 7 145,185,205 8 172,212,247 10 194,232,280 11
0.053 0.026 0.049 0.040 0.047 0.029 0.046 0.036

[0.75n] 132,690,174 160,690,205 196,277,249 224,298,279
0.052 0.045 0.048 0.050

4. Power comparison

In this section, we compare the power of the proposed test procedures with the precedence

test (PT), maximal precedence test (MPT), weighted precedence test (WPT), and weighted

maximal precedence test (WMPT). The power values for the competing precedence-type

test procedures are obtained from Ng and Balakrishnan (2005).
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4.1. Power comparison under Lehmann alternative

We obtain the closed-form expression under Lehmann alternative for the power function

of the precedence test and the weighted precedence test under the double sampling frame-

work. Lehmann alternative H1 : G(x) = Fγ(x) for some γ was first proposed by Lehmann

(1953). It is a subclass of the alternative H1 : F(x) > G(x) for γ > 1. For more details

about Lehmann alternative, please refer to Lehmann (1975), Wolfe (2012), Hollander et al.

(2013).

To derive the power function under the Lehmann alternative for the double sampling

precedence test, we consider the cases (i) y = xc:m > y1 = xa:m; and (ii) y = xc:m ≤ y1 = xa:m

for Xa:m = xa:m, Xc:m = xc:m. The probability PH1[Yr:n1 ≤ Xa:m,Yr:n ≤ Xc:m] is readily stated in

Results 8 and 9 for case (i) and (ii), respectively, as they can be easily obtained using Result

2 and known results on order statistics (Arnold et al. (2008)).

Result 8. Under H1 : G(x) = Fγ(x), for n1 + n2 = n, and Xc:m > Xa:m, the probability

I1,1
r,a,m,n,n1 = PH1[Yr:n1 ≤ Xa:m,Yr:n ≤ Xc:m] = PH1[Yr:n1 ≤ Xa:m] is given by

I1,1
r,a,m,n,n1

=

n1∑
k=r

n1−k∑
j=0

(−1) j

(
n1
k j

)(
γ(k+ j)+a−1

a−1

)
(
γ(k+ j)+m

m

) . (20)

Result 9. Under H1 : G(x) = Fγ(x), for n1 + n2 = n, and Xc:m < Xa:m, the probability

I2,1
r,a,c,m,n,n1 = PH1[Yr:n1 ≤ Xa:m,Yr:n ≤ Xc:m] is given by

I2,1
r,a,c,m,n,n1

=

n∑
z=r

min(n1,z)∑
z1=max(r,z−n2)

min(z1,z)∑
k=max(0,z−n2)

z1−k∑
i1=0

n2−z+k∑
i2=0

n1−z1∑
i3=0

(−1)(i1+i2+i3)

(
γ(i1+i2)+γz+c−1

c−1

)(
γ(z+z1)+γ(i2+i3)−γk+a−1
γ(z+z1)+γ(i2+i3)−γk

)(
n

(n1−z1−i3)(n2−z+k−i2)

)(
z+z1+i2+i3−k

z−k

)(
z1+i2+i3

i2 i3

)(
z1

k i1

)
(
γ(z+z1)+γ(i2+i3)−γk+m

m

)(
γ(i1+i2)+γz+a−1

a−1

) . (21)

Then the power function for the double sampling precedence test can be obtained as

β = 1 − PH1[Yr:n1 < Xa:m] − PH1[Yr:n1 < Xb:m,Yr:n < Xc:m] + PH1[Yr:n1 < Xa:m,Yr:n < Xc:m].

(22)
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For the double sampling weighted precedence test, we can obtain PH1[W
∗
r1 ≤ a∗,W∗

r ≤

c∗] under the Lehmann alternative from Result 6 by replacing the joint probability

PH1[V1 = v1,V2 = v2, . . . ,Vr = vr] =
m!n

′

!γr

v1!(n′ − r)!

{ r−1∏
j=1

Γ(
∑ j

i=1 vi + jγ)

Γ(
∑ j+1

i=1 vi + jγ + 1)

}
n
′
−r∑

k=0

(
n
′

− r
k

)
(−1)k ×

Γ(
∑r

i=1 vi + (r + k)γ)
Γ(m + (r + k)γ + 1)

, (23)

from Balakrishnan and Ng (2001), for Vi = M1
i ,Mi, n

′

= n1, n, for the first sample and

the pooled sample, respectively. The power function for the double sampling weighted

precedence test can be obtained as

β∗ = 1 − PH1[W
∗
r1 ≤ a∗] − PH1[W

∗
r1 ≤ b∗,W∗

r ≤ c∗] + PH1[W
∗
r1 ≤ a∗,W∗

r ≤ c∗]. (24)

It is to be noted from the above derivations that the double sampling precedence and

weighted precedence tests are distribution-free under the Lehmann alternative. Though we

have an explicit expression for the power function under the Lehmann alternative for the

proposed test procedures, we cannot have the same for location shift alternative. To be

consistent, we estimate the power values by 20000 Monte-Carlo simulations.

