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a b s t r a c t

This article considers the propagation of high frequency elastic waves in a layered
material. Each layer is locally anisotropic and the layer thicknesses and slowness
surface orientations are modelled by a (Markovian) process. This work is important
in deepening our understanding of the ultrasonic non-destructive testing of carbon
fibre reinforced polymer (CFRP) composites and polycrystalline materials. The paper
focuses on monochromatic shear waves propagating in two-dimensional ((x1, x3) plane)
heterogeneous media. The displacement is in the x2 direction and the model focuses
on the reflection and transmission of the wave at layer interfaces. The rotation of
the slowness surface in each layer lies in the (x1, x2) plane and varies with the
wave propagation direction (x3) only. Expressions for the local and global coefficients
for the reflected and transmitted wave amplitudes are derived and shown to satisfy
energy conservation. The resulting stochastic differential equations lead to a self-adjoint
infinitesimal generator which can be used to produce a Fokker–Planck equation to
study the probability distribution of the transmission coefficient. Explicit expressions for
the moments of the probability distributions of the power transmission and reflection
coefficients are then derived. The dependency of the mean and standard deviation of
the power transmission coefficient on the depth of wave penetration, the localisation
length, and the direction of wave propagation is then reported.
©2023 TheAuthors. Published by Elsevier B.V. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Ultrasonic non-destructive evaluation (NDE) is an important technique for assessing the structural integrity of
ndustrial infrastructure. It involves sending mechanical waves through the object of interest and analysing the resulting
cattered field to determine if there exists any embedded defects [1]. It is common practice when performing NDE on an
nknown material to assume homogeneous material properties [2]. However, this is a physically unrealistic assumption in
any materials of interest (for example austenitic steel) [3]. Wavelength size structures exist in many industrial materials
hich can lead to significant multiple scattering and the medium not being well characterised using homogenisation [2].
aves propagating through such heterogeneous media experience scattering that attenuates the coherent input wave

nd transfers energy to small incoherent fluctuations [4]. A deterministic approach to studying horizontally polarised
hear waves was reported in [5] where the symmetry axis of rotation was out of plane (where an austenitic steel weld
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as analysed) but with no consideration for random fluctuations in the wave amplitude produced by scattering from
nteractions with the internal material microstructure.

Recent studies using numerical simulations have outlined the effects of internal material microstructures on beam
ropagation. When the size of the internal grain microstructure is commensurate with the wavelength, amplitude
luctuations can be observed in the transmitted and repeated waveforms [6]. If these factors are ignored, deterministic
odels of wave propagation can give a poor representation of the transmitted and reflected waves and this in turn can
egatively affect our ability to reliably detect and resolve flaws. Understanding such phenomena is key to developing
DE imaging methods based on the incoherent waves (coda waves) that result from ultrasonic wave propagation in
uch materials. Elastic wave propagation in anisotropic solids is also important in medical imaging [7] and in migration
roblems in geophysics [8] where time reversal techniques are of interest.
In this paper, we wish to study length scale regimes where the received wave is complex, exhibiting many fluctuations

ver a long time period caused by its convoluted journey through the heterogeneous layered medium. The random
edium is embedded between two homogeneous half spaces with a unit wave impinging at x3 = 0. In this case,

he input wave (which is a horizontally polarised shear wave) is so affected by its interactions with the medium that
homogenisation approach is inappropriate. This can occur when the propagation distance L is much larger than the
avelength (λ3) of propagation which in turn is much larger than the layer sizes l (L ≫ λ3 ≫ l) and the fluctuations in
he material are large (σ ∼ 1); the so called strongly heterogeneous regime [9]. It can also occur in the regime where
3 ≫ λ3 ∼ l and σ ≪ 1, which is the so called weakly heterogeneous regime and it is this latter case that will be examined
n this paper.

The decay of a coherent wave has been studied in the literature for general acoustic and elastic systems. Articles
9–11] consider acoustic systems in one dimension and more recently [4,12] considered elastic media, where the latter
ddressed three-dimensional random media in a different scaling regime than is presented in this paper. In each case,
tochastic differential equations (SDE’s) arise due to the modelling assumptions for the random fluctuations in the material
roperties [13]. Each of these studies examined a wave travelling in a medium whose properties only varied in the
irection of propagation, leading to a system of stochastic differential equations satisfied by a propagator matrix with
ertain symmetry properties. This paper uses a similar approach to consider a shear wave propagating in an elastic
edium with random fluctuations in the material microstructure. As far as the authors are aware, this is the first time

hat the direction of wave propagation has been incorporated into this methodology for elastodynamic waves. Current
DE practice involves the use of an array of transmitting/receiving elements so that the direction and focus of the emitted
ave can be adjusted [14], and so understanding how this change in wave direction interacts with a layered medium is
herefore of significant interest. The effect that the localisation length and the direction of the monochromatic shear wave
as on the attenuation of the transmitted wave, is studied.
The paper can be summarised as follows. Section 2 introduces the governing elastodynamic equations where the wave

arameterisation is chosen and the resulting evolution equations are derived. Section 3 introduces the stochastic process
overning the fluctuations in the material parameters in the form of a randomly varying slowness surface angle. We
lso non-dimensionalise the equations in this Section and formulate a random forward–backward wave mode equation.
ection 4 introduces the weakly heterogeneous scaling regime which is appropriate for the study of ultrasonic waves in
he non-destructive testing of austenitic steel welds. A diffusion approximation is used to derive a tractable system of
DE’’s which is solved to obtain a Fokker–Planck equation for the probability density function of the transmitted energy
n Section 4.4. Sections 4.4 and 4.5 follow closely the analysis presented in [9] (Ch. 7). Section 5 contains some numerical
esults showing the dependency of the mean and standard deviation of the power transmission coefficient for ultrasonic
ave propagation in austenitic steel.