Note that, in case of double sampling precedence and weighted precedence test, for

W = Wr1,W∗
r1,

n = n1I[W ∈ Bc] + (n1 + n2)I[W ∈ B]. (25)

This implies,

ñ = EH(n) = n1 + n2PH[W ∈ B] ≤ n, (26)

for H = H0,H1.

Eq. (26) shows that the expected sampled size in double sampling framework is always

smaller than the single sampling framework. Under H1, when PH1[W ∈ B] increases, for
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W = Wr1,W∗
r1, the expected sample size ñ also increases. Therefore, the double sampling

precedence and weighted precedence test eliminate the burden of unnecessary sampling and

only collect additional Y sample depending on the amount of departure from H0.

For m = n = 10, r = 2, 3, γ = 2, .., 6, we estimate the power values for the double

sampling precedence and weighted precedence test. For the double sampling precedence

test, we take n1 = [0.75n] + 1, [0.5n] + 1, and for the double sampling weighted precedence

test, we take n1 = [0.75n] + 1. The power comparison under the Lehmann alternative is

presented in Table 4. For the competing precedence-type tests in Table 4, power values are

obtained from Ng and Balakrishnan (2005).

In Table 4, it is observed that, while all the competing tests have similar size, the double

sampling precedence test attains more power than the precedence test, maximal precedence

test and weighted maximal precedence test in many cases. The double sampling weighted

precedence test furnish the best performance among its competitors under the Lehmann

alternative. It is clearly seen from Table 4 that the double sampling precedence and weighted

precedence tests can achieve better power with a reduced sample size.

Table 4: Power comparison under Lehmann alternative for m = n = 10.
r = 2
n n1 Test Crit. Lim. E(n) γ = 1 E(n) γ = 2 E(n) γ = 3 E(n) γ = 4 E(n) γ = 5 E(n) γ = 6
10 - PT 6 10 0.029 10 0.240 10 0.490 10 0.673 10 0.790 10 0.862
10 - MPT 4 10 0.032 10 0.220 10 0.453 10 0.636 10 0.760 10 0.841
10 - WPT 48 10 0.049 10 0.357 10 0.644 10 0.810 10 0.896 10 0.941
10 - WMPT 40 10 0.059 10 0.357 10 0.630 10 0.794 10 0.884 10 0.933
10 8 DPT 6,7,6 8.07 0.040 8.28 0.278 8.38 0.541 8.36 0.710 8.31 0.820 8.26 0.880
10 5 DPT 8,8,6 5 0.045 5 0.203 5 0.365 5 0.511 5 0.620 5 0.705
10 8 DWPT 37,80,47 8.20 0.055 8.95 0.381 9.44 0.660 9.70 0.823 9.80 0.911 9.84 0.947
r=3
10 - PT 7 10 0.035 10 0.246 10 0.481 10 0.652 10 0.764 10 0.837
10 - MPT 4 10 0.049 10 0.242 10 0.468 10 0.646 10 0.766 10 0.845
10 - WPT 56 10 0.051 10 0.351 10 0.631 10 0.796 10 0.884 10 0.931
10 - WMPT 45 10 0.038 10 0.228 10 0.458 10 0.639 10 0.762 10 0.842
10 8 DPT 7,9,7 8.13 0.051 8.55 0.257 8.82 0.501 8.88 0.677 8.88 0.785 8.82 0.848
10 5 DPT 9,10,7 5.268 0.032 5.78 0.161 6.20 0.321 6.48 0.448 6.52 0.549 6.63 0.640
10 8 DWPT 43,80,56 8.23 0.051 8.96 0.359 9.46 0.638 9.69 0.798 9.80 0.892 9.84 0.941

4.2. Power comparison under location shift

To assess the performance of the proposed precedence-type tests under location shift,

we consider the alternative H1 : G(x) = F(x + θ) for θ > 0. We consider the location
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shift θ = 0.5, 1 for the following distributions: i. standard normal distribution; ii. standard

exponential distribution; iii. gamma distribution with shape parameter β = 2, 10, standard-

ized by mean β and standard deviation
√
β; iv. lognormal distribution with shape parameter

ξ = 0.1, 0.5, standardized by mean eξ
2/2 and standard deviation

√
eξ2(eξ2 − 1). More de-

tails about these distributions could be found in Rohatgi and Saleh (2015). For both double

sampling precedence and weighted precedence tests, we set α0 = 2α, where α = 0.05.

For m = n = 10, 20, r = 2, 3, 4, 5, 6, the power values for the double sampling

precedence and weighted precedence tests are reported in Table 5 - 8. For the compet-

ing precedence-type tests, i.e., the precedence test, the weighted precedence test, maximal

precedence test, and the weighted maximal precedence test, the power values are obtained

from Ng and Balakrishnan (2005). We also include the exact level of significance for all

competing test procedures. For the double sampling precedence and the weighted prece-

dence test, we set n1 = [0.75n] + 1, [0.5n] + 1.
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Table 5: Power values, and expected sample size ñ, for m = 10, θ =0.5, α0 = 2α.
r Dist PT MPT WPT WMPT DPT DPT DWPT DWPT

n=10 n=10 n=10 n=10 n=10,n1=8 n = 10, n1 = 5 n = 10, n1 = 8 n = 10, n1 = 5
2 Exact l.o.s. 0.029 0.032 0.049 0.059 0.040,8.07 0.045,5 0.055, 8.20 0.048,5.50

N(0,1) 0.150 0.142 0.228 0.231 0.196,8.20 - 0.248,8.65 0.213,6.21
Exp(1) 0.392 0.492 0.614 0.720 0.407,8.40 - 0.771,12.41 0.493,6.92

Gamma(2) 0.252 0.247 0.408 0.434 0.280,8.22 - 0.523,11.77 0.337,6.57
Gamma(10) 0.173 0.161 0.271 0.274 0.208,8.10 - 0.319,11.20 0.240,6.31

LN(0.1) 0.160 0.148 0.238 0.246 0.194,8.22 - 0.273,11.11 0.223,6.26
LN(0.5) 0.269 0.254 0.421 0.430 0.300,8.32 - 0.511,11.76 0.350,6.58

3 Exact l.o.s. 0.035 0.049 0.051 0.038 0.051,8.09 0.032,5.28 0.053, 8.23 0.046,5.36
N(0,1) 0.178 0.175 0.240 0.154 0.223,8.26 0.140,5.72 0.248,8.74 0.213,5.96
Exp(1) 0.307 0.495 0.512 0.489 0.320,8.64 0.161,5.73 0.509,9.19 0.384,6.28

Gamma(2) 0.234 0.258 0.371 0.248 0.269,8.24 0.144,5.55 0.374,8.96 0.285,6.12
Gamma(10) 0.189 0.187 0.272 0.173 0.233,8.15 0.133,5.39 0.294,8.74 0.225,5.98

LN(0.1) 0.183 0.178 0.252 0.156 0.231,8.27 0.141,5.73 0.266,8.69 0.218,5.98
LN(0.5) 0.257 0.268 0.384 0.256 0.274,8.57 0.156,5.76 0.396,9.02 0.301,6.15

4 Exact l.o.s. 0.035 0.065 0.051 0.045 0.036,8.17 0.1 0.051,8.23 0.048,5.45
N(0,1) 0.177 0.199 0.249 0.172 0.193,8.53 - 0.252,8.78 0.229,6.15
Exp(1) 0.225 0.497 0.421 0.485 0.232,8.60 - 0.421,8.23 0.378,6.49

Gamma(2) 0.194 0.265 0.336 0.253 0.229,8.26 - 0.337,8.93 0.299,6.32
Gamma(10) 0.176 0.204 0.268 0.179 0.185,8.26 - 0.274,8.80 0.241,6.18

LN(0.1) 0.178 0.199 0.256 0.171 0.219,8.31 - 0.262,8.78 0.231,6.14
LN(0.5) 0.215 0.277 0.355 0.267 0.224,8.58 - 0.361,8.98 0.311,6.36

5 Exact l.o.s. 0.027 0.027 0.051 0.045 0.042,8.13 0.331 0.049,8.16 0.049,5.39
N(0,1) 0.147 0.090 0.256 0.164 0.188,8.37 - 0.263,8.50 0.232,6.02
Exp(1) 0.145 0.268 0.425 0.486 0.171,8.97 - 0.438,8.62 0.386,6.37

Gamma(2) 0.138 0.120 0.337 0.251 0.166,8.27 - 0.341,8.57 0.299,6.20
Gamma(10) 0.139 0.090 0.267 0.174 0.170,8.19 - 0.273,8.51 0.242,6.04

LN(0.1) 0.144 0.090 0.261 0.168 0.182,8.36 - 0.266,8.50 0.232,6.02
LN(0.5) 0.153 0.130 0.354 0.270 0.180,8.36 - 0.357,8.59 0.312,6.22

6 Exact l.o.s. 0.065 0.032 0.049 0.045 0.08 - 0.052, 8.22
N(0,1) 0.266 0.094 0.259 0.172 - - 0.278,8.82 -
Exp(1) 0.239 0.269 0.410 0.484 - - 0.435,9.14 -

Gamma(2) 0.234 0.121 0.326 0.252 - - 0.339,8.96 -
Gamma(10) 0.244 0.092 0.279 0.179 - - 0.285,8.84 -

LN(0.1) 0.257 0.094 0.260 0.171 - - 0.281,8.82 -
LN(0.5) 0.253 0.131 0.347 0.267 - - 0.371,8.99 -
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Table 6: Power values, and expected sample size ñ, for m = 10, θ =1.0, α0 = 2α.
r Dist PT MPT WPT WMPT DPT DPT DWPT DWPT

n=10 n=10 n=10 n=10 n=10,n1=8 n=10,n1=5 n=10,n1=8 n=10,n1=5
2 Exact l.o.s. 0.029 0.032 0.049 0.059 0.040,8.07 0.045,5 0.055, 8.20 0.048,5.50

N(0,1) 0.424 0.377 0.528 0.507 0.486,8.31 - 0.566,9.28 0.527,6.67
Exp(1) 0.838 0.918 0.947 0.978 0.846,8.37 - 0.951,9.86 0.886,6.97