. Governing equations

We are interested in studying waves in a host medium composed of just one anisotropic material. The media is
artitioned into layers and the orientation of the material varies from one layer to the next. Since the material is
nisotropic, this variation in orientation affects the speed at which the incident wave travels through each region and
ence the wave experiences a change in mechanical impedance and therefore a spatially heterogeneous medium. This local
ariation in wave speed can be described using a slowness curve which can be derived analytically from the Christoffel
quation [15]. The governing elastic wave equation can be written

ρ
∂2ui

∂t2
=

3∑
k=1

∂τik

∂xk
, i = 1, 2, 3, u(t, x) : R+

× R3
→ R3, τik(t, x) : R+

× R3
→ R3×3, (1)

where the displacement vector is denoted u = (u1(t, x), u2(t, x), u3(t, x)), ρ is the density of the material (assumed
to be constant) and τjk is the material stress tensor. The material is contained in x3 ∈ [0, L], where L is the width
of the media. Denoting s = (s , s , s ) the symmetry axis vector in two dimensions (the (x , x ) plane) defined by
1 2 3 1 2

2



A.S. Ferguson, A.J. Mulholland, K.M.M. Tant et al. Wave Motion 120 (2023) 103138

s
 = [cos θ (x3), sin θ (x3), 0]T , the stiffness tensor can be written [16] as

cijkl =(A − 2N)δijδkl + N
(
δikδjl + δilδjk

)
+ (F − A + 2N)

(
δijsksl + δklsisj

)
+ (S − N)

(
δiksjsl + δilsjsk + δjksisl + δjlsisk

)
+ (A + C − 2F − 4S)sisjsksl. (2)

Note that A = C33, C = C11, F = C13, N = C44, S = C66 when θ = 0, so the stiffness matrix has the form in [17]
when the symmetry axis points in the x1 direction. The stiffness tensor for a transversely isotropic medium has five
independent components denoted (in Voigt notation) C11, C33, C13, C66 and C44. This form assumes that the anisotropy
is spatially varying only in the x3 direction as in [9]. However, in [9], s lies in the (x1, x3) plane but here it lies in the
(x1, x2) plane, making an angle θ (x3) with the x1 axis as shown in Fig. 1. We restrict attention to the case of a shear wave
with the displacement vector remaining in the x2 direction when the wave propagates through the random medium. It is
important to note that the displacement vector remains in the x2 plane when the wave propagates through the random
medium. The elastic tensor relates the symmetric strain and stress tensors via Hooke’s law

τij =

3∑
k,l=1

cijklekl, (3)

where the symmetric strain tensor is given by

ekl =
1
2

(
∂uk

∂xl
+
∂ul

∂xk

)
. (4)

Consider a horizontally polarised shear wave [5] with displacement vector

(uj)3j=1 = (0, u2(x1, x3), 0), (5)

whereby the medium vibrates in a direction perpendicular to the (x1, x3) plane. The velocity in the x2 direction is defined
as

ξ =
∂u2

∂t
= u2,t . (6)

The wave direction is then in the (x1, x3) plane. Using this parameterisation (and moving to Voigt notation for convenience)
Eq. (3) becomes

τ21,t = c66ξ,1, (7)

τ32,t = c44ξ,3, (8)

where

c66(x3) = S + (A + C − 2F − 4S) cos2 (θ (x3)) sin2 (θ (x3)), (9)

c44(x3) = N + (S − N) sin2 (θ (x3)). (10)

The elastic wave Eq. (1) can then be rewritten as

ρξ,t = τ21,1 + τ32,3. (11)

At time t = 0, a source term excites the medium at x3 = 0, and radiation conditions demand that the amplitude of the
propagating wave tends to zero as x → ±∞. Using positive sign convention, we take Fourier transforms in time and
space (in the x1 direction with respect to a wavenumber κ1) of the stress and velocity equations; in this time-harmonic
domain the stress and velocity are denoted by τ̂ and ξ̂ respectively. Define the temporal Fourier transform of a function
f (t, x1, x3) by

f̌ (ω, x1, x3) =

∫
f (t, x1, x3)eiωtdt, (12)

where ω is the angular frequency. Define the spatial Fourier transform with respect to a wavenumber κ1 in the x1 direction
by

f̂ (ω, κ1, x3) =

∫
f̌ (ω, x1, x3)eiκ1x1dx1. (13)

Eqs. (11), (7) and (8) become

− ρiωξ̂ (ω, κ1, x3) = −iκ1τ̂21(ω, κ1, x3) + τ̂32,3(ω, κ1, x3), (14)

− iωτ̂ (ω, κ , x ) = −iκ c ξ̂ (ω, κ , x ), (15)
21 1 3 1 66 1 3
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Fig. 1. For each value of x3 ∈ [0, L3] ⊆ R, the material is anisotropic in the (x1, x2) plane. The degree of anisotropy is dictated by the material’s
slowness surface and θ (x3) describes its rotation in the (x1, x2) plane. The direction of wave propagation is fixed and lies in the (x1, x3) plane. In
each layer (shown by the dashed lines) the material properties are constant. At x3 = 0 we show an elastic shear wave with wavelength λ incident
n a randomly layered material with layer size l and slab length L. The small arrows indicate the local crystal orientation θ (x3) (the symmetry axis

vector and hence θ , lie in the (x1, x2) plane) of the anisotropic material in each layer. Upon exiting the material the transmitted wave has very little
energy in the coherent wave and has a long coda wave.

− iωτ̂32(ω, κ1, x3) = c44ξ̂,3(ω, κ1, x3). (16)

These can be rewritten in matrix form (the subscript 32 is dropped for notational convenience) to obtain a system of
velocity and stress evolution equations

∂

∂x3

[
ξ̂ (ω, κ1, x3)
τ̂ (ω, κ1, x3)

]
=

[
0 −iα

−iβ 0

][
ξ̂ (ω, κ1, x3)
τ̂ (ω, κ1, x3)

]
, ξ̂ (ω, κ1, x3), τ̂ (ω, κ1, x3) : R3

→ R, (17)

where the boundary conditions are the radiation conditions whereby ξ̂ → 0 as x3 → ±∞ and τ̂ → 0 as x3 → ±∞, and
a wave is initiated by imposing an initial stress τ̂0 and velocity ξ̂0 at x3 = 0. Furthermore

α =
ω

c44
, (18)

and

β =
ρω2

− κ2
1 c66

ω
, (19)

here we assume that β > 0 and set ζ =
√
βα. For typical stiffness matrix values the spatially varying stiffness coefficient

given by Eq. (9) is positive. So, if the incident wave is such that the phase velocity in the x1 direction (ω/κ1) exceeds the
patially varying velocity

√
c66(x3)/ρ in the x3 direction then the wave-field will satisfy this condition throughout the

domain.