Gamma(2) 0.688 0.730 0.852 0.888 0.716,8.40 - 0.858,9.74 0.778,7.09
Gamma(10) 0.506 0.457 0.649 0.631 0.552,8.16 - 0.668,9.46 0.596,6.82

LN(0.1) 0.457 0.408 0.580 0.554 0.509,8.34 - 0.613,9.36 0.556,6.76
LN(0.5) 0.725 0.733 0.873 0.880 0.746,8.39 - 0.882,9.77 0.800,7.01

3 Exact l.o.s. 0.035 0.049 0.051 0.038 0.051,8.09 0.032,5.28 0.053, 8.23 0.046,5.36
N(0,1) 0.481 0.417 0.584 0.394 0.554,8.37 0.409,6.25 0.588,9.41 0.542,6.33
Exp(1) 0.724 0.918 0.882 0.916 0.732,8.98 0.427,6.40 0.894,9.78 0.790,6.44

Gamma(2) 0.615 0.733 0.799 0.734 0.650,8.41 0.395,5.95 0.803,9.68 0.691,6.47
Gamma(10) 0.518 0.476 0.654 0.461 0.574,8.21 0.489,5.52 0.661,9.50 0.577,6.44

LN(0.1) 0.496 0.440 0.609 0.414 0.558,8.39 0.391,6.26 0.618,9.45 0.556,6.36
LN(0.5) 0.668 0.736 0.822 0.729 0.678,8.98 0.424,6.40 0.834,9.74 0.728,6.43

4 Exact l.o.s. 0.035 0.065 0.051 0.045 0.036,8.17 0.1 0.051,8.23 0.048,5.45
N(0,1) 0.480 0.436 0.608 0.398 0.506,8.92 - 0.612,9.47 0.573,6.54
Exp(1) 0.578 0.918 0.792 0.916 0.578,9.05 - 0.804,9.74 0.774,6.60

Gamma(2) 0.511 0.734 0.717 0.744 0.554,8.43 - 0.733,9.64 0.695,6.62
Gamma(10) 0.476 0.485 0.644 0.471 0.489,8.37 - 0.649,9.51 0.601,6.68

LN(0.1) 0.478 0.454 0.616 0.417 0.537,8.45 - 0.628,9.49 0.582,6.58
LN(0.5) 0.565 0.738 0.776 0.738 0.573,9.05 - 0.779,9.71 0.732,6.62

5 Exact l.o.s. 0.027 0.027 0.051 0.045 0.042,8.13 0.331 0.049,8.16 0.049,5.39
N(0,1) 0.424 0.248 0.633 0.405 0.486,8.58 - 0.639,8.63 0.578,6.37
Exp(1) 0.396 0.779 0.819 0.911 0.418,8.60 - 0.831,8.56 0.788,6.36

Gamma(2) 0.372 0.514 0.737 0.741 0.406,8.45 - 0.751,8.60 0.706,6.43
Gamma(10) 0.383 0.283 0.656 0.468 0.432,8.26 - 0.664,8.64 0.608,6.50

LN(0.1) 0.404 0.259 0.633 0.426 0.458,8.59 - 0.645,8.64 0.587,6.39
LN(0.5) 0.414 0.528 0.782 0.746 0.447,8.63 - 0.787,8.60 0.740,6.42

6 Exact l.o.s. 0.065 0.032 0.049 0.045 0.08 - 0.052, 8.22
N(0,1) 0.583 0.249 0.637 0.398 - - 0.661,9.54 -
Exp(1) 0.499 0.779 0.796 0.916 - - 0.817,9.73 -

Gamma(2) 0.495 0.514 0.720 0.745 - - 0.745,9.66 -
Gamma(10) 0.527 0.284 0.664 0.471 - - 0.681,9.55 -

LN(0.1) 0.554 0.260 0.638 0.417 - - 0.664,9.54 -
LN(0.5) 0.531 0.529 0.762 0.738 - - 0.784,9.71 -
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Table 7: Power values, and expected sample size ñ, for m = 20, θ =0.5, α0 = 2α.
r Dist. PT MPT WPT WMPT DPT DPT DWPT DWPT

n=20 n=20 n=20 n=20 n=20,n1=15 n=20,n1=10 n=20,n1=15 n=20,n1=10
2 Exact l.o.s. 0.046 0.047 0.053 0.047 0.051,15.45 0.040,10.79 0.053,15.54 0.049,10.74

N(0,1) 0.266 0.243 0.291 0.24 0.279,16.50 0.254,12.30 0.280,17.04 0.289,11.99
Exp(1) 0.936 0.963 0.97 0.964 0.934,17.38 0.835,12.62 0.969,19.87 0.588,13.12
Gamma(2) 0.671 0.658 0.735 0.656 0.675,17.16 0.565,12.08 0.733,18.95 0.614,12.96
Gamma(10) 0.364 0.324 0.393 0.324 0.387,15.82 0.324,11.28 0.399,17.58 0.366,12.22
LN(0.1) 0.304 0.274 0.32 0.266 0.321,16.69 0.287,12.37 0.324,17.24 0.319,12.10
LN(0.5) 0.645 0.598 0.692 0.605 0.657,17.50 0.550,13.45 0.696.18.86 0.603,12.78