3. Randomly layered anisotropic medium

The stochastic model we employ to describe the heterogeneities gives rise to fluctuations which build up behind the
pulse, producing a distorted coda wave exiting the material. We assume that the material is Markovian, the polycrystalline
orientations from one layer to the next are independent and the layer sizes are independent from one layer to another;
see [18] for an example. The heterogeneous nature of these materials is complex and to enable analytical headway this
simplified model to describe the material fluctuations is used.

As the angle θ varies in the (x1, x2) plane, the stress tensor components of the material are given by Eqs. (9) and (10).
We will assume that the angle θ (x3) varies randomly over the interval x3 ∈ [0, L] according to

θ (x ) = θ̄ + σm(x /l), x ∈ [0, L]. (20)
3 3 3
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here θ̄ ∼ 1 is the mean angle, m(x3/l) is a stationary stochastic process (an ergodic Markov process on a compact state
pace, see Section 6.1.5 in [9]) with mean zero. The random process m(x3/l) takes values in R, on an interval which is
losed and bounded (typically m is drawn from a uniform distribution in the interval [−1,1]). Here l is a typical layer
ize inside the material and σ is a dimensionless and small parameter (0 < σ ≪ 1) which controls the amplitude of the
andom fluctuations. To assist in the analysis that follows, we linearise this dependency of the material properties with
espect to the random process m(x3/l). As such, the range of validity of the analysis is restricted to the regime where the
overning equations are approximately linear with respect to m(x3/l); given the dependency on θ in Eqs. (21) and (22)
his will be centred on θ̄ = π/8. A Taylor expansion at first order (in σ ) gives us

c66 = c̄66

(
1 + ϕm(x3/l)

)
, (21)

here c̄66 = S + ϱ cos2 θ̄ sin2 θ̄ , ϱ = A + C − 2F − 4S and ϕ = σϱ sin (2θ̄ ) cos (2θ̄ )/c̄66. Similarly

c44 = c̄44

(
1 + ϑm(x3/l)

)
, (22)

here c̄44 = N + (S − N) sin2 θ̄ and ϑ = σ (S − N) sin(2θ̄ )/c̄44. Eq. (18) is now

α = ᾱ(1 − ϑm(x3/l)), (23)

where ᾱ = ω/c̄44 and ϑ = −σΓα , where

Γα =
(N − S) sin (2θ̄ )

c̄44
. (24)

q. (19) can then be written

β = β̄(1 + ςm(x3/l)), (25)

here β̄ = (κ2
1 c̄66 − ρω2)/ω and ς = (c̄66ϕκ2

1 )/(κ
2
1 c̄66 − ρω2) = σΓβ where

Γβ =
κ2
1ϱ sin (2θ̄ ) cos (2θ̄ )(
κ2
1 c̄66 − ρω2

) . (26)

nserting (23) and (25) into the stress-velocity evolution (17) gives

∂

∂x3

[
ξ̂ (ω, κ1, x3)
τ̂ (ω, κ1, x3)

]
=

[
0 −iᾱ(1 − ϑm(x3/l))

iβ̄(1 + ςm(x3/l)) 0

][
ξ̂ (ω, κ1, x3)
τ̂ (ω, κ1, x3)

]
, (27)

here ξ̂ (ω, κ1, x3) : R+
×R+

×R → R and τ̂ (ω, κ1, x3) : R+
×R+

×R → R. The incident velocity and stress are prescribed
t x3 = 0 and the boundary conditions are in the form of radiation conditions such that the stress and velocity tend to
ero as x3 tends to ±∞.

.1. The dimensionless elastic wave equations

To put the system of governing equations (27) in a dimensionless form, we choose the dimensionless variables

x̃3 =
x3
L3
, ω̃ =

L3 ω
c3
, and κ̃1 = κ1L3, (28)

here L3 is a typical propagation distance in x3 and c3 is the mean wave speed in the x3 direction. We can interpret x̃3
s a ratio of distances in the propagation direction, ω̃ as a ratio of the propagation distance to the typical wavelength in
he propagation direction and κ̃1 as a ratio of propagation distance per wavelength in the x1 direction. We define two
imensionless parameters ε and ϖ in order to capture the length scale differences in the problem via

ε ≪ 1,
L3
l

=
1
ε2
, and ϖ = εω̃, (29)

here ε is (0 < ε ≪ 1) in the weakly heterogeneous regime (see [9] where the same analysis is followed but for the
coustic wave case). These relations can be combined to give

ε =

√
l
L3
, and ϖ =

ω

c3

√
lL3. (30)

rom Eq. (27) the non-dimensional stress and velocity equations read

∂
[
ξ̃
]

=

[
0 −i(ω̃/c̃44)(1 − ϑm(x̃3/ε2))

2 2 2

][
ξ̃
]
, (31)
∂ x̃3 τ̃ iω̃((κ̃1/ω̃ )c̃66 − 1)(1 + ςm(x̃3/ε )) 0 τ̃

5
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here c̃44 = c̄44/(ρc23 ) and c̃66 = c̄66/(ρc23 ). Let us define ν via

κ̃1 = νω̃, (32)

here

ν =
κ̃1

ω̃
=

κ1L3
(L3ω/c3)

=
κ1

κ3
, (33)

s the ratio of wave numbers in the (x1, x3) directions. As such, ν is related to the direction of wave propagation in the
(x1, x3) plane. Hence, Eq. (31) becomes

∂

∂ x̃3

[
ξ̃ (ω̃, κ̃1, x̃3)
τ̃ (ω̃, κ̃1, x̃3)

]
= i

ϖ

ε

[
0 d1(1 + σΓαm(x̃3/ε2))

d2(1 + σΓβm(x̃3/ε2)) 0

][
ξ̃ (ω̃, κ̃1, x̃3)
τ̃ (ω̃, κ̃1, x̃3)

]
(34)

here d1 = −1/c̃44, d2 = ν2c̃66 − 1 and Eqs. (26) and (33) give

Γβ =
ν2ϱ sin (2θ̄ ) cos (2θ̄ )

ν2c̄66 − ρc23
. (35)

etting

ξ̂ (ω, κ1, x3) = â(ω, κ1, x3)eiϖ/ε
√
d1d2x3 + b̂(ω, κ1, x3)e−iϖ/ε

√
d1d2x3 , (36)

and

τ̂ (ω, κ1, x3) =

√
d2/d1

(
â(ω, κ1, x3)eiϖ/ε

√
d1d2x3 − b̂(ω, κ1, x3)e−iϖ/ε

√
d1d2x3

)
, (37)

(dropping tildes) Eq. (34) becomes (â, b̂ are right and left-going wave moves respectively)

∂

∂x3

[
â
b̂

]
=

iϖσ
2ε

m(x3/ε2)
[ √

d1d2(Γα + Γβ )
√
d1d2(Γβ − Γα)e−2iϖε

√
d1d2x3

√
d1d2(Γα − Γβ )e2i

ϖ
ε

√
d1d2x3 −

√
d1d2(Γα + Γβ )

][
â
b̂

]
, (38)

a system of scaled dimensionless wave-mode evolution equations, where â(ω, κ1, x3) : R+
× R+

× R → R and
b̂(ω, κ1, x3) : R+

× R+
× R → R. The initial conditions are that â(ω, κ1, x3) and b̂(ω, κ1, x3) are prescribed at x3 = 0

and the radiation conditions are such that â and b̂ tend to zero as x3 tends to ±∞.

4. The weakly heterogeneous regime

The weakly heterogeneous regime is a high frequency regime (wavelength λ3 is small relative to the slab length L3, but
commensurate with the microscopic layer length l) where the amplitude of the fluctuations in the medium properties is
weak. The strength of the random fluctuations in Eq. (20) is controlled by σ where 0 < σ ≪ 1. The propagation distance
is large so that significant multiple scattering occurs. For certain manufactured layered materials (such as a CFRP or an
additively manufactured polycrystalline metals) there is a need to detect flaws using ultrasound waves. There is a trade-off
between the resolution that can be achieved and the depth of penetration of the ultrasound wave due to the multiple
scattering of the wave by the layered structure. These materials typical adhere to the weakly heterogeneous scaling regime
studied in this paper. The ratio of wavenumbers (captured by the parameter ν) and the frequency of the ultrasound
wave dictate the depth of wave penetration and the wavelength dictates the spatial resolution of the ultrasound imaging
algorithm. The model presented here (via the localisation length) can be used by ultrasound engineers to decide on the
optimal frequency of operation/design of the ultrasound sensor for a particular non-destructive testing application. This
regime corresponds to L3 ≫ λ3 ∼ l, 0 < σ ≪ 1, where λ3 is the wavelength in the x3 direction. From Eq. (29)

1 ≪
L3
λ3

=
ωL3
2πc3

=
ω̃

2π
=

ϖ

2πε
, (39)

nd from Eq. (30)
l
λ3

=
ωl

2πc3
=

ωL3
2πc3

l
L3

=
ϖ

2πε
ε2 =

ϖε

2π
∼ 1. (40)

q. (40) implies (with 0 < ε ≪ 1) that

ϖ ∼
1
ε
, (41)

nd so Eq. (39) holds and since 0 < σ ≪ 1 then we set σ = ε. Recall from Eq. (32) that we have normalised our
random and dimensionless linear system, enabling us to apply a diffusion approximation (following Theorem 6.5, Section
6.5.2 [9]). Whilst the diffusion approximation theory can deal with more general cases, the linearisation (which is justified
in this setting) enables more analytical headway to be made. Eqs. (29) and (41) imply that ω̃ ∼ ε−2. These parameter
6
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hoices ensure that the material fluctuation amplitude σ , is small, the layer size l is much smaller than the propagation
istance L3, the system is in a high frequency regime L3 ≫ λ3, and the propagation distance is large enough so the wave

experiences significant scattering L3 ∼ Lloc (Lloc is the localisation length [9] which is given explicitly later in Eq. (80)). In
this scaling regime the evolution Eq. (38) reads

d
dx3

[
âε

b̂ε

]
=

1
ε
H
(
x3
ε2
,m

(
x3
ε2

))[
âε

b̂ε

]
, (42)

here

H
(
x3
ε2
,m

(
x3
ε2

))
=

im(x3/ε2)
2

⎡⎣ δ1 −δ2e
−i φx3

ε2

δ2e
i φx3
ε2 −δ1

⎤⎦ , (43)

âε(ω, κ1, x3) : R+
× R+

× R → R and b̂ε(ω, κ1, x3) : R+
× R+

× R → R. The initial conditions are such that at âε and
b̂ε are prescribed at x3 = 0 and the radiation conditions demand that âε and b̂ε tend to zero as x3 tends to ±∞. Here
δ1 =

√
d1d2(Γα+Γβ ), δ2 =

√
d1d2(Γα−Γβ ) and φ = 2

√
d1d2. To allow the use of Theorem 6.5, Section 6.5.2 [9], we require

that the random fluctuations have the form m(x3) = B(Y (x3)), where Y is a homogeneous in x3 Markov process with values
in the compact space [0, π/2] ∈ R. We also assume that this process is strongly ergodic (the Markov process can traverse
any part of the state space with a positive probability starting from anywhere in finite time), its infinitesimal generator
satisfies the Fredholm alternative [4], and the real bounded function g satisfies the centring condition E[B(Y (0))] = 0.
Eq. (42) can be recast into an initial value problem associated with a propagator equation. That is[

âε(ω, x3)
b̂ε(ω, x3)

]
= Pε(ω, x3)

[
âε(ω, 0)
b̂ε(ω, 0)

]
, (44)

where the propagator matrix

Pε(ω, x3) =

[
χ ε(ω, x3) ~ε(ω, x3)
~ε(ω, x3) χ ε(ω, x3)

]
, (45)

s formed from solutions of Eq. (42) with initial condition Pε(ω, x3 = 0) = I, that is χ ε(ω, 0) = 1 and ~ε(ω, 0) = 0. The
eterminant of the propagator matrix is the conserved quantity |χ ε|2 − |~ε|2 = 1.