3 Exact l.o.s. 0.064 0.03 0.05 0.044 0.047,15.30 0.048,10.29 0.046,15.50 0.053,10.77
N(0,1) 0.349 0.181 0.31 0.233 0.302,15.95 0.289,10.86 0.300,17.04 0.316,12.06
Exp(1) 0.903 0.906 0.902 0.963 0.815,16.30 0.584,11.45 0.904,18.88 0.788,13.28
Gamma(2) 0.677 0.484 0.674 0.649 0.571,16.16 0.421,10.92 0.660,18.42 0.559,12.86
Gamma(10) 0.439 0.233 0.41 0.317 0.379,15.51 0.319,10.51 0.392,17.41 0.374,12.37
LN(0.1) 0.383 0.201 0.349 0.27 0.327,16.01 0.293,10.92 0.337,17.20 0.341,12.18
LN(0.5) 0.684 0.447 0.677 0.588 0.593,16.32 0.423,12.29 0.661,18.33 0.581,12.83

4 Exact l.o.s. 0.041 0.04 0.05 0.054 0.050,15.15 0.032,10.52 0.049,15.48 0.049,10.82
N(0,1) 0.295 0.214 0.33 0.258 0.318,15.50 0.257,11.78 0.325,16.61 0.335,12.11
Exp(1) 0.75 0.905 0.858 0.962 0.687,15.71 0.444,12.55 0.830,17.30 0.709,12.85
Gamma(2) 0.532 0.495 0.645 0.66 0.503,15.56 0.340,11.66 0.610,17.14 0.527,12.66
Gamma(10) 0.358 0.255 0.423 0.344 0.366,15.27 0.313,10.52 0.406,16.79 0.381,12.31
LN(0.1) 0.322 0.227 0.37 0.296 0.310,15.98 0.305,10.96 0.352,16.68 0.356,12.20
LN(0.5) 0.561 0.457 0.664 0.599 0.539,15.68 0.381,12.32 0.617,17.15 0.554,12.77

5 Exact l.o.s. 0.048 0.05 0.05 0.044 0.049,15.31 0.046,10.32 0.048,15.45 0.050,10.76
N(0,1) 0.332 0.236 0.35 0.225 0.347,16.04 0.276,11.02 0.351,16.49 0.347,12.22
Exp(1) 0.69 0.906 0.804 0.904 0.630,16.49 0.337,11.26 0.778,16.87 0.666,12.93
Gamma(2) 0.517 0.5 0.598 0.497 0.480,16.05 0.297,10.87 0.580,16.88 0.504,12.70
Gamma(10) 0.381 0.271 0.419 0.263 0.354,15.72 0.273,10.56 0.420,16.62 0.380,12.43
LN(0.1) 0.353 0.247 0.382 0.247 0.333,16.49 0.273,11.03 0.376,16.55 0.360,12.31
LN(0.5) 0.556 0.464 0.625 0.457 0.523,16.33 0.327,11.18 0.610,16.87 0.530,12.77

6 Exact l.o.s. 0.053 0.06 0.05 0.049 0.041,15.15 0.030,10.30 0.050,15.40 0.048,10.71
N(0,1) 0.357 0.255 0.36 0.225 0.301,15.53 0.212,11.13 0.366,16.37 0.358,12.15
Exp(1) 0.629 0.906 0.75 0.902 0.447,15.74 0.205,11.11 0.723,16.68 0.634,12.58
Gamma(2) 0.497 0.504 0.568 0.497 0.368,15.50 0.186,10.79 0.552,16.66 0.490,12.47
Gamma(10) 0.392 0.283 0.421 0.267 0.316,15.28 0.198,10.48 0.422,16.50 0.381,12.26
LN(0.1) 0.371 0.263 0.378 0.243 0.306,15.55 0.198,11.11 0.385,16.41 0.367,12.17
LN(0.5) 0.537 0.469 0.598 0.458 0.413,15.68 0.209,11.19 0.588,16.66 0.518,12.52
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Table 8: Power values, and expected sample size ñ, for m = 20, θ =1.0, α0 = 2α.
r Dist. PT MPT WPT WMPT DPT DPT DWPT DWPT

n=20 n=20 n=20 n=20 n=20,n1=15 n=20,n1=10 n=20,n1=15 n=20,n1=10
2 Exact l.o.s. 0.046 0.047 0.053 0.047 0.051,15.45 0.040,10.79 0.053,15.54 0.049,10.74