.1. Diffusion approximation theorem

To proceed we now apply the diffusion-approximation theorem in its linear form [9] to obtain the asymptotic
istribution of the propagator matrix Pε . Use of the limit theorem shows that Pε converges in distribution to P which
s the solution of a stochastic differential equation. We write Eq. (44) using the propagator formulation (taking partial
erivates in x3 of Eq. (44) and substituting Eq. (42) to obtain the random matrix equation)

dPε

dx3
(ω, x3) =

1
ε
H
(
x3
ε2
,m

(
x3
ε2

))
Pε(ω, x3). (46)

Splitting this into its real and imaginary parts gives

dPε

dx3
(ω, x3) =

i
2ε

m
(
x3
ε2

)
δ1 σ3Pε(ω, x3)

−
1
2ε

m
(
x3
ε2

)
δ2 sin

(
φx3
ε2

)
σ1Pε(ω, x3)

+
1
2ε

m
(
x3
ε2

)
δ2 cos

(
φx3
ε2

)
σ2Pε(ω, x3), (47)

here σ1, σ2, σ3 are the Pauli spin matrices, defined as

σ1 =

[
0 1
1 0

]
, σ2 =

[
0 −i
i 0

]
, σ3 =

[
1 0
0 −1

]
. (48)

he right hand side of Eq. (47) can be written as

1
ε

3∑
p=1

g (p)(m(τ ), τ )hpPε, (49)

here τ = x3/ε2, h1 = iδ1σ3/2, h2 = −δ2σ1/2, h3 = δ2σ2/2 and g (1)(m, τ ) = m, g (2)(m, τ ) = m sin (φτ ),
(3)(m, τ ) = m cos(φτ ). Recall that φ (defined below Eq. (43)) is independent of ω and is a function of ρ, c3, θ̄ , ν and
he five independent stiffness tensor coefficients in Eq. (2). To use the diffusion approximation theorem (Theorem 6.4
7
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n [9]), we need the correlation integral matrix C = (Cpq)p,q=1,2,3. This can be computed using the covariance of the
random process m (see Section 6.7.1 in [9]). The correlation matrix C can be written

C =

⎡⎣Υ (0) 0 0
0 1

2Υ (φ) −
1
2Υ

AS(φ)
0 1

2Υ
AS(φ) 1

2Υ (φ)

⎤⎦ , (50)

here

Υ (φ) = 2
∫

∞

0
E
[
m(0)m(x3)

]
cos(φx3) dx3, (51)

Υ AS(φ) = 2
∫

∞

0
E
[
m(0)m(x3)

]
sin(φx3) dx3. (52)

he quantity Υ (φ) is a non-negative real number, and is proportional to the power spectral density of the stationary
andom process m (the Fourier cosine transform of the autocorrelation function at frequency zero; we refer to Section
.3.6 in [9]). The symmetric (S) and anti-symmetric (AS) elements can be assembled in separate matrices as

CS
=

⎡⎣Υ (0) 0 0
0 1

2Υ (φ) 0
0 0 1

2Υ (φ)

⎤⎦ , CAS
=

⎡⎣0 0 0
0 0 −

1
2Υ

AS(φ)
0 1

2Υ
AS(φ) 0

⎤⎦ . (53)

ow the diffusion approximation (Theorem 6.4 in [9]) can be used to show that Pε(ω, x3) converges in distribution to
(ω, x3) and satisfies the Stratonovich stochastic differential equation

dP(ω, x3) =

3∑
l=1

h̃lP(ω, x3) ◦ dWl(x3) +
1
2

3∑
p,q=1

C(AS)
pq hqhpP(ω, x3)dx3, (54)

here (◦) denotes the Stratonovich integral. Note here that

h̃l =

3∑
p=1

σ̃lphp, σ̃lp = (CS
lp)

1/2, (55)

nd Wl(x3) are independent standard Brownian motions. Eq. (47) can be expanded to give

d
[
χ (ω, x3) ~(ω, x3)
~(ω, x3) χ (ω, x3)

]
= iA1

[
1 0
0 −1

][
χ (ω, x3) ~(ω, x3)
~(ω, x3) χ (ω, x3)

]
◦ dW1(x3)

− A2

[
0 1
1 0

][
χ (ω, x3) ~(ω, x3)
~(ω, x3) χ (ω, x3)

]
◦ dW2(x3)

+ iA2

[
0 −1
1 0

][
χ (ω, x3) ~(ω, x3)
~(ω, x3) χ (ω, x3)

]
◦ dW3(x3)

− iA3

[
1 0
0 −1

][
χ (ω, x3) ~(ω, x3)
~(ω, x3) χ (ω, x3)

]
dx3, (56)

here A1 = δ1
√
Υ (0)/2, A2 = δ2

√
Υ (φ)/(2

√
2) and A3 = δ22Υ

AS(φ)/8, with initial conditions χ (ω, x3 = 0) = 1 and
(ω, x3 = 0) = 0.

.2. Parameterising solution on a hyperbola

We follow a similar treatment to that in [9] (chapter 7) and parameterise the entries of the propagator matrix via

χ (ω, x3) = cosh
(
γω(x3)

2

)
eiφω(x3), (57)

~(ω, x3) = sinh
(
γω(x3)

2

)
ei(φω(x3)+ψω(x3)), (58)

where γω(x3) ∈ [0,∞), φω(x3), ψω(x3) ∈ R, and γω(x3 = 0) = φω(x3 = 0) = ψω(x3 = 0) = 0. Eq. (56) can be converted
o Itô form by calculating the modified drift [13] to give

dγω = −2A2

(
cos (ψω)dW2 − sin (ψω)dW3

)
+

2A2
2

tanh (γω)
dx3, (59)

dψω =
2A2

(
cos (ψω)dW3 + sin (ψω)dW2

)
− 2A1dW1 + 2A3 dx3, (60)
tanh (γω)
8
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dφω = −A2 tanh (γω/2)
(
sin (ψω)dW2 + cos (ψω)dW3

)
+ A1dW1 − A3 dx3. (61)

his system can be reduced further by introducing two (auxiliary) random processes via[
W4
W5

]
=

∫ x3

0

[
cos (ψω) sin (ψω)
sin (ψω) − cos (ψω)

]
d
[
W3
W2

]
, (62)

o that the system (59) to (61) can be transformed to give

d

[
φω
ψω
γω

]
=

[ A1 −A2 tanh (γω/2) 0
−2A1 2A2/ tanh (γω) 0
0 0 2A2

][dW1
dW4
dW5

]
+

⎡⎣ −A3
2A3

2A2
2/ tanh (γω)

⎤⎦ dx3. (63)

he infinitesimal generator [9] of the Markov process (γω, φω, ψω) can be calculated as

Lγω,φω,ψω = 2A2
2

[
∂2

∂γ 2
ω

+
1

tanh (γω)
∂

∂γω

]
+ A2

2

[
1
2
tanh2 (γω/2)

∂2

∂φ2
ω

− 2
tanh (γω/2)
tanh (γω)

∂2

∂φω∂ψω
+

2
tanh2 (γω)

∂2

∂ψ2
ω

]
+ A2

1

[
1
2
∂2

∂φ2
ω

− 2
∂2

∂φω∂ψω
+ 2

∂2

∂ψ2
ω

]
+ A3

[
2
∂

∂ψω
−

∂

∂φω

]
. (64)

he radial process γω (so focusing on the amplitude in transformations (57) and (58)) has infinitesimal generator

Lγω =
δ22Υ (φ)

4

(
∂2

∂γ 2
ω

+
1

tanh (γω)
∂

∂γω

)
. (65)

he boundary conditions for Eq. (44) are prescribed by â(ω, x3 = 0) = 1, b̂(ω, x3 = L) = 0, and b̂(ω, x3 = L) = 0 which
ranslates into a unit wave travelling from the left and no left-going wave from the right at x3 = L. The reflection and
ransmission coefficients are given by Rω(ω, L) = b̂(ω, 0) and Tω = â(ω, L). Using Eq. (44), we have the system[

â(ω, L)
b̂(ω, L)

]
=

[
Tω(L)
0

]
= P(ω, L)

[
1

Rω(L)

]
. (66)

hat is

Rω(ω, L) = −
~(ω, L)
χ (ω, L)

, and Tω(ω, L) =
1

χ (ω, L)
. (67)

.3. Deriving localisation length from transmission coefficient

roposition 1. The random process γω satisfies

1
cosh (γω(L)/2)

= exp−A2

∫ L

0
tanh (γω(x3)/2)dW5(x3) − A2

2L. (68)

Proof. We define the power transmission coefficient (using Eqs. (57) and (67)) to be

τ (L) = |Tω(ω, L)|2 = cosh−2
(
γω(L)
2

)
, (69)

hich describes the amplitude of the energy transmitted through the medium. Using Eq. (68) we can write

τ (x3) = exp−2A2

∫ L

0
tanh (γω(x3)/2)dW5(x3) − 2A2

2L. (70)

ntegrating Eq. (61) we obtain

φω(L) = A1W1(L) − A2

∫ L

0
tanh (γω(x3)/2)dW4(x3) − A3L, (71)

so that we may write

exp iφω(L) = exp iA1W1(L) − iA2

∫ L

tanh (γω(x3)/2)dW4(x3) − iA3L. (72)

0

9



A.S. Ferguson, A.J. Mulholland, K.M.M. Tant et al. Wave Motion 120 (2023) 103138

S

M
o

w

T

P

P

w

T

w

P

t

ince d(cosh (γω/2)−1) = −1/2(tanh (γω/2)/ cosh (γω/2)) ◦ dγω , then Eq. (63) gives

d(cosh (γω/2)−1) = −
1
2

(
tanh (γω/2)
cosh (γω/2)

)
◦

(
2A2dW5 +

2A2
2

tanh (γω)
dx3

)
. (73)

ultiplying both sides by cosh (γω/2), introducing Z(x3) for brevity and integrating with respect to x3 (from 0 to L) we
btain

Z(L) = ln (cosh (γω(L)/2)−1) = −A2

∫ L

0
tanh (γω(x3)/2) ◦ dW5(x3)

− A2
2

∫ L

0

tanh (γω(x3)/2)
tanh (γω(x3))

dx3. (74)

Since tanh2 (γω/2) = 1 − cosh−2 (γω/2) = 1 − τω = 1 − e2Z(x), then

Z(L) = −A2

∫ L

0

(
1 − e2Z(x3)

) 1
2

◦ dW5(x3) −
A2
2

2

∫ L

0

(
2 − e2Z(x3)

)
dx3. (75)

here we have used the identity tanh (γω/2)/ tanh (γω) = 1/2(1 + tanh (γω/2)2) = 1/2(2 − τω) = 1/2(2 − e2Z(x3)). We
convert Eq. (75) into Itô form to obtain

Z(L) = −A2

∫ L

0
(1 − e2Z(x3))

1
2 dW5(x3) − A2

2L. (76)

aking exponentials of both sides (and using Eq. (74)) we can then obtain Eq. (68) which completes the proof. □

roposition 2. The natural logarithm of the transmission coefficient converges almost surely (when L → ∞) as

lim
L→∞

1
L
ln(τ ) = −

1
Lloc

, where Lloc =
1

2A2
2
. (77)

roof. From Eq. (70), since γω(L) → ∞ as L → ∞ we can write (almost surely) for large L