N(0,1) 0.653 0.599 0.678 0.599 0.682,16.93 0.656,12.64 0.679,18.84 0.683,12.02
Exp(1) 1.000 1.000 1.000 1.000 0.999,15.17 0.998,10.21 1.000,19.99 0.999,10.22
Gamma(2) 0.991 0.993 0.996 0.993 0.992,17.28 0.971,12.26 1.00,19.98 0.983,11.03
Gamma(10) 0.837 0.789 0.86 0.791 0.852,16.28 0.795,11.98 0.866,19.52 0.827,11.96
LN(0.1) 0.734 0.679 0.758 0.674 0.755,16.94 0.715,12.70 0.764,19.16 0.744,12.08
LN(0.5) 0.99 0.988 0.994 0.989 0.991,15.78 0.974,11.60 0.999,19.98 0.982,10.88

3 Exact l.o.s. 0.064 0.03 0.05 0.044 0.047,15.30 0.048,10.29 0.046,15.50 0.053,10.77
N(0,1) 0.762 0.525 0.736 0.609 0.730,15.89 0.694,10.90 0.736,17.95 0.744,11.99
Exp(1) 0.999 1.000 0.999 1.000 0.997,15.10 0.967,10.45 1.000,16.18 0.996,10.53
Gamma(2) 0.989 0.979 0.989 0.991 0.974,16.13 0.898,11.26 0.997,17.30 0.965,11.36
Gamma(10) 0.889 0.688 0.882 0.794 0.851,15.81 0.762,10.72 0.874,18.11 0.847,11.95
LN(0.1) 0.821 0.589 0.805 0.687 1.000,15 1.000,10 0.800,18.06 0.788,11.99
LN(0.5) 0.991 0.964 0.991 0.986 1.000,15.01 0.995,10.41 0.996,17.06 0.974,11.05

4 Exact l.o.s. 0.041 0.04 0.05 0.054 0.050,15.15 0.032,10.52 0.049,15.48 0.049,10.82
N(0,1) 0.735 0.561 0.78 0.638 0.761,15.43 0.690,12.05 0.779,16.60 0.778,11.84
Exp(1) 0.993 1.000 0.999 1.000 0.988,15.12 0.898,12.34 0.999,15.42 0.982,10.83
Gamma(2) 0.962 0.979 0.983 0.992 0.943,15.60 0.823,12.74 0.988,15.91 0.948,11.36
Gamma(10) 0.842 0.703 0.89 0.792 0.838,15.42 0.750,10.76 0.884,16.45 0.854,11.82
LN(0.1) 0.788 0.617 0.83 0.716 0.771,15.96 0.731,10.99 0.829,16.56 0.809,11.86
LN(0.5) 0.972 0.966 0.988 0.987 0.962,15.21 0.870,12.29 0.991,15.72 0.963,11.11

5 Exact l.o.s. 0.048 0.05 0.05 0.044 0.049,15.31 0.046,10.32 0.048,15.45 0.050,10.76
N(0,1) 0.779 0.583 0.800 0.564 0.796,15.90 0.700,11.15 0.813,16.27 0.802,11.88
Exp(1) 0.986 1.000 0.996 0.999 0.975,15.52 0.764,11.57 1.000,15.32 0.973,10.95
Gamma(2) 0.949 0.979 0.975 0.977 0.934,16.32 0.722,11.44 0.976,15.70 0.940,11.46
Gamma(10) 0.853 0.712 0.885 0.707 0.834,16.09 0.685,10.78 0.887,16.17 0.857,11.86
LN(0.1) 0.816 0.633 0.84 0.632 0.807,16.52 0.693,11.26 0.849,16.24 0.824,11.88
LN(0.5) 0.965 0.967 0.984 0.964 0.953,15.61 0.772,11.42 0.987,15.55 0.955,11.23

6 Exact l.o.s. 0.053 0.06 0.05 0.049 0.041,15.15 0.030,10.30 0.050,15.40 0.048,10.71
N(0,1) 0.806 0.598 0.821 0.573 0.758,15.51 0.617,11.62 0.838,16.07 0.818,11.70
Exp(1) 0.973 1.000 0.991 1.000 0.904,15.44 0.564,11.97 0.995,15.42 0.967,10.93
Gamma(2) 0.932 0.98 0.964 0.975 0.843,15.73 0.549,11.50 0.962,15.64 0.932,11.32
Gamma(10) 0.856 0.717 0.881 0.702 0.781,15.40 0.569,10.74 0.888,15.99 0.854,11.69
LN(0.1) 0.83 0.642 0.860 0.63 0.769,15.51 0.587,11.70 0.863,16.05 0.834,11.71
LN(0.5) 0.954 0.967 0.977 0.967 0.888,15.44 0.598,11.95 0.981,15.51 0.949,11.16

Note that, under the location shift and Lehmann alternative, for the smaller sample

m = n = 10, and n1 = [0.5n] + 1, in Table 4-8, the double sampling precedence and the

weighted precedence test may not have a reasonable size under H0, or these tests might be-

come single sample tests having no warning region. For example, the critical limits for the

double sampling precedence test for m = n = 10 and n1 = [0.5n] + 1 are a = b = 8 resulting

in ñ = 5. The power performance is also not satisfactory. Therefore, in case of double

sampling precedence and weighted precedence tests, n1 = [0.5n] + 1 is not recommended.