τ (L) ∼ exp−2A2
2L − 2A2W5(L) = exp−

2W5(L)
√
Lloc

−
L
Lloc

, (78)

here Lloc = 1/(2A2
2). Since W5(L)/L → 0 almost surely as L → ∞, then

lim
L→∞

ln(τ )
L

= −
1
Lloc

. □ (79)

he non-dimensionalised localisation length is written as

L̃loc(ν, cijkl, ρ, θ (x3)) =
Lloc
L3

=
1

2Ã2
2L3

=
4

δ22Υ̃ (φ)
=

4

δ22(ν, cijkl, ρ)Υ̃ (ν, cijkl, ρ, θ (x3))
, (80)

where Υ̃ (φ) = Υ (φ)/L3 is the non-dimensional correlation integral. This non-dimensional parameter L̃loc controls the rate
of the decay of energy through the random slab. □

4.4. Fokker–Planck equation for the power transmission coefficient

Proposition 3. The moments of the power transmission coefficient can be written as

E[τ n(L)] = e−
L

4Lloc (ν)

∫
∞

0

2πµ sinh (µπ )
cosh2 (µπ )

e−
µ2L

Lloc (ν) K (n)(µ)dµ, (81)

here

K (n)(µ) =

n−1∏
j=1

1
j2

(
µ2

+

(
j −

1
2

)2)
, K (1)(µ) = 1. (82)

roof.
From Eqs. (65) and (69) the infinitesimal generator of the power transmission coefficient can be written (dropping

ildes) as

Lτ =
1

(
τ 2(1 − τ )

∂2

2 − τ 2
∂

)
. (83)
Lloc ∂τ ∂τ

10
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ntroducing the transformation η = (2 − τ )/τ , which takes values in [1,∞), the infinitesimal generator is given by

Lη =
1
Lloc

∂

∂η

(
(η2 − 1)

∂

∂η

)
. (84)

he operator Lη is self adjoint and hence, the Fokker–Planck equation for the probability density function of η(x3 = L) is

∂p
∂L

(L, η) =
1
Lloc

∂

∂η

(
η2 − 1

)
∂p
∂η

(L, η), η > 1, (85)

ith initial condition p(L = 0, η) = δ(η− 1), where δ denotes the Dirac delta function. This can be solved analytically by
the use of the Mehler–Fock transform [9,19] to give the probability density function (PDF) of the process η(L)

p(L, η) =

∫
∞

0
µ tanh (µπ )P

−
1
2 +iµ(η) exp−

(
µ2

+
1
4

)
L
Lloc

dµ, (86)

here P
−

1
2 +iµ(η) is the Legendre function of the first kind. Equipped with the probability density function for the

power transmission coefficient, the moments of the power transmission coefficient are (we refer to [9] and in particular
proposition 7.3 and Section 7.6.1) then given by Eqs. (81) and (82) which completes the proof. □

The SDE approach used in this study allows for analytical comment to be made about the probability distribution of
the transmission amplitude via its moments. Of particular interest is the second moment as this captures the uncertainty
in the estimate of the transmission coefficient amplitude. If this is large then it suggests that a homogenisation approach
is not appropriate as each different realisation of the heterogeneous material will give a very different transmitted wave
amplitude. Conversely, when it is a narrow probability density function, that is when the second moment is small due
to self-averaging, and this would suggest that homogenisation could be used. One can see in Fig. 4 that for say ν = 0.5
then for a large enough propagation distance the second moment is small enough for a homogenisation approach to be
applicable. This ability to measure the uncertainty in the ultrasonic nondestructive testing of such materials is of practical
interest to engineers who may wish to design the inspection of a component to reduce uncertainty.

4.5. Moments of the power reflection coefficient

A similar calculation can be performed for the reflection coefficient (as defined in Eq. (67)). Using Eqs. (57) and (58)
then

Rω(ω, L) = − tanh (γω(L))/2ei(ψω(L)+2φω(L)), (87)

the reflected energy is defined as

|Rω(ω, L)|2 = tanh2 (γω(L)/2) = R, (88)

say. Using the chain rule, the infinitesimal generator (see Section 6.6.3 in [9] for details) for the power reflection coefficient
R reads

LR =
1
Lloc

[
R(1 − R)2

∂2

∂R2 + (1 − R)2
∂

∂R

]
. (89)

sing v = (1 + R)/(1 − R) and R = (v − 1)/(v + 1), the infinitesimal generator is then

Lv =
1
Lloc

∂

∂v

[
(v2 − 1)

∂

∂v

]
, (90)

hich is self-adjoint. The Fokker–Planck equation for the probability density function of the power reflection coefficient
(L, v) then reads

∂p
∂L

(L, v) =
1
Lloc

∂

∂v

[
(v2 − 1)

∂p
∂v

(L, v)
]
, v > 1, (91)

ith initial condition p(L = 0, v) = δ(v − 1), where δ denotes the Dirac delta function. Note that this is the same form
f Fokker–Planck equation as seen in Eq. (85) in the analysis of the power transmission coefficient. Using the solution
or the probability density function of the power transmission coefficient (Eq. (86)) the moments of the power reflection
oefficient are given by

E[Rn(L)] =

∫ 1

0
Rn(L)p(L, R) dR =

∫
∞

1

(
v − 1
v + 1

)n

p(L, v) dv. (92)

tarting with the first moment (n = 1) we obtain

E[R(L)] =

∫
∞

(
v − 1

)
p(L, v) dv =

∫
∞

(
1 −

2
)
p(L, v) dv = 1 −

∫
∞

(
2

)
p(L, v) dv. (93)
1 v + 1 1 v + 1 1 1 + v

11
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Table 1
Table of material constants for a CFRP obtained from IHI corporation (private communication) with geometry [17].

Elastic material constants (in GPa) (ML−1T−2
× 109)

C11 C33 C44 C66 C13 Density (ρ) (kg m−3)

CFRP 146.53 12.25 2.55 4.00 6.67 1550

The second integral term is precisely the integral we solved in the transmission case. Thus Eq. (81) gives E[R(L)] =

− E[τ (L)], and so E[τ (L)] + E[R(L)] = 1, and energy is conserved. Now moving to the second moment (n = 2) we
btain

E[R2(L)] =

∫
∞

1

(
v − 1
v + 1

)2

p(L, v) dv =

∫
∞

1

(
1 −

2
v + 1

)2

p(L, v) dv

=

∫
∞

1
p(L, v) dv +

∫
∞

1

(
2

1 + v

)2

p(L, v), dv − 2
∫

∞

1

(
2

1 + v

)
p(L, v) dv

= 1 + E[τ 2(L)] − 2E[τ (L)]. (94)

ote that standard deviation of the reflected energy

Std[R(L)] =

√
E[R2(L)] − E[R(L)]2 =

√
1 + E[τ 2(L)] − 2E[τ (L)] − (1 − E[τ (L)])

=

√
E[τ 2(L)] − E[τ (L)]2 = Std[τ (L)], (95)

is equal to the standard deviation of the transmitted energy.

5. Numerical results

5.1. Numerical calculation of correlation integrals

For illustrative purposes, we simulate a material in order to show how the correlation matrix components (51) and
(52) can be computed via quadrature. The symmetric correlation integral Υ (φ) may be written in discretised form as

ΥN (φ) = 2
N∑
i=1

( R∑
r=1

K∑
j=1

(mr
1)

j(mr
i )

j

RK

)
cos (φxi3)∆x3, (96)

here (mr
i )

j is the orientation of the anisotropic material in realisation j, along ray r and at arc length position (x3)i. These
rientations are drawn from a uniform distribution over [−1, 1]. The mean layer size l = λ3 is chosen accordingly so that
e are in the weakly heterogeneous regime L3 ≫ λ3 ∼ l. We assume that the layer sizes

(X1, X2 − X1, . . . , Xn − Xn−1, . . .), (97)

onstitute a sequence of independent random variables following an exponential distribution with rate 1/l

P [Xn − Xn−1 ≤ x3] = 1 − e−x3/l. (98)

his ensures that the layer lengths are constructed according to an exponential distribution and therefore form a Markov
rocess [9]. Since we are working in a scaled non-dimensional framework, our propagation distance is denoted by L̃ and

l = 1. Typical values of the correlation integrals are of order one. Note that Υ (φ) is a non-negative real number (which
is expected) since it is proportional to the power spectral density of the random process m [13].

Carbon fibre reinforced polymers (CFRP’s) are a common class of materials in the engineering world and have material
properties that align with our model; specifically the heterogeneous and locally anisotropic nature of layered CFRP’s. For
our study a frequency of f = 1MHz (ω̃ ∼ ε−2) and a mean wave speed of c3 = 2000m s−1 were used together with the
elastic constants in Table 1.

We analyse the mean power transmission coefficient given by Eq. (81) as a function of key parameters, including the
propagation distance L̃ through the material and ν = κ1/κ3 which controls the direction of the wave through the layered
medium. The decrease in L̃loc (see Eq. (80)) as the wavefront direction ν increases is shown in Fig. 2. Increasing the
avenumber in the x1 direction and keeping the wavenumber in the x3 direction fixed, increases the angle of incidence
f the wave and leads to a longer travel distance through the layers corresponding to greater multiple scattering through
ach layer. This change in the localisation length (L̃loc) affects the decay rate of the mean power transmission coefficient
[τ (L̃, ν)] (Eq. (81)) as shown in Fig. 3. An increase in the ratio of wave numbers (directivity of the wave) causes greater
nergy decay with the depth of wave penetration into the material L̃.
We also see the effect of changing the wave direction (ν) on the standard deviation of the power transmission

oefficient. Fig. 4 shows the narrowing of the peak of the standard deviation of the power transmission coefficient as
increases and the self-averaging of the wave for large propagation distance L̃.
12
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Fig. 2. Non-dimensional localisation length L̃loc (given by Eq. (80)) as a function of the wave directivity parameter ν (Eq. (33)). The material properties
re given in Table 1.

Fig. 3. Plots of the mean of the power transmission coefficient (see Eq. (81)) as the non-dimensionalised penetration depth L̃ varies for different
alues of the wave directivity parameter ν (Eq. (33)). The material properties are given in Table 1.

. Conclusion

Amodel of a monochromatic horizontally polarised shear wave propagating through a randomly layered heterogeneous
edium composed of a locally anisotropic material has been constructed. A suitable scaling regime was studied whereby

he microstructure produced a transmitted wave which had an attenuated, coherent wave front followed by an incoherent
oda wave. We modelled the random fluctuations present within the anisotropic material via a local rotation of the
orresponding slowness surface as a function of the wave propagation direction (x3). We obtained a system of stochastic
differential equations which we solved in order to access the statistical properties of the energy transmitted and reflected
through this layered random medium.

A horizontally polarised shear wave parameterisation u = (0, u2(x1, x3), 0) was chosen and the transmitted energy
(attenuation) of the amplitude of the coherent wave then depended on the direction of the wave vector in the (x1, x3)
plane. This variation in the wave attenuation on the direction of propagation (ν = κ1/κ3) has relevance to the use of
ultrasonic arrays for medical imaging and nondestructive testing applications [14,20]. We have also derived an expression
13
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Fig. 4. Plots of the standard deviation of the power transmission coefficient (Eq. (81)) as the non-dimensionalised wave propagation depth L̃ varies
or different values of the wave directivity parameter ν (Eq. (33)). The material properties are given in Table 1.

or the localisation length, which depends on correlation integrals which can be numerically evaluated for specific material
icrostructures. It was found that the wave direction had a significant effect on the depth of penetration of the wave as
haracterised by the localisation length Lloc . For example, a 20% change in the wave direction could lead to a threefold
eduction in the amplitude of the transmitted coherent wave. The work presented here could be used by experimentalists
o decide on an appropriate frequency of ultrasonic wave to emit for a given material microstructure and required depth
f wave penetration.
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