From Table 5-8, we observe that for smaller sample m = n = 10, the double sampling

precedence test with n1 = [0.75n] + 1 attains more power than the precedence, the maximal
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precedence and the weighted maximal precedence tests, while the double sampling weighted

precedence test has overall better power than others. For m = n = 20, the smaller shift

θ = 0.5, the weighted precedence test attains better power than others. For a larger shift

θ = 1, the weighted precedence and its double sampling counterpart have close performance

while the latter having better power in many cases. However, in case of the proposed double

sampling tests, we achieve a close or better performance with a smaller average sample than

the single sampling counterparts.

In Table 9, power values and the expected sample sizes are presented for m = n = 100,

θ = 0.5, α0 = 2α, r = 2, 3, for the weighted precedence and the double sampling weighted

precedence test. We consider the initial sample size as n1 = 25. It can be observed that, with

a much smaller sample size, the double sampling weighted precedence test achieves a close

performance to the weighted precedence test, specially for skewed distributions.

Table 9: Power values, and expected sample size ñ, for m = n = 100, θ = 0.5, α0 = 2α.
Dist WPT WPT DWPT(n1 = 25) DWPT(n1 = 25)

r=2 r=3 r=2 r=3
Exact l.o.s 0.047 0.049 0.056,29.53 0.48, 29.07
N(0,1) 0.421 0.501 0.423,36.68 0.491,37.04
Exp(1) 1.000 1.000 1.000,25 1.000,25
Gamma(2) 1.000 0.997 0.992,28.06 0.992,29.02
Gamma(10) 0.751 0.803 0.642,37.95 0.693,37.11
LN(0.1) 0.534 0.618 0.506,37.46 0.562,37.20
LN(0.5) 0.997 0.998 0.972,30.14 0.965,29.95

4.3. Remarks about the choice of initial sample size

Choice of the initial sample size n1 is essential. We intend to find if there is any optimal

choice of n1 in terms of the power of the proposed test. For m = n = 20, n1 = [pn]+1 where

p = 0.3, 0.4, 0.5, 0.6, 0.7, 0.75, 0.8, 0.85, 0.9, and r = 2, 3, we have obtained the power of the

double sampling precedence and weighted precedence test under the Lehmann alternative

and location shift alternative. For the Lehmann alternative, we consider γ = 2(1)6. For

the location shift, we consider θ = 0.2, 0.5, 1.0, for the symmetric and skewed distributions

considered in Section 4.2.
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It is observed that the power of the double sampling precedence and weighted prece-

dence test do not increase significantly after p = 0.75 or 0.8, for n1 = [pn] + 1. Sometimes

the power decreases after p = 0.75 or 0.8. For example, let us consider the power for the

double sampling weighted precedence test for m = n = 20, and r = 3 for shift θ = 0.5.

For the standard exponential distribution, the maximum power is 0.904 that is attained for

n1 = [0.75n] + 1. For the gamma distribution with shape parameter β = 10, the maximum

power is 0.416 that is attained for n1 = [0.8n]+ 1. A similar power performance is observed

for both the double sampling precedence and weighted precedence tests for other shift values

θ = 0.2, 1.0 for other distributions considered. Under the Lehmann alternative, we observe

an optimal power for n1 = [0.75n]+ 1 or [0.8n]+1 for all γ = 2(1)6. Hence, an optimal split

of the Y sample can be taken as n1 = [0.75n] + 1 or [0.8n]+1.

5. Real life application

Two life-testing experiments are presented to illustrate the application of the proposed tests.

Example 1: We consider a data from the Problem 5.4, Chapter 5 in Nelson (2003) about

oil breakdown voltage for electrodes which is presented in Table 10. An insulating oil was

tested between a pair of parallel disk electrodes under increasing voltage over time. The oil

breakdown voltage was measured with two types of electrodes, 60 times each. To test for

any significant difference between the voltage data for two types of electrodes, we consider

r = 3 and n1 = [0.8n] + 1 at 5% level of significance. Note that, m = n = 60 and n1 = 49.

The 3-inch-diameter electrodes are taken as X sample and the 1-inch-diameter electrodes

are as Y sample. We obtain W∗
r1 = 1568 for the first 49 breakdown voltages for the 1-inch-

diameter electrodes that falls within the warning region B∗ = (334,2880). Therefore, 11

more breakdown voltages are observed to compute the pooled statistic W∗
r = 1912 > c∗ =

418. Similarly, for the double sampling precedence test, the initial test statistic Wr1 = 32

falls within the warning region B = (8,45). Therefore, we calculate the pooled test statistic

Wr = 32 > c = 8. Hence, both test procedures suggest rejection of the H0 at 5% level of

significance that there is no significant difference between the voltage data for two types of
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electrodes.

Table 10: The oil breakdown voltage measured with two sizes of electrodes.
1-inch diameter

57 59 56 56 58 64 58 55 58 54
65 61 64 65 65 52 53 60 58 63
60 62 54 63 60 52 62 50 60 57
68 57 57 58 52 67 52 62 56 59
55 65 63 57 67 64 62 58 66 60
57 64 66 52 65 57 58 62 60 59

3-inch diameter
57 49 49 41 52 40 48 48 43 45
57 54 49 49 52 53 51 46 55 54
49 51 50 49 51 49 47 55 49 51
51 50 50 55 46 55 57 53 54 54
54 41 60 50 55 54 53 54 53 46
55 50 59 58 60 55 55 56 59 51

Example 2: We consider another data from the Table 6.1, Chapter 3 in Nelson (2003).

The data presented in Table 11 is about the times to failure of specimens of a new Class

H electrical insulation at different temperatures. The hours to failure data at two different

temperatures, viz. at 240◦, taken as the X sample, and at 190◦, taken as the Y sample. We

consider r = 3 and n1 = [0.75n] + 1 for the proposed tests at 5% level of significance. Note

that m = n = 10 and n1 = 8.

The test statistics W∗
r1 = 80 and Wr = 10 are obtained for the initial sample of the first 8

failure times for temperature 190◦. Note that, in both cases, the initial test statistic falls on

or beyond the critical values b∗ = 80 and b = 8, respectively. Hence, we reject H0 with a

smaller sample at 5% level of significance that there is no significant failure time differences

at two different temperatures.

Table 11: Class-H Insulation Life Data
Hours to failure

High temp. 1175 1175 1521 1569 1617 1665 1665 1713 1761 1953
Low temp. 7228 7228 7228 8448 9167 9167 9167 9167 10511 10511
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6. Summary and conclusion

In this paper, we propose new precedence and weighted precedence tests under a dou-

ble sampling framework. We have obtained the joint distribution of two precedence and

weighted precedence statistics under the non-nested double sampling without replacement.

Explicit expressions for the power function under the null and the Lehmann alternative are

also obtained. With extensive Monte-Carlo simulation, we find that, with a smaller aver-

age sample size, the proposed double sampling precedence and weighted precedence tests

perform close or better than their single sampling counterparts. Extending the proposed ap-

proach to other types of nonparametric tests could be an interesting topic for future research.
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8. Appendix

A. Proof of Result 1.

Proof. Conditioning on Yr:n1 = y, we have the conditional probability of D = d as

P[D = d|Yr:n1 = y] =
(
n − n1

d

)
Gd(y)[1 −G(y)](n−n1−d)

Hence,

P[D = d] =
∫ ∞

y=0

(
n − n1

d

)
Gd(y)[1 −G(y)](n−n1−d) n1!

(r − 1)!(n1 − r)!
G(r−1)(y)[1 −G(y)](n1−r)dG

=

(
r+d−1

d

)(
n−r−d

n−n1−d

)(
n
n1

) .

B. Proof of Result 3. Let us consider that PH0[Wr1 ∈ B] > 0. Then PH0[Xa:m ≤ Yr:n1 <
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Xb:m,Yr:n ≤ Xc:m] < PH0[Yr:n < Xc:m]. This implies from Eq. (4) that

PH0[Yr:n1 < Xa:m] > α2 − α. (*)

Then we consider

α2 = 1 − PH0[Wr ∈ C0] = 1 − PH0[Wr ∈ C0,Wr1 ∈ B] − PH0[Wr ∈ C0,Wr1 ∈ B
c]

⇒ α2 + PH0[Wr ∈ C0,Wr1 ∈ B
c] = 1 − PH0[Wr ∈ C0,Wr1 ∈ B]

⇒ α2 + PH0[Wr ∈ C0,Wr1 ∈ B
c] − PH0[Wr1 ∈ A0] = α

⇒ α2 − α = PH0[Wr1 ∈ A0] − PH0[Wr ∈ C0,Wr1 ∈ B
c]

⇒ α2 − α > PH0[Yr:n1 < Xa:m] − PH0[Yr:n < Xc:m].

(**)

By combining (*) and (**), we get the proof.

C. Proof of Result 6.

For given a and c, we can write

PH0[W
∗
r1 ≤ c,W∗

r ≤ a] = PH0[W
∗
r ≤ a|W∗

r1 ≤ c]PH0[W
∗
r1 ≤ c].

First, we obtain the probability PH0[W
∗
r ≤ a|W∗

r1 ≤ c]. Note that M∗i ≥ Mi for i = 1, 2, . . . , r.

Let us write M1
1 =

∑l1
i=1 Mi, and M1

j =
∑∑ j

k=1 lk

i=
∑ j−1

k=1 lk+1
Mi, j = 2, 3, . . . , r. For given m, n, n1, and

1 ≤ li ≤ n, the conditional probability PH0[W
∗
r ≤ a|W∗

r1 ≤ c] can be obtained by adding the

joint probabilities over all possible mi, i = 1, 2, . . . ,
∑r

k=1 lk, given 0 ≤ n1
∑l1

i=1 mi +
∑r

j=2(n1 −

j + 1)
∑∑ j

k=1 lk

i=
∑ j−1

k=1 lk+1
mi ≤ a. Then, from the results of Balakrishnan and Ng (2001) about the

joint distribution of M1
1 ,M

1
2 , . . . ,M

1
r and Mi, i = 1, 2, . . . ,

∑r
k=1 lk under H0, we prove Result

6.
